
APPLICATION PORTABILITY FOR PUBLIC
AND PRIVATE CLOUDS

Manohar Jonnalagedda, Michael C. Jaeger, Uwe Hohenstein and Gerald Kaefer
Corporate Research and Technologies, Siemens AG, D-80200 Munich, Germany

Keywords: Cloud computing, Portability, Application symmetry, Application architecture, Hybrid cloud.

Abstract: With cloud computing, the general idea is to deploy applications and services in the cloud, at some cloud
provider’s facilities. But as with traditional software applications, business demands still exist including legal,
privacy, cost and technical issues. These demands can prohibit the deployment of the entire software in a cloud
provider space. Thus, some cases demand for a hybrid deployment where the application is split into one part
that resides on premises and into another part that is deployed to the cloud provider facilities.
Nevertheless, individual components could be suitable for a deployment in the cloud. Thus, an important
characteristic for cloud computing is portability of components: software should be ready for being deployed
on-premises, in a provider cloud or in a hybrid (mixed) setup. The goal is to provide flexibility to this regard
for leveraging the advantages of cloud computing. This paper introduces design considerations for developing
a hybrid application, in terms of software architecture, communication and security between modules. We give
recent trends and recommendations on how to solve these issues so as to achieve portability of the components.

1 INTRODUCTION

The cloud is used as a metaphor for the Internet,
due to the depiction of the Internet in cloud forms.
The metaphor results from the location transparency
(cf. Reference Model for Open Distributed Process-
ing (ISO/IEC, 1996)) that is a characteristic of the
Internet today: the physical location of a service or
node in the Internet is hidden, software and user deal
with logical locations posed by IPv4 or IPv6 ad-
dresses. The cloud represents a set of services that
provide computing, networking, and software capa-
bilities without a clear physical location. Cloud com-
puting refers to the provision of these services in three
provisioning categories:

1. Software-as-a-Service (SaaS): giving a user ac-
cess to software which runs on the cloud. All
computation taking place on the cloud.

2. Platform-as-a-Service (PaaS): giving developers
access to platforms and frameworks that allow
them to leverage the computing power of the
cloud and to develop own applications that run ef-
ficiently on the cloud.

3. Infrastructure-as-a-Service (IaaS): giving access
to highly scalable and elastic computing, network
or storage resources. This allows the developer to

build applications that can scale (seamlessly) to
many thousands of users, without having to buy
the hardware for it.

While the first category is end-user oriented, it
is IaaS and PaaS that have made cloud comput-
ing attractive to the software industry (Gartner Inc.,
2010). Generally, the global pressure to reduce cap-
ital expenditures (CAPEX) and operational expendi-
tures (OPEX) drives the industry to the adoption of
rationalisation and automation. Cloud computing has
gained a lot of popularity because of its promise to
lower costs, which can be seen as the main driver
here. Customers expect to pay less because of econ-
omy of scale: large providers invest highly in large
and modern data centres which allow operations of
servers at a very low cost. Customers expect to benefit
from this cost reduction. Other important arguments
in favour of cloud computing have been discussed by
(Armbrust et al., 2009):

� Flexible Contracts. Contracts from existing of-
ferings allow users to resign after a short period
of time. Thus the customer does not have to plan
a long term commitment to a provider.

� Lower Administration. Because infrastructure
and platforms are basically part of the offering
of the provider, their administration is also per-

484 Jonnalagedda M., C. Jaeger M., Hohenstein U. and Kaefer G..
APPLICATION PORTABILITY FOR PUBLIC AND PRIVATE CLOUDS.
DOI: 10.5220/0003394104840493
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 484-493
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



formed by the provider.

� Cloud Grade SLA. At the time of this writing,
large providers offer usually 99.9% (or 99.95%)
availability of the services. Such availability is
not given per se with individual deployments and
one must carefully select and deploy a provision-
ing platform to actually offer 99.9%.

� Towards Strategic Technology. Cloud comput-
ing platforms target the market of classic appli-
cation servers. As such, the classic application
server technology has been developed further to
serve as platform for cloud computing.

� On Demand Self Service. The cloud offerings
have the advantage that they provide the customer
with a self-service point in the Internet that is open
24h a day. The customer can initiate the product
use at virtually any time of the day.

In summary, several drivers can exist for a busi-
ness to use cloud services and it basically depends on
the application case if either one or more drivers apply
for the own business to move activities to the cloud.
Companies are therefore looking to gain all the bene-
fits by developing software for the cloud.

The portability of cloud applications has two main
drivers: firstly, an organization plans to take bene-
fit from the cloud computing offerings, and secondly,
restrictions prevent to run the application entirely or
partially in the provider cloud space. From a business
point of view, an ideal goal is to decide at deployment
time, depending on business demands, if the software
shall run in the provider cloud, in a private cloud on
premises or in a hybrid (mixed) setup, so as to have an
optimal trade-off between privacy and economic use
of cloud resources. In this paper, application porta-
bility refers to the ease with which modules of an ap-
plication can be split and deployed on on-premises or
cloud platforms, ending up in a mixed setup. Figure 1
depicts this idea.

We introduce the engineering issues for applica-
tion portability, which refers to the flexibility at de-
ployment regarding the location and the partitioning
of the application. Furthermore we explain trends in
the field and possible technical solutions. The paper
continues with Section 2 which explains the business
drivers and motivates this kind of portability. Section
3 describes the issues with portability while Section
4 outlines possible solutions. In Section 5 we look at
related work, and Section 6 concludes this work.

2 MOTIVATION

Two basic cases for portability exist: one is a techni-
cal issue, as applications or parts of it can be moved
from a private cloud which runs on-premises to a
provider cloud to compensate for capacity shortage
of own resources. This portability is required during
runtime. Another kind of portability is a business is-
sue: the deployment of an application shall take ad-
vantage from CAPEX and OPEX reduction promised
by cloud computing offerings. Such a portability is
required during deployment time.

The focus of this paper lies in the portability
driven by business demands. There are naturally
reasons why cloud computing may not be preferred.
These may be privacy issues, legal or compliance, or
operational-related, which could result from responsi-
bilities and structures of a large organization. Moving
business-critical information onto the public cloud is
a matter of reticence to many big organizations as, if
on the cloud, this information can physically lie in any
continent, which may go against local laws and poli-
cies, or even make the information liable to laws in
another country (see the Patriot Act (The Library of
Congress / Thomas, 2001)).

Furthermore, there are legal obligations that com-
panies must fulfill for particular information.

This means that the company or organization must
actually store such information on-premises requested
by governmental law. In a different case, some com-
ponents can take benefit from a deployment in a
provider cloud while other components are well lo-
cated on existing infrastructure, not causing addi-
tional cost at the provider.

Finally, some applications may not be suited for
the cloud at all, not for technical reasons, but the rea-
son that an organization does not intend to reveal that
such application runs in general (this category is nat-
urally not the focus of the paper).

For companies with legal obligation on the provi-
sion of data but which do want to benefit from the
cloud, technical and engineering questions present
themselves. Examples for such companies or orga-
nizations are manifold. Consider an image manage-
ment application which allows for uploading images
taken with different devices to be uploaded onto a
cloud computing application that performs image cal-
culations. The images are stored somewhere in the
world, but do not contain any metadata about users or
persons depicted on these images. Imagine a vendor
providing such software to different clients:

1. The local police department with high-definition
cameras to take pictures of various crime scenes
and other surveillance pictures, it is interested in

APPLICATION PORTABILITY FOR PUBLIC AND PRIVATE CLOUDS

485



Figure 1: Development and Deployment Scheme.

keeping high-quality pictures in a private setup. It
goes without saying that the police would like the
portal to run on-premises.

2. A medical diagnostics application that has some
high-tech equipment which takes pictures re-
lated to different illnesses inside the human body.
These images are large in size, and plenty in num-
ber. The institute might therefore like to store
and process the images themselves on the cloud,
although metadata concerning each image, being
confidential, would be kept on-premises.

3. A group of college friends would like their im-
ages of a trip to the Bahamas to be uploaded di-
rectly onto a public platform, so that their other
friends can also view the pictures. They do not
mind where the photos are stored.

So, in the individual cases, different demands for
storing the data apply. However, as a software de-
veloper and vendor of the image management appli-
cation, the application should not be developed three
times. The business goal is reuse of the application
software for all the three cases. An ideal solution for
this situation would be to let the business model de-
cide whether the application will run locally, on the
cloud or in a hybrid setup. Dividing the application in
such a manner brings forward some key engineering
issues, which are discussed in the next section. In this
case, the location is set at deployment time of the ap-
plication. This degree of flexibility is not required at
run-time.

3 ISSUES OF APPLICATION
PORTABILITY

Portability in general, is a well know term. Some of
the first notable publications define portability as A
program is portable to the extent that it can be eas-
ily moved to a new computing environment with much
less effort that it would be required to write it afresh
(Johnson and Ritchie, 1978). Mooney adds the no-
tion of narrowing the set of targets for the program
and states accordingly that a program exhibits porta-
bility referring to a set of environments, if the cost is
lower that a rewrite (Mooney, 1997). For portability
with cloud computing we can build upon this defini-
tion and distinguish two major cases:

� Vertical Portability is the capability of an appli-
cation intended for on-premises infrastructure to
be portable to a provider cloud environment. The
restriction is that the application runs on the same
technology stack on both platforms (Java or .NET
and respective cloud offerings, for example).

� Horizontal Portability is the ability to port an
application from one technology stack to another,
staying at the same level of abstraction but chang-
ing the technology provider.

As described in the above example of image man-
agement, the emergence of cloud computing brings
the need to develop software that runs both on-
premises and on the cloud. The business case de-
mands for vertical portability, as it allows for the
decision to stay within one technology stack. This
presents the following scenarios: if a vendor is cater-
ing exclusively to the first or third type of client (po-
lice department or the private initiative), the problem

CLOSER 2011 - International Conference on Cloud Computing and Services Science

486



is solved by making use of PaaS offerings (Windows
Azure (Chappell, 2009), Google App Engine (GAE)
(Google Inc, 2008), Heroku (Heroku Inc., 2010) are
some examples) which provide frameworks and APIs
for developing software. On the other hand, devel-
oping on-premises software is a tried and tested tech-
nique.

Engineering issues really arise when one wants to
develop in a hybrid setup: ideally, we would like to
develop the image sharing software only once, and de-
ploy different modules of the application to different
platforms, as dictated by the business requirements.
In the following, the particular issues are described.

3.1 Application Architecture

Design principles are an important consideration
when developing any software. The goal is to build
applications which are highly scalable, maintainable
and reliable. These requirements are naturally appli-
cable when it comes to developing software for the
cloud, but are not mandatory part for traditional ap-
plication development.

From the above example and other general cases,
an important issue is the division of an applica-
tion into separate, self-contained and loosely cou-
pled modules, which, ideally, should be deployable
to different platforms. The age-old recommendation
of component-based programming is, as we can see,
very much applicable in the given scenario. The
caveat, however, is that the platforms on which the
modules will be hosted can be very different in terms
of computer architecture, database management, and
access to finer aspects of the underlying OS (cloud
applications typically run on virtual hardware). The
big challenge, in terms of software design and archi-
tecture is, therefore, that of creating modules that are
conscious of the environment in which they run (so
as to take advantage of the underlying structure), and
at the same time independent enough so that their de-
ployment to other platform is effortless.

3.2 The Data Model and Persistence

Cloud computing has brought everybody’s eyes a shift
in thinking about data that has been taking place in the
IT world for the past decade. Traditionally, industrial
applications have considered relational database man-
agement systems (RDBMS) as the de facto standard
for persisting data. These database systems use SQL
as the main query language, and are therefore also re-
ferred to as SQL databases. They are highly prevalent
in the industry: they have the advantage of offering
transactional services, a general schema for storing

structured data, and indexing mechanisms which op-
timize queries. They concentrate mainly on consis-
tency.

In recent years, however, many companies have
been challenged by the sheer quantity of information
stored and accessed over the Internet: the necessity to
make their services highly available has been the main
driving force. This has seen the development of many
No-SQL type of databases, light-weight databases
whose main selling point is distributed services and
high availability. CouchDB (Apache Software Foun-
dation, 2008), MongoDB (10gen Inc., 2009) and Cas-
sandra (Apache Software Foundation, 2010) are some
popular No-SQL databases.

Cloud computing, with its promise of elasticity
and availability, is a natural fit for such No-SQL
databases. This explains why the first storage solu-
tions have been BLOB (binary large objects) storages
emulating a file system to some extent, and table stor-
ages. The latter keep a table view without requesting
a fixed pre-defined table schema to be defined in ad-
vance. Hence, heterogeneous structures can be stored
in one table. The main focus of table storages is to of-
fer the 80% of database functionality that typical Web
applications require. They sacrifice consistency for
the sake of availability and partition tolerance in the
sense of Brewer’s CAP theorem (Gilbert and Lynch,
2002).

Prominent cloud providers have started their offer-
ing with No-SQL DBs. They focussed on table and
blob storage products which are advantageous w.r.t.
availability and tolerance to partitions. However, in
the recent past, providers have also extended their of-
ferings with additional SQL-based RDBMS technol-
ogy. For instance, Microsoft has announced Azure
SQL in last year and Google has announced similar
support recently.

3.3 Communication in a Hybrid
Deployment

Another important aspect for portability is to en-
sure security with respect to communication between
modules; the security of the cloud platform itself does
not involve application symmetry, and generally, busi-
ness decisions (based on cloud platform security con-
cerns) decide which modules can be deployed on the
cloud anyway. Modules can communicate with each
other via different layers of the network stack. When
developing Web applications, the main grounds for
communication is to access and consume application-
level data. Communication hence takes place at the
application layer. This type of communication privi-
leges data consumption and serving stateless requests.

APPLICATION PORTABILITY FOR PUBLIC AND PRIVATE CLOUDS

487



Secondly, there is a need to communicate at a lower
level: we need to be able to access and manage re-
sources at a different level from the applications, and
also ensure that incoming and outgoing packets to
a certain module are secure (authenticated and en-
crypted).

4 TECHNIQUES AND
RECOMMENDATIONS

The previous section outlined several issues that arise
for engineering applications in a mixed cloud setup.
The general rationale is that the finished application
should be portable enough so that the entire appli-
cation, or parts of it, can be deployed on a provider
cloud with as little effort as possible. Thus, the pro-
posed business goal of Section 2 is to decide at de-
ployment time for a given setup at runtime. 1

4.1 Software Architecture

For Platform as a Service (PaaS) offerings there are
several paradigmatic characteristics for cloud use.
One of the standard paradigms is divide and conquer,
which has also been adopted in Google’s MapReduce
framework for efficiently processing large problem
sets (Dean and Ghemawat, 2008). Cloud comput-
ing offers horizontal scalability: adding more work-
ing units to increase capacity, the ideal goal being
to achieve almost infinite scalability. The common
consensus seems to be that good cloud applications
should be designed with awareness of horizontal scal-
ability. If the problem can be partitioned, then solving
the problem can be infinitely spread among a set of
working units.

Secondly, with the proliferation of development
platforms for the cloud, each of them privileges cer-
tain building blocks for writing software optimally for
the cloud. The Windows Azure platform, for exam-
ple, provides the concept of roles: self-contained en-
tities implementing an elementary unit of processing
capability. In general, it is a good practice to im-
plement elementary units as opposed to classic large

1Note: as outlined in Section 2 as a technical motiva-
tion, the freedom to migrate services into or off the provider
during run-time might be also required but has different mo-
tivations. For example, an organisation could migrate ser-
vices to the provider cloud in the case that the on-premises
infrastructure does not have any further capacity to host
applications (known as cloud-bursting). However, this de-
gree of dynamic migration is not the scope of this work.
Therefore, the following trends and recommendations do
not cover dynamic migration but consider flexibility of ap-
plication deployment.

blocks of functionality: the latter would lead to large
units in the software system, thereby not allowing for
partitioning of the problem and not taking advantage
of the horizontal scalability of the cloud. The partition
of the application in many elementary units is a nec-
essary condition for the split deployment of the appli-
cation. For application portability, this design shows
the advantage that the application has a high degree
of partitioning opportunities.

In conjunction with elementary application units,
the second larger design issue for cloud computing
applications is decoupling of application components.
For horizontal scalability, statelessness is preferred,
as state at a certain key point of the application can
block the command flow, hence losing all the ad-
vantages of elasticity and availability. Furthermore,
strong coupling would prevent the application from
the ability to scale dynamically. In order to elas-
tically add working entities at runtime, the applica-
tion architecture must show decoupled units of stages
where problem parts can be processed in an indepen-
dent manner. For splitting the application into two
deployment locations, the decoupling allows for the
use of service buses or other communication mecha-
nisms in order to overcome the distance between the
two parts (described in section 4.3).

Additionally, an aspect of software development,
applying specifically to cloud computing, is the re-
duction of service calls and transactions. Cloud com-
puting being pay-as-you-go, money can be saved by
minimizing calls to services, database servers, other
storage offerings, number of CPU cycles, etc. Al-
though this effect is not strong when using only a few
servers, savings can be significant when the applica-
tion scales to hundreds or thousands of servers. For
Internet programming, caching is a concept used to
increase performance by decreasing the number of di-
rect queries of the database: The idea is to cache the
result of common queries in memory, and, for exam-
ple, responding with this result in case such queries
are made. With respect to cloud computing, such
techniques also help save money, as they reduce stor-
age access calls. Memcache of the Google App En-
gine environment (Google Inc, 2003) helps in achiev-
ing caching for saving calls to the storage system or
for preventing redundant data transfer to external ap-
plication.

To summarize, horizontal scaling of elementary
working units in the staging of an application is an el-
ementary architectural consideration in order to lever-
age the cloud resources in an optimal way. This
paradigm also enables the slip deployment of the ap-
plication in a hybrid cloud setup.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

488



4.2 Data Models

Data representation is a key part of any application. In
this section, we look at a few techniques and trends as
to how different models can be used so as to achieve
application portability. In this section we look at
schemes for storing structured data.

As explained in section 3.2, Web application de-
velopers and cloud providers privilege distributed
key-value stores for persisting structured data. The
advantages of such storages are described in the given
section. However, there are, at the moment, no stan-
dardized database or storage products that run both
on the cloud, and can be installed on-premises. For
example, the table storage service as part of the Mi-
crosoft Azure offering is not compatible with Ama-
zon SimpleDB, Moreover, the industry still largely
prefers using the tried and tested technique of tra-
ditional RDBMSs (which explains why main cloud
providers are also starting to provide SQL solutions),
so there is a need to design data models so that they
can run on many different platforms.

With this in perspective, Object-Relational Map-
pers (ORMs) offer an abstraction for representing the
data of the database at the programming level. Such
mappers were initially developed in order to connect
relational databases to object-oriented programming
languages (Ambler, 2002). The development of Web
application stacks and tools has turned this abstrac-
tion into a good practice. These persistence abstrac-
tions present a uniform access interface to many dif-
ferent database types. When developing hybrid appli-
cations, structured data can be represented using these
mappers: in the next subsection we explain how JDO
and DataNucleus (DataNucleus, 2008) can be used to
develop modules that could run either on Google App
Engine or locally.

Google App Engine’s Java runtime uses a Jetty
servlet container and the Java Servlet Standard for
Web applications. Its datastore, based on BigTable,
supports standard Java interfaces such as JDO and
JPA, which are themselves implemented using the
DataNucleus Access Platform. DataNucleus supports
many RDBMS systems, along with Web-based stor-
age systems such as Amazon S3, Hadoop HBase and
Google App Engine.

To make use of the JDO mappings, a developer
needs to import the relevant packages and add anno-
tations (@Persistent) to classes and attributes that
he would like to be persisted. There are some addi-
tional configuration properties he needs to define in
a datanucleus.properties file, which include the
database which will be used for the application.

For an application that is to deployed on Google

AppEngine, the configuration file will contain Ap-
pEngine specific information. In order to make it
possible to deploy the same application on a MySQL
database, the idea is to create another configuration
file, which this time contains properties related to this
database.

At the code level, the properties file
is passed on as an argument to the
JDOHelper.getPersistenceManagerFactory
method. The value can be changed depending on
which platform the

Abstractions on top of data storage schemes
present an interesting solution to achieving portabil-
ity of structured data. This follows the old adage:
“All problems in computer science can be solved by
another level of indirection”. More than being useful
for accessing multiple types of databases, they have
the already known advantage of helping in program-
ming applications. ORM implementations such as Hi-
bernate or EclipseLink are popular frameworks for fa-
cilitating the object/relational mapping with different
database servers. As a third benefit, they can also be
useful for transferring data from one platform to the
other: one just needs to extract the data from one store
and store it into an other, without having to bother
about the database specifications at a high-level.

There are specific cases in which specific database
operations are required, and for which it is wiser to di-
rectly address the data store without using the mapper
framework. JDO allows bypassing the framework to
query the underlying database directly, and even to
execute stored procedures. These features are how-
ever very specific to the type of RDBMS used, and
therefore not subject to abstraction. It is hence impor-
tant to identify such requirements during the design
phase of the application; in case specific operations
are required, the application might not be suitable for
running on multiple databases. In order to run such
software in a hybrid setup, it is recommended to use
identical underlying database technology.

4.3 Communication and Security

4.3.1 Application layer

Communication at the application layer refers to the
availability of Web services and other API technol-
ogy which allow data to be absorbed from or inserted
into a service. Communication via Web services is
one of the simplest forms of communication, and use-
ful when developing highly available services, as it
makes the software easier to use for clients and cus-
tomers. As more and more data becomes available on
the Internet, there are ever more ways to combine dif-

APPLICATION PORTABILITY FOR PUBLIC AND PRIVATE CLOUDS

489



ferent pieces of information and present them in novel
ways: many popular Web applications therefore pro-
vide REST APIs for clients, customers or users to ac-
cess data, process and use it in new, imaginative ways.
The Programmable Web (Musser, 2010) provides a
list of applications offering such APIs.

This is relevant to application portability as we can
imagine different modules of an application providing
access to data through Web services. Moreover:

� Cloud services are accessible on the Internet, and
there is a need for appropriate security measures
at this level. Web services’ security standards and
identity federation are required building blocks
for design.

� Providing a data access API generally requires lit-
tle overhead on creating the application itself, and
provides an easy-to-use, generalized interface to
many potential clients without having to set up
specific protocols with each of them.

� Two sites communicating uniquely via calls to
Web services abstract the network layer beneath
them, and alleviate the need for developing com-
plex communication protocols. Any module of
the application becomes portable: wherever it re-
sides, it can be accessed as long as it provides an
interface to absorb data.

One of the main security issues in terms of commu-
nication via Web services is authorization; how one
gives an authorized user access to the API, and pre-
vent non-authorized users from accessing it. Design
of secure Web services is a difficult topic and an ac-
tive subject of research and discussion (Fernandez,
2004; OAuth Core Workgroup, 2009; OASIS Con-
sortium, 2002; Fielding, 2000). Many Web applica-
tions allow third-party login: it is possible to get ac-
cess to an API/service by using one’s Google creden-
tials, for example. This is a security hazard, as appli-
cations could get access to unrelated login informa-
tion. A better idea is to hand out tokens to the third-
party website in question. This token, received from a
trusted source, is accepted by the website, and access
to data is thereby granted. This technique is named
OAuth (an open standard) (OAuth Core Workgroup,
2009). Microsoft AppFabric’s ACS (Brown, 2009) is
an implementation of this standard and allows devel-
opers to write secure APIs that accept ACS tokens.

4.3.2 Network Layer

While the use of Web services for data access may
be simple and elegant, there are certain types of ap-
plications (chat applications and collaboration tools,
for example) for which such interfaces have too much
overhead in communication. Transferring offline data

from one platform to another can also be a bottleneck
in terms of performance.

Large corporations having centers worldwide
study ways of connecting them in secure ways. Enter-
prise Service Bus is a prevalent concept among them.
Microsoft AppFabric’s Service Bus aims to take the
concept onto the cloud, enabling applications residing
on the cloud to work with those on other platforms.

The service bus concept is one way of looking at
the communication issue between different platforms.
Another way is to attempt to bring both the cloud
and on-premises platforms into a single virtual net-
work. Amazon’s VPC (Amazon.com Inc., 2009) is a
product which goes in this direction: the on-premises
network is connected to the Amazon Cloud resources
via a secure VPN connection over the internet. This
gives the illusion of a giant (seemingly infinite) enter-
prise network, with all the advantages of cloud com-
puting (scalability, availability, computation). VPN
connections as links between cloud and on-premises
software have also been studied elsewhere. Wolinsky
et al. (Wolinsky et al., 2009) studied network archi-
tectures in which network clients can be seamlessly
added and removed from a virtual network. They
conclude in their study that virtual networks provide
excellent isolation, and good performance over Wide
Area Networks.

5 RELATED WORK

Relevant cloud providers continuously work to pro-
vide seamless integration of cloud computing with
on-premises technology. Amazon, Microsoft, and
Google have all released, or are in the process of re-
leasing, SQL related technologies to bridge the gap
(Amazon RDS, SQL Azure and Google App Engine
for Business, respectively).

On the other hand, people have come to realize
the advantages on No-SQL databases and storage sys-
tems, given their success with Web 2.0 applications
and social networks such as Facebook and Flickr.
Many of these storage solutions themselves offer inte-
gration with the cloud. CouchDB, for instance is used
by the Ubuntu One cloud provider as their distributed
document storage software. Ubuntu users can use
CouchDB to store data locally, and using CouchDB’s
replication capability, synchronize their documents
over different computers or over the secure storage
on the Ubuntu One cloud. The replication function-
ality comes into play for intensive cloud computing
applications when dealing with several server nodes:
efficient replication between server nodes allows for
vertical scalability, meaning adding extra CouchDB

CLOSER 2011 - International Conference on Cloud Computing and Services Science

490



nodes for improving overall capability. ThruDB is
another relevant concept, especially for application
portability. ThruDB offers a key value store provided
by own implementation. In addition, it allows for set-
ting Amazon S3 as storage implementation replacing
the own functionality.

There are also many open-source solutions which
attempt to grant access to No-SQL databases as well
as cloud offerings. The DataNucleus Access Plat-
form, as mentioned in the above section, is a solution
that caters to various types of database servers or ser-
vices, including Google App Engine and Amazon S3.
Recent projects also include access to the MongoDB
datastore. AppScale allows users to deploy Google
App Engine applications on-premises, as well as on
Amazon EC2. It allows mappings to many differ-
ent datastores, such as Hypertable, HDFS, Cassandra,
MongoDB.

Another general direction of research has been
to bring the cloud paradigm to on-premises environ-
ments. Eucalyptus and Ubuntu Private Cloud are
open-source frontrunners in this field. The advantage
of such technology is that it makes it easier for dis-
tributed algorithms and patterns to be portable. A
Hadoop-based Mapreduce application can be there-
fore run on-premises or on Amazon’s Elastic Mapre-
duce.

Section 3 has already mentioned two references
that discuss portability of the programming language
C, its compiler and the UNIX system (Johnson and
Ritchie, 1978), which was a fundamental effort, and
the issues of portability from a software development
perspective (Mooney, 1997). The general recommen-
dation that can be drawn from these writings are:

� Reduce the amount of platform-related code,
which is not focus of this work as the problem
posed by the business case actually allowed to
stay within one platform.

� Isolate dependencies which is generally a well es-
tablished practice of programming. For the con-
text of the problem of this work, this would trans-
late to dependencies to the actual environment
which has been discussed with the data model and
storage provider issues.

� Externalize interfaces, which means that access to
any given component inside or outside would be
made explicit by using a contract rationale. This
issue has also been covered by modern program-
ming languages offering separate constructs for
defining interfaces.

These recommendations have also led to design pat-
terns: Most notable example is the Wrapper Fa-
cade (Schmidt et al., 2000) which proposes to isolate

system- or platform calls to a single point of entry.
Thus, porting the software to another system or plat-
form will require changes to only a single location
in the software. This applies also to the UNIX de-
sign featuring a hardware specific kernel, as described
by Johnson and Ritchie (Johnson and Ritchie, 1978).
Transferred to the vertical portability in the cloud
case, this work has focussed on the data provider as
specific platform calls.

Referring to cloud computing, the issue of porta-
bility is recent and not much covered in literature – as
current offerings are still in the phase of orientation
and sharpening of the focus. The main issue for ensur-
ing this kind of portability is the fear of vendor lock
in. Vambenepee states that many issues besides API
compatibility are currently not solved, such as migrat-
ing the data from one storage to another, compatibil-
ity to billing and metering, error handling and logging
or just administration(Vambenepee, 2009). However,
these issues are not the focus of this work, because:

� The concept of vertical portability allows for us-
ing the same technology stack when deploying the
application into the provider cloud.

� The business scenario decides on the deployment
at the deployment time. Thus, once an application
is deployed, it can keep its location. Thus, the
migration of data from existing systems is not an
issue in this scenario.

6 CONCLUSIONS

In this paper, we have discussed some of the trends
and recommendations when it comes to the portability
of application between the provider cloud and infras-
tructure on premises. It is important to note that we
focussed on portability (flexibility in platform choice)
at deployment time, as opposed to dynamic portabil-
ity. We identified software architecture, data model,
communication and security as key issues when it
comes to developing such applications.

From the previously discussed points, we can
summarize recommendations for each category of is-
sues. In terms of software architecture, a developer
should concentrate on:

� Build APIs and Web services which allow access
to application data. This standardizes access to
data and moves the application into a SaaS world
(which is the overwhelming trend of software ap-
plications nowadays).

� Consider using patterns like MapReduce to dis-
tribute computation over multiple nodes and to di-
minish the overall time taken for batch-oriented

APPLICATION PORTABILITY FOR PUBLIC AND PRIVATE CLOUDS

491



tasks.
� Consider deploying high availability requiring

modules, such as Web applications, entirely on
the cloud. Use Web application PaaS offers such
as Google App Engine, Heroku or CloudBees for
such modules, as they scale (semi-)automatically.

With respect to data models, it is important to:

� Note that with simple No-SQL storage service of-
ferings, join operators in queries are sometimes
not supported. Thus, the data model should sup-
port a convenient handling of join-like queries in
program code.

� Consider using No-SQL databases on-premises
for achieving similar scalability on local infras-
tructure as well.

� Design the logic of the application to be agnos-
tic about a particular database software. Avoid
writing queries which are specific to a certain
database product or software in the source code.
Use ORMs or abstraction layers to achieve this
task.

Finally, for secure and authentication communica-
tion, it is important to:

� Restrict access to data by using open standards
and claims-based authentication. Use open stan-
dards such as OpenID and OAuth to achieve this.

� Consider using service bus technology for con-
necting cloud and on-premises infrastructure.

Cloud computing, after the initial hype, has reached
the first steps with many big industrial players ac-
tively looking for cloud solutions. Portability of ap-
plications between provider and private clouds is a
very important issue for them, and we expect to see
many new solutions and ideas in this field in the
coming months. The presented trends and recom-
mendations show that this desired flexibility can be
achieved for some cases with patterns and program-
ming paradigms. Also, the available technology of-
fered by the major vendors in the cloud computing
business confirms this possibility and provides API
and frameworks for a distributed application setup.

REFERENCES

10gen Inc. (2009). Mongodb - scalable, high-performance,
open source, document-oriented database. Available
from http://www.mongodb.org/.

Amazon.com Inc. (2009). Amazon virtual private cloud
(amazon vpc). http://aws.amazon.com/vpc/.

Ambler, S. W. (2002). O/r mapping in detail.
http://www.agiledata.org/essays/mappingObjects.html.

Apache Software Foundation (2008). Couchdb project.
http://couchdb.apache.org/.

Apache Software Foundation (2010). Cassandra project.
http://cassandra.apache.org/.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A.,
Rabkin, A., and Zaharia, M. (2009). Above the
clouds: A berkeley view of cloud computing. Tech-
nical report, University of California at Berkeley.

Brown, K. (2009). A developer’s guide to access control in
windows azure platform appfabric. White paper, Mi-
crosoft and Pluralsight. Available online (35 pages).

Chappell, D. (2009). Introducing windows azure. White
paper, Microsoft and Chappell Associates. Available
online (25 pages).

DataNucleus (2008). Datanucleus project.
http://www.datanucleus.org.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.

Fernandez, E. B. (2004). Two patterns for web services
security. In Proceedings of the Int. Symposium on Web
Services and Applications, Las Vegas.

Fielding, R. T. (2000). REST: Architectural Styles and
the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine.

Gartner Inc. (2010). Gartner top
10 strategic technologies 2010.
http://www.gartner.com/it/page.jsp?id=1210613.

Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture and
the feasibility of consistent available partition-tolerant
web services. In In ACM SIGACT News.

Google Inc (2003). Memcache. http://memcached.org/.
Google Inc (2008). Google app engine - run

your web apps on google’s infrastructure.
http://code.google.com/appengine/.

Heroku Inc. (2010). Heroku : Ruby cloud platform as a
service. http://heroku.com/.

ISO/IEC (1996). ITU.TS Recommendation X.902 —
ISO/IEC 10746-1: Open Distributed Processing Ref-
erence Model - Part 1: Overview.

Johnson, S. C. and Ritchie, D. M. (1978). Portability of c
programs and the unix system. Bell System Tech J,
57:2021–2048.

Mooney, J. D. (1997). Bringing portability to the software
process.

Musser, J. (2010). Programmable web: Keeping you up
to date with apis, mashups and the web as platform.
http://www.programmableweb.com/.

OASIS Consortium (2002). Saml — security assertion
markup language. http://saml.xml.org/.

OAuth Core Workgroup (2009). Oauth core 1.0.
http://oauth.net/core/1.0/.

Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F.
(2000). Pattern-Oriented Software Architecture, Vol-
ume 2: Patterns for Concurrent and Networked Ob-
jects. Wiley, Chichester, UK.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

492



The Library of Congress / Thomas (2001). Uniting
and strengthening america by providing appropri-
ate tools required to intercept and obstruct terror-
ism (usa patriot act). http://thomas.loc.gov/cgi-
bin/bdquery/z?d107:h.r.03162:.

Vambenepee, W. (2009). The reality on cloud portability.
Available from http://www.sdtimes.com/link/33502.

Wolinsky, D. I., Liu, Y., Juste, P. S., Venkatasubramanian,
G., and Figueiredo, R. J. O. (2009). On the design
of scalable, self-configuring virtual networks. In SC.
ACM.

APPLICATION PORTABILITY FOR PUBLIC AND PRIVATE CLOUDS

493


