
ELASTICITY THANKS TO KERRIGHED SSI AND XTREEMFS
Elastic Computing and Storage Infrastructure using Kerrighed SSI and XtreemFS

Alexandre Lissy1, Stéphane Laurière2

1Laboratoire d’Informatique, Université de Tours, 64 avenue Jean Portalis, Tours, France
2Mandriva, 8 rue de la Michodière, Paris, France

Julien Hadba
Laboratoire d’Informatique, Université de Tours, 64 avenue Jean Portalis, Tours, France

Keywords: Kerrighed, Cloud, Infrastructure, Elastic, XtreemFS, Storage.

Abstract: One of the major feature of Cloud Computing is its elasticity, thus allowing one to have a moving infrastructure
at a lower cost. Achieving this elasticity is the job of the cloud provider, whether it is IaaS, PaaS or SaaS. On
the other hand, Single System Image has a hotplug capability. It allows to “transparently” dispatch, from a
user perspective, the workload on the whole cluster. In this paper, we study whether and how we could build
a Cloud infrastructure, leveraging tools from the SSI field. Our goal is to provide, thanks to Kerrighed for
the computing power aggregation and unified system view, some IaaS and to exploit XtreemFS capabilities to
provide performant and resilient storage for the associated Cloud infrastructure.

1 INTRODUCTION

When talking about Cloud, John Mc-
Carthy’s (Garfinkel, 1999) quotation at the MIT’s
100th year celebration is often used: “computation
may someday be organized as a public utility”. This
idea, which dates back to 1961, came back after the
Dot-Com bubble, pushed by Amazon: like many,
the company had datacenters full of servers, running
mostly at 10% of their full capacity and occasion-
ally running at their full capacity in the periods of
potential peaks as the ones occurring at Christmas
for example. Amazon decided to stop wasting this
power, and createdAmazon Web Services (AWS), in
July 2002. This date might be refered to as the Year
Zero of Cloud Computing. Since then, all big IT
companies have been involved in Cloud.

From a user perspective, the main advantage of
AWS is the ease of use that it provides. It became pos-
sible to easily access huge computing power at low
cost. With Amazon Elastic Cloud Computing (Ama-
zon EC2), the idea went further and Xen virtual ma-
chines now are available via the service. Elastic Com-
puting is now becoming a major feature that is tightly
linked to Cloud, especially for its Infrastructure part.

Another interesting field is the Single System Im-

age: SSIs are distributed systems running on top of a
network of computers, that appear as one big unique
computer to the user. Several projects aimed at pro-
viding such a system. Among them, we can cite
MOSIX (Barak and Shiloh, 1977), openMosix (Bar,
2008), OpenSSI (Walker, 2001) and Kerrighed (Ker-
labs, 2006). The first one is not a free software, but is
still actively developed. The openMosix project died
in 2008, but the LinuxPMI (Longtin, 2008) project
is trying to continue the work initiated. OpenSSI is
not dead but still based on a rather old kernel (2.6.14
for the most recent kernel used, 2.6.12 in the latest
released version). Kerrighed is the only project still
active and working with a kernel 2.6.30.

XtreemFS is a part of the European Founded
project “XtreemOS”. Its goal is to provide a dis-
tributed and replicated filesystem for the Internet. It
has now reached some useable state as demonstrated
in (Lissy, 2009a).

Our goal is to leverage these tools and gather them
together.

The rest of this paper is structured as follows: in
section 2 we present some related works on SSI and
Cloud, we also introduce the involved tools as well as
our goal regarding what has already been done by oth-
ers. Then, in section 3 we present our goal and mo-

431Lissy A., Laurière S. and Hadba J..
ELASTICITY THANKS TO KERRIGHED SSI AND XTREEMFS - Elastic Computing and Storage Infrastructure using Kerrighed SSI and XtreemFS.
DOI: 10.5220/0003391504310438
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 431-438
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



tivations. In section 4 we present our solution from
a technical and implementation point of view, and in
section 5 we propose a critical analysis of the pro-
posed solution as well as a test plan and criterions to
validate or not the viability of this implementation.
Then we conclude in section 6 whether our solution
is viable or not.

2 RELATED WORKS

In this section, we present a couple of papers related
to our topic: Single System Image, Cloud, and/or
XtreemFS. It can be noticed that there are only few
papers dealing with the use of SSI to provide Cloud.

2.1 A View of Cloud Computing

Definition. Based on view of cloud computing
(Armbrust et al., 2010), we define a cloud as a sys-
tem which respect three properties

• impression of infinite capacity: cloud cannot be
limited by the system capacity. User must have
impression that the capacity of the cloud is un-
bound by hardware (storage, computing, ...).

• short term usage: usage of cloud computing is
free constraint. User must use cloud just for his
needed.

• no upfront cost: utilization of cloud avoid the ini-
tial cost of his own equipment. This must not be
visible for the user.

Important Cloud Features. We note important
features which appear as essential in cloud comput-
ing.

• Elasticity. To respect the three properties above,
a cloud must have the capacity to scale quickly.
Plus in practice, we note peaks of utilization. For
instance, reactivity is an important user require-
ment. We can explain the failure of services by
a too long response time. Generally capacity
of cloud computing is design on maximum need
reached on peaks. The rest of the time (most of
the time), the cloud is under used.

• Scalability. If demand evolution of resources is
unknown, need of resource can be assumed by an-
other one. That is a typical use case of cloud and
that’s why capacity of cloud have to be scalable
(unbound).

• Development Framework. Utilization of cloud
implies a new model for application design. The
model is dependent on the cloud. A general

rule can be picked up: the more developers have
freedom, the more they have to consider specific
mechanisms of the cloud. Inversely, more mech-
anisms of cloud is automatic, more the model of
development is restrictive. To ensure the porta-
bility of application under more than one cloud,
framework have to tend toward standard. A
smooth solution is to reuse existing standard of
programming.

• Virtualization Solution. Quality of service and
bug detection is difficult to manage by direct uti-
lization of cloud. Bugs are hardly repeatable be-
cause it is difficult to recreate environment. Clas-
sic solution is to partition the user space. That’s
why we used virtualization.

2.2 Kerrighed

Kerrighed (Kerlabs, 2006) is a project that was initi-
ated in 1999, at INRIA. It was developed until 2006
at IRISA, in Rennes, with people from INRIA, EDF
and the University Rennes 1. In 2006, it was judged
that it was time to move from a research prototype to
an industrial solution, and thus Kerlabs was founded
by members of the research team, to continue the de-
velopment. Kerrighed allows a set of interconnected
(LAN) computers to function as a so-called “Virtual-
SMP”, aiming at making a Single System Image: sin-
gle process space, single IO space, single root, etc.
Single File system root is provided through a com-
mon NFS server for all nodes. One major feature of
Kerrighed is the ability to handle processes on several
nodes. There are two ways to deal with it: migration
or distant fork. The goal of those two is to balance the
load on the whole cluster. Migration might still suffer
from some hiccups, even if these are improving incre-
mentally each time. The idea is to freeze the process,
transfer it to another node, and continue the execu-
tion. Distant fork is much simpler: whenfork()ing,
Kerrighed intercepts the system call, and manages to
execute it on another node.
These features are controlled, since the Kerrighed 2.4
version, by a userspace-configurable kernel scheduler
framework, called SchedConfig. The “legacy” sched-
uler provided with Kerrighed behaves like MOSIX’
one. As part of (Lissy, 2009b), another scheduler was
implemented, based on the work by (Pérotin, 2008),
called “RBT”. This scheduler is able to control migra-
tion and/or distant fork, i.e. to decide on which node
the execution of a process should be done, either by
migrating the process, or whenfork() occurs.
As part of the 3.0 release, major work was done
to support Hotplug node. Currently, the addition
of nodes while running the cluster is fully function-

CLOSER 2011 - International Conference on Cloud Computing and Services Science

432



nal. The removal of nodes, however, remains com-
plicated. The developers have patches that works rel-
atively well to allow the administrator to get a node
out of the cluster. However these patches are not quite
ready yet. A crashing node is still a big issue, but it
should be addressed eventually (patches allowing safe
removal of a node from the cluster are already avail-
able and working). This hotplug feature is very inter-
esting, since it allows very easy elasticity: basically,
you take a node, you rack it, plug the network, power
up and your cluster has more power.

2.3 XtreemFS

XtreemFS (XtreemFS Team, 2006) is a distributed
and replicated Internet filesystem, that was devel-
oped as part of the XtreemOS (XtreemOS Consor-
tium, 2006) project. The objective of the project is
to provide a solution to have a distributed, parallel
and replicated filesystem for sharing data inside the
XtreemOS project, but not just limited to it. It consists
of several components: a directory service (DIR), a
metadata and replication service (MRC) and a stor-
age service (OSD). The directory service allows all
the other services to register themselves and be able
to know which is available. MRC is responsible for
the metadata of the stored data and replication. The
OSD service is the one that runs on each node and ef-
fectively stores data. The administrator will be able to
create several volumes on the MRC, which will deter-
mine the features of the volume: access control policy
(POSIX by default), a stripping policy (only RAID0
for the moment) a stripe size (128kB by default) and
a stripe width (1 by default). This stripping feature al-
lows chunks of data to be stored onto different OSD.
When the client will mount the filesystem, it will en-
able him to perform parallel reads from all the OSD
that have the data, thus improving throughoutput.
Replication works but might still need some work in
order to be better and easier to deal with. The filesys-
tem provides an extension mechanism, so specific fea-
tures might be added easily. This stripping enables
elasticity too, even though data will not, currently, be
replicated automatically onto the new nodes, at least
the volume size will increase when adding new OSD
to the system. Thanks to the DIR service, this is kind
of automagic.

2.4 Apache Hadoop

Apache Hadoop, which some consider to be a PaaS
component of Cloud, is a framework designed to treat
very large datasets. It is a free implementation of
Google’s MapReduce, implemented thanks to their

publications. It is distributed and fault-tolerant, but
requires using its specific API to be used. It is not
POSIX-compliant, but there are projects aiming at
providing a FUSE interface to Hadoop (Foundation,
2009).

2.5 Ceph Project

This project, started as a PhD thesis, aims at pro-
viding a distributed and scalable free file system for
Linux. Scaling is achieved simply, in the same way as
XtreemFS is, by adding new Object Storage Device
(OSD). The filesystem replicates data accross several
OSDs inside the cluster, allowing both resilient be-
havior when losing some nodes, and parallel reading
while retrieving data. One feature that is very interest-
ing is the ability to rebalance the load when extend-
ing the cluster with new OSDs. Both an advantage
and an issue is the fact that Ceph is now mainstream
Linux kernel. It means that it works well enough to
be included in the official vanilla sources since 2.6.34,
which is very good. It also means that if we want to
have it in Kerrighed, we will have some work to do
to backport it to 2.6.30 used by the SSI. As the kernel
evolves very rapidly, this might be an issue. More-
over, dealing with FUSE might be much more valu-
able: there are other interesting filesystems based on
this tool that might benefit from our work.

2.6 XtreemOS and Cloud Computing

In (Morin et al., 2009), the authors analyse the “im-
pact” of the recent Cloud Computing idea and how it
interacts with XtreemOS. Two approaches are used:
leveraging clouds for XtreemOS usage, and using
XtreemOS technologies to manage cloud computing
infrastructures.

In the first case, the idea is to install XtreemOS
in several Clouds to be able to federate themselves.
XtreemFS is an interesting piece of software for this
case, due to its POSIX interface for easy integration
with legacy application, contrary to “classical” Cloud
storage. Also, the use of an SSI (LinuxSSI precisely
in XtreemOS) allows to provide much larger virtual
machines than Amazon EC2 does. The processor
transparency provided by SSI is an advantage here.

In the second case, XtreemOS is used as an infras-
tructure for cloud providers. The major concept of
Virtual Organization, at the heart of XtreemOS, can
be leveraged here to define and apply policies and ac-
cess control for the resources used. XtreemOS will be
running Virtual Machines, and these will be managed
as an application. Any operating system might run
inside the VM. Migration and hotplug allow for ser-

ELASTICITY THANKS TO KERRIGHED SSI AND XTREEMFS - Elastic Computing and Storage Infrastructure using
Kerrighed SSI and XtreemFS

433



ver consolidation depending on the workload.

2.7 SSI on the Cloud

In (Modzelewski et al., 2009), the authors describe
how they intend to ease the use of cloud and mas-
sively parallel computers (1000+ cores, called “many-
cores”), by designing a cloud-aware operating sys-
tem: fos. The main idea is to have a Single System
Image running on top of anInfrastructure as a Ser-
vice cloud. To design their OS, they introduce four
challenges thatfos must address: scalability, elastic-
ity of demand, faults and programming large systems.

Scalability. Algorithms inside the OS, such as lock-
ing for example, must scale beyond one hundred or
more cores. They reuse their work analyzing the lim-
itations towards this goal in current OS design.

Elasticity of Demand. It is defined as this: work-
load and resources to treat demand will change dy-
namically.

Faults. Obviously, large systems are more prone to
failures, and there are several references about these
issues, such as (Shang et al., 2007; Huysmans et al.,
2006; Hacker et al., 2009). So the Operating System
must be designed with fault tolerance in mind.

Programming Large Systems. Currently, tools to
efficiently use large systems easily are not available:
no uniform programming model for communication
(threads for local resources, sockets for remote re-
sources), cloud complexity embedded inside the ap-
plication whereas for multiprocessor systems it is em-
bedded inside the OS.

The authors propose a solution, “a factored OS”.
The main design principles are:

• Space multiplexing instead of time multiplexing.

• Factorization into specific services.

• Faults detection and handling.

Even though it does not correspond exactly to our
research, those challenges are interesting in the way
that they demonstrate the complexity of large sys-
tems.

2.8 SuperComputers and Cloud
Computing

In “Providing a Cloud Network infrastructure on a
Supercomputer” (Appavoo et al., 2010), the authors
present a similar idea: they state that, due to cost and

scale condiserations, cloud hardware will evolve to
something similar to supercomputer hardware. More
precisely, they are interested in showing that it is
possible to use supercomputers as cloud infrastruc-
ture. Scientific computing, and thus supercomput-
ers aim at delivering the highest performances achiev-
able. Nowadays, however, they tend to use standard
general-purpose software environments rather than
highly-specialized and dedicaded ones, to allow easy
portability. Some might then consider using Cloud
for High Performance Computing (HPC). For them,
a central feature of Cloud is “elastic resource provi-
sioning of standardized resources”, to easily scale ac-
cording to users needs. Elasticity can also be used in
high-performancesystems, and the authors introduces
two hypotheses that they intend to verify by adding
dynamic network virtualization to a supercomputing
system:

1. Elasticity can be achieved along with the pre-
dictability associated with high performance com-
puting;

2. General-purpose elastic computing can be sup-
ported with direct access to specialized networks.

This elasticity is not part of the supercomputer ar-
chitecture. The authors’ idea is thus to adapt HPC,
by emulating Ethernet over their BlueGene/P’s spe-
cific networking, RDMA, to allow the use of classical
Cloud tools. They demonstrate its performances, with
a patched version of memcached and benchmark.

They conclude that by providing commodity soft-
ware layer, they can run a cloud computing applica-
tion on top of their BlueGene/P and benefit from its
computational power. One of their future works will
be to backfill the supercomputer with cloud in idle pe-
riods.

2.9 Using XtreemOS for NBX Grid

In the technical report (Mason et al., 2010), the
authors study the use of XtreemOS components in-
side NBX (NuGO Black Box, a project that aims at
providing a “lab-scale” bioinformatics servers. As
part of an upgrade of the solution, the authors study
the possibility to leverage XtreemOS for their needs:
mainly, Kerrighed and XtreemFS. They justify the
Kerrighed choice by the status of all others FLOSS1

SSI: openMosix is dead since march 2008, OpenSSI
is rather old (latest release was in 2010, 18th Feb.,
and with kernel 2.6.12). Only Kerrighed is still de-
veloped actively. Even though they had a couple
of hiccups using this piece of software, they finally
validated its use. Then, they studied the filesystem

1Free and Libre Open Source Software.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

434



Figure 1: The Cloud Computing Stack (Clubic.com, 2010).

part: replacing the use of “sshfs”2 to share data, with
XtreemFS, which isconsiderably more robust than
“sshfs”. However, they managed to achieve good re-
sults in local network (stating that XtreemFSuses too
many ports for the firewall configurationwhich made
them unable to test at WAN level). Finally, as a con-
clusion, they validate the use of both XtreemFS and
Kerrighed inside their NBX platform.

3 AN ELASTIC AND
TRANSPARENT
INFRASTRUCTURE

In the previous sections, we have shown how elastic-
ity is one of the biggest advantages provided by Cloud
Computing. Before introducing the idea, it is impor-
tant to remind our readers of the layers (figure 1) in-
volved in Cloud, in a bottom-up approach:

1. Infrastructure as a Service (IaaS): Amazon EC2

2. Platform as a Service (PaaS): Google App Engine

3. Software as a Service (SaaS): ERP5 SaaS

As we have also seen previously, both Kerrighed
and XtreemFS areelastic-aware, meaning that they
can be extended at will and without any downtime.
So the idea is pretty simple in fact: following the same
kind of logic as in (Morin et al., 2009) and in (Ap-
pavoo et al., 2010), we would like to benefit from
these capabilities to easily provide the basis for an
IaaS, effectively leveraging Kerrighed and XtreemFS.
Even though both might not be production ready for
this kind of usage, it is worth checking the feasibility
of this kind of construction. One usage of this solution
can be imagined as part of the CompatibleOne (Team,
2010) project to provide IaaS, either as a final basis
for the solution, or more likely as a way to have an
elastic infrastructure as a prototype.

2A FUSE software to mount SSH folders.

The process that sustains the production of a
Linux distribution relies on infrastructure services
that are both CPU and storage intensive: a build ser-
vice, a code analysis service, and a system integra-
tion testing service. For example, in Mandriva’s case,
it consists of approximately 10,000 source packages
and 20,000 binary ones, which evolve at a rapid pace:
during activity peaks, the amount of new packages
produced every day can amount to more than 1,000,
as a consequence of the availability of new compo-
nent versions, bug fixes or security updates, and of
the complex dependency graph among packages. The
volumes at stake and the need to meet highly demand-
ing industry requirements in terms of speed, test cov-
erage and traceability call for an innovative scalable
infrastructure. The elasticity and the robustness of-
fered by Kerrighed and XtreemFS are appealing for
the creation of such a Linux engineering platform.
The use of both as an infrastructure for the Mandriva
distribution build and analysis system will be experi-
mented and measured in 2011-2012. The key success
criteria will hinge on the following aspects: efficient
elasticity, performance, robustness, and simplicity of
the set up, administration and replication processes.

4 PROPOSED SOLUTION

Now that a description of the context as well as the
main idea have been set, we will focus on deliver-
ing a description of the technical aspects of the so-
lution. But first, we will summarize the qualities of
Kerrighed and XtreemFS for this topic.

4.1 Components of the Solution

Kerrighed. Kerrighed is a Single System Image for
a cluster of computers. A kerrighed cluster can be
viewed as a big computer which is an agregation of
all nodes. Following the same idea than for the “fOS”
project, the idea is to benefit from the kernel-side sin-
gle view inherent to the SSI aspect of the project.

XtreemFS. Other distributed filesystems exist, such
as Ceph, but XtreemFS is more interesting mainly be-
cause it is less intrusive than Ceph. The former is a
userspace filesystem, implemented with FUSE, while
the latter is in-kernel, which would require patching
Kerrighed to add it. XtreemFS also provides elastic-
ity even though it does not support rebalancing the
load when adding new storage devices.

Association of Kerrighed and XtreemFS. So now
the idea is to associate both Kerrighed and XtreemFS

ELASTICITY THANKS TO KERRIGHED SSI AND XTREEMFS - Elastic Computing and Storage Infrastructure using
Kerrighed SSI and XtreemFS

435



in one node, so that we can plug new computers and
extend both storage and computing power.

4.2 Implemented Solution

To set up the solution, we reused our Kerrighed de-
velopment cluster. The basic setup involves a NFS
server, serving the root filesystem (later referred as
“NFSROOT”), and client nodes booting the kerrighed
kernel over PXE. Inside the NFSROOT, we simply
install XtreemFS server package, to provide OSDs
for each node. We installed XtreemFS directory and
metadata services on the NFS server. In the end, the
setup can be summarized as in figure 2.

Figure 2: Implemented solution.

Now, in order to mount the filesystem, we can en-
visage two ways:

• Mount it on the NFS server, then share via NFS.

• Mount it on each Kerrighed node.
It is important to notice that when the client, that is

the kerrighed booted nodes, will mount the filesystem,
they will request to directory and metadata server.
DIR will be in charge of providing the information
about the presence of MRC and OSD. When manip-
ulating data, the XtreemFS client will have direct ac-
cess to the OSD. So the first solution will be bottle-
necked by the NFS server.

For our test bed, we deployed two OSDs per Ker-
righed node. This requires a couple of operations, as
the default installation only allows for one OSD to be
launched, but nothing serious (duplicating the config-
uration file for each node and each instance, setting
the appropriate UUID). These had to be done in order
to be able to use the two storage devices we added to
each node. For the test, they are simply Kingston 4GB
USB key, providing a total of 42GB (some reports as
4.01GB, others at 3.8GB). We could have setup some
Software RAID0 to allow the two keys to be exposed
“as one”. But in production this would have meant
risking loosing the data of the two disks if loosing
one. Two (or more) OSDs provide a better solution.

One interesting feature of Kerrighed is, as we pre-
viously stated, distant fork. Thus, we want to exploit
distant fork “over” XtreemFS, that is having a dis-
tributed storage volume which is used by applications

running inside the cluster. At first, it was impossible
due to some implementation issues. After notifica-
tion to the Kerrighed’s developer, they came with an
idea that we implemented and, as of now, validated.
Some work is still needed to polish the code, but the
main goal is achieved. Further investigations exposed
another issue, related to XtreemFS, on which we are
working.

While uncompressing the sources, we also ran
into some bug lying in XtreemFS and related to man-
agement of symbolic links, which we helped to get
fixed.

4.3 Towards PaaS Solution

The goal of the proposed solution is to include ker-
righed and XtreemFS as foundation for IaaS as part
of a Cloud stack (figure 3). The IaaS layer can be en-
sured by the management of virtual machines. This
management is controled by an intelligent migration
policy (section 2.2) in kerrighed and by a control of
data in XtreemFS (section 2.3).

5 ANALYSIS OF THE PROPOSED
SOLUTION

In this part, we will first characterize the properties
that we want to achieve, then we will show how the
proposed solution allows to comply with them.

5.1 Properties to Achieve

Elasticity. We define elasticity as the capacity of the
system which we want to build to serve for Infrastruc-
ture as a Service to be resized, while running, without
any downtime. This capacity is needed, for several
reasons. First of all, it will allow for easy scaling:
need more computational power? Add more servers.
Secondly, if we can shrink the system, we can take
nodes down when the load is too low. It also allows
to remove parts of the system for maintenance for ex-
ample.

Robustness. We define robustess as the capacity for
the system to remain accessible and (even not) fully
functionnal when critical events occur. Since it will
have many components, it is very likely that some will
fail. We don’t want the whole system to be down in
that case. What would be better would be that nothing
got lost: data or process. Even if it bad to be at the
cost of computational power.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

436



Transparency. We define transparency as the ca-
pacity of the system to manage both these proper-
ties in a transparent way for the applications using it.
That is, unlike other cloud applications, as stated in
(Modzelewski et al., 2009), we do not want to man-
age elasticity and robustness in applications.

5.2 Validation of Properties

5.2.1 Elasticity

Kerrighed. As defined previously, elasticity in Ker-
righed is the ability to add and/or remove nodes while
keeping a running computer accross the nodes. This
is precisely the behavior of Kerrighed. Since the lat-
est release, 3.0.0, Kerrighed supports hotplug: we can
add new nodes to an already living cluster. Since
November, 22nd, Kerrighed has support for hot re-
moval of nodes. It works, even though there are still
issues to be solved.

XtreemFS. Elasticity in XtreemFS is natural and
linked with the directory service. Each OSD regis-
ters to DIR and then can be used for every volume
that is present in the system. Removing an OSD, for
example by shutting its node down, will reduce the
available size of the volume, and if the file chunks
it was hosting have not been replicated, correspond-
ing files will remain unavailable until the OSD comes
back online.

5.2.2 Robustness

Table 1 summarizes the issues that might arise for
both Kerrighed and XtreemFS.

Kerrighed. The question of robustness for Ker-
righed can be seen as a two-way question: is it able to
handle the loss of one or more several nodes? Can we
remove nodes by hand and keep the cluster usable?
As of today, only the second part has been addressed
in an interesting way. Even if node removal is very
recent, publicly available in git tree since November
22nd, it works relatively well. However, we have been
able to trigger bugs in some cases. When removing a
node, the system tries to migrate all the processes that
are running on this node onto other nodes. If a process
is not migrateable, then it will be killed. Otherwise,
it will remain running. As far as the first question is
concerned, the current answer is simply “no”. It is
not a limitation, it is a bug not yet addressed. Loosing
one node will still crash the whole cluster. Work is
being done on failure prediction to avoid this kind of
damages.

XtreemFS. Regarding XtreemFS, we can ask our-
selves the same questions than for Kerrighed: how
does it behave when loosing one node? Can we re-
move one node safely? While in Kerrighed there is
a tool managing node hotplugging,krgadm, there is
no such thing for XtreemFS, thus both questions are
the same. XtreemFS can afford loosing one or sev-
eral OSDs, as long as there are other providing repli-
cas of the chunks involved. If not, it will issue an
error to the requesting application. Once the miss-
ing OSDs are back, the data is available again. Also,
there is currently a single point of failure for the direc-
tory and metadata services. However, this should be
addressed in the 1.3 release of XtreemFS (currently
1.2.3). One must also be aware that replication is not
yet automatic: the file must be set as “read-only” for
replication to be able to start.

Table 1: List of potential problems.

safety stop crash
XtreemFS full disk space

& recovery
full disk space
& recovery

Kerrighed loss of avail-
able power

system crash

5.2.3 Transparency

Kerrighed. As a SSI, it is totally transparent to the
applications that are run inside the cluster. Techni-
cally, Kerrighed is implemented as a Linux Container,
a lightweight virtualization technique. Once the clus-
ter environment is started, the user can connect to it
(through asshdstarted inside the container) and see a
SMP machine that aggregates all the power and mem-
ory of all the nodes participating. Transparency is
complete. If one wants to benefit from process migra-
tion or distant fork, however, running processes must
be “configured” (setting capability) to allow those ac-
tions. This can be easily circumvented.

XtreemFS. As a FUSE and POSIX-compatible
filesystem, XtreemFS is rather transparent. One just
need to mount it and then it is possible to use it as any
storage device that exists.

5.3 Efficiency

Once we have checked that the requirements are glob-
ally met, it seems important to us to check that the
performances are not bad. Kerrighed and XtreemFS
are not dedicated to Cloud IaaS, so highest perfor-
mance levels are not expected. However, we want to
be able to get an honest average performance. One

ELASTICITY THANKS TO KERRIGHED SSI AND XTREEMFS - Elastic Computing and Storage Infrastructure using
Kerrighed SSI and XtreemFS

437



possible way to exploit the IaaS that we have created
with Kerrighed and XtreemFS would be to run vir-
tual machines inside, and to store virtual hard disks
on XtreemFS. Doing so, we could be able to bench-
mark against Amazon EC2.

For the record, we have “checked” this by doing
a massive parallel build of the Linux Kernel (make
-j24).

6 CONCLUSIONS

We finally set up the IaaS Layer of cloud stack. The
described setup is functional. Thanks to kerrighed,
we obtain an elastic and transparent computing solu-
tion. Thanks to XtreemFS, the proposed solution has
an efficient elastic and transparent data storage solu-
tion. However we are aware of the current limitations
of both, and efforts are made to improve the robust-
ness. Thus we are hoping to reach an ideal elastic
solution of cloud.
Our solution has been tested by the execution of a
massive parallel computing application. The pro-
posed solution has the advantage of the elasticity
which is very interesting in many use cases like the
one presented previously. Now that this achievement
has been made, we can go further and expect to finally
be able to run some benchmarks.

REFERENCES

Appavoo, J., Uhlig, V., Stoess, J., Waterland, A., Rosen-
burg, B., Wisniewski, R., Silva, D. D., Hensbergen,
E. V., and Steinberg, U. (2010). Providing a Cloud
Network Infrastructure on a Supercomputer. In1st
Workshop on Scientific Cloud Computing, Chicago,
IL, USA, June 2010, Chicago, Illinois.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Communications of the ACM, 53(4):50–
58.

Bar, M. (2002–2008). The openMosix Project.
http://openmosix.sourceforge.net/.

Barak, A. and Shiloh, A. (1977). MOSIX – Cluster and
Multi-Cluster Management. http://www.mosix.org.

Clubic.com (2010). Cloud stack. http://img.clubic.com/
photo/02883120.jpg.

Foundation, A. (2009). Hadoop hdfs. http://wiki.apache.org
/hadoop/MountableHDFS.

Garfinkel, S. L. (1999).Architects of the Information Soci-
ety: Thirty-Five Years of the Laboratory for Computer
Science at MIT. The MIT Press.

Hacker, T. J., Romero, F., and Carothers, C. D. (2009). An
analysis of clustered failures on large supercomputing
systems.J. Parallel Distrib. Comput., 69(7):652–665.

Huysmans, J., Baesens, B., Vanthienen, J., and Gestel, T. V.
(2006). Failure prediction with self organizing maps.
Expert Syst. Appl., 30(3):479–487.

Kerlabs (2006). Kerrighed – Linux Clusters Made Easy.
http://www.kerrighed.org.

Lissy, A. (2009a). Espace de stockage avec XtreemFS.
Master’s thesis, Département Informatique de l’École
Polytechnique de l’Université de Tours.

Lissy, A. (2009b). Politiques hybrides d’ordonnancement
dans un cluster Kerrighed. Master’s thesis,
Département Informatique de l’École Polytechnique
de l’Université de Tours.

Longtin, J. (2008). The LinuxPMI Project. http://linuxpmi.
org/trac/.

Mason, A., Clivio, L., and Travis, A. (2010). Application of
XtreemOS for development of NBX Grid. Technical
report.

Modzelewski, K., Miller, J., Belay, A., Beckmann, N.,
Gruenwald, Charles, I., Wentzlaff, D., Youseff, L.,
and Agarwal, A. (2009). A Unified Operating
System for Clouds and Manycore: fos. Techni-
cal report, MIT Dspace [http://dspace.mit.edu/dspace-
oai/request] (United States).

Morin, C., Gallard, J., Jégou, Y., and Riteau, P. (2009).
Clouds: a New Playground for the XtreemOS Grid
Operating System. Research Report RR-6824, IN-
RIA.

Pérotin, M. (2008).Calcul Haute Performance sur Matériel
Générique. PhD thesis, Laboratoire d’Informatique de
l’ École Polytechnique de l’Université de Tours.

Shang, Y., Jin, Y., and Wu, B. (2007). Fault-tolerant mech-
anism of the distributed cluster computers.Tsinghua
Science and Technology, 12(Supplement 1):186 – 191.

Team, C. (2010). The compatibleone project.
http://compatibleone.org.

Walker, B. (2001). OpenSSI Clusters for Linux.
http://www.openssi.org.

XtreemFS Team (2006). XtreemFS – a cloud filesystem.
http://www.xtreemfs.org.

XtreemOS Consortium (2006). XtreemOS. http://www.
xtreemos.eu.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

438


