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The idea of using contracts to specify interfaces and interactions between software components was proposed

several decades ago. Since then, a number of tools providing support for software contracts have been devel-
oped. In this paper, we explore eleven such technologies to investigate their approach to various aspects of
software contracts. We present the similarities as well as the areas of significant disagreement and highlight
the shortcomings of existing technologies. We conclude that the large variety of approaches to even some
basic concepts of software contracts indicate a lack of maturity in the field and the need for more research.

1 INTRODUCTION

When writing software, we aim to create programs
which not only work correctly, but are also reliable,
easy to use, understand and maintain. These and other
factors combine to determine the level of quality in
software.

Developing high quality software is a difficult,
complex and time-consuming task. The sheer size and
complexity of software contribute to these difficulties;
it is not unusual for a single program to contain mil-
lions of lines of code, far too much for one person to
understand. To manage this size and complexity, we
break large systems into smaller components which
can be developed independently. A developer work-
ing on one component does not need to know the in-
ternal details of other components of the system; he or
she only needs to understand the other components’
interfaces in order to use their services.

Software contracts (a subfield of formal specifica-
tions) are used to explicitly define the interfaces of
software components, specifying the responsibilities
of both the client using a service and the supplier of
the service. This formalises the interactions between
components of the software and ensures that two com-
ponents interact correctly (Meyer, 1997).

When software contracts are not used, clients of
a service usually have access to information about
the service’s interface, including method signatures,
as well as, optionally, documentation about how to
use the service. Software contracts elaborate on this
by formally specifying protocols of interaction which
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otherwise may have remained implicit. Consequently,
we regard contracts as a natural extension of explicit
type systems; they specify interfaces fully rather than
just specifying signatures.

We believe that software contracts can mitigate
some of the problems surrounding large scale soft-
ware development. They not only improve the cor-
rectness of software by explicitly specifying interac-
tion protocols, but also serve as documentation and
clarify correct use of inheritance (Meyer, 1997).

Further, formal specifications such as software
contracts “represent a significant opportunity for test-
ing because they precisely describe what functions the
software is supposed to provide in a form that can eas-
ily be manipulated” (Offutt et al., 1999, page 119).
In particular, software contracts describe valid inputs
and outputs to methods; this information can be used
by automatic testing tools to find valid test inputs and
decide if particular test outputs are correct.

Despite the fact that the main ideas of software
contracts were proposed several decades ago, they are
still not commonly used in mainstream software de-
velopment. Meyer remarks that

In relations between people and companies, a
contract is a written document that serves to
clarify the terms of a relationship. It is really
surprising that in software, where precision is
so important and ambiguity so risky, this idea
has taken so long to impose itself. (Meyer,
1997, page 342)

However, more recently several different tech-
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nologies supporting software contracts have been de-
veloped, including tools for mainstream program-
ming platforms such as Java and .NET. Along with
these technologies, a number of supporting tools are
emerging. Testing tools such as AutoTest for Eiffel
(Meyer et al., 2007) and Pex for .NET (Barnett et al.,
2009; Tillmann and Halleux, 2008) automatically ex-
tract unit tests from contracts without the need for in-
put from developers. Static analysers such as Boogie
for the .NET contract language Spec# (Barnett et al.,
2006) and ESC/Java for the Java contract language
JML (Flanagan et al., 2002) attempt to prove the cor-
rectness of software at compile-time.

As more technologies supporting software con-
tracts emerge and their usage becomes more common,
it is important for us to take stock of current develop-
ments and uncover any issues and areas of disagree-
ment which need to be addressed in the future. This
is what we attempt to do in this paper, as part of a
wider project in which we seek both to strengthen the
theoretical underpinnings of contracts and to develop
tools to support the adoption of contracts in- modern
software engineering environments.

The rest of this paper is structured as follows: Sec-
tion 2 explains the background of software contracts.
Section 3 presents a comparison of several contract
technologies, highlighting the similarities and differ-
ences. A discussion of the issues and criticisms of
existing approaches follows in Section 4 before we
present our conclusions in Section 5.

2 BACKGROUND

The roots of software contracts run very deep in the
field of computer science; although it has been little
recognised in the literature, the origins of the idea can
be traced as far back as Turing, who first presented
the idea of assertions to check program correctness in
1949 (Turing, 1949).

In 1969, Hoare introduced Hoare triples. He used
the notation PFQQR to mean that “If the assertion P is
true before initiation of a program Q, then the asser-
tion R will be true on its completion” (Hoare, 1969,
p. 577); P is commonly called the precondition, while
R is the postcondition. Three years later, Hoare also
presented the concept of the class invariant, a logical
predicate | where “each operation (except initialisa-
tion) may assume | is true when it is first entered; and
each operation must in return ensure that it is true on
completion” (Hoare, 1972, p. 275).

In the late 1980s, Meyer applied Hoare’s work
in his development of Design by Contract™ and
the programming language EIFFEL which included

the concepts of preconditions, postconditions and
class invariants (Meyer, 1989). Preconditions spec-
ify what the client must ensure before calling the ser-
vice provider; this could for example include ensur-
ing that the parameters are not null. Postconditions
define what the service provider promises in return,
given that the client has fulfilled the preconditions.
As an example, we define the contract for a sim-
ple Stack class with the three standard methods
push(Object obj), peek() and pop():

class Stack {

private Object[] stack;
private static final int MAX_SIZE = 100;
private int size;

Invariant: size >= 0 && size <= MAX_SIZE;

public Stack() {
stack = new Object[MAX_SIZE];
size = 0;

}

Precondition: lisFull()
Postcondition: peek() == obj
&& size == old size + 1
public void push(Object obj){
stack[size++] = obj;

Precondition: lisEmpty()
Postcondition: size == old size
public Object peek(){

return stack[size-1];
}

Precondition: lisEmpty()
Postcondition: size == old size - 1
public Object pop() {

return stack[--size];
}

public boolean isFull(){
return size >= MAX_SIZE;

}

public boolean isEmpty(){
return size <= 0;
}

}

Our Stack class uses a simple Object array to
store its values. It keeps track of the current Stack
size and also knows the maximum number of items it
can store.

We have defined preconditions and postconditions
for push, pop and peek. The preconditions for pop
and peek ensure that the methods are not called when
the Stack is empty; the precondition for push makes
sure the method is not called if the Stack is already
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full. These preconditions call the query methods
isEmpty and isFull in their definitions instead of
referring directly to the private size field. Since pre-
conditions are the client’s responsibility, they must
be defined in such a way that the client can check
them before calling a method; that is, their definition
should only include members which are accessible to
the client (Meyer, 1989; Fahndrich et al., 2010). The
isEmpty and isFull methods therefore need to be
public.

The postconditions of the three methods check
that the size of the Stack has changed in the correct
way by comparing it to the old size of the Stack;
that is, the size before the method’s execution. Us-
ing old values is a common occurrence in contracts
and therefore contract specification languages usually
provide syntax for doing so. Calling the push method
increases the size of the Stack by one; calling pop de-
creases it by one; calling peek should have no effect
on the size. Unlike the preconditions, the postcondi-
tions access the size field directly and do not make
use of query methods. This does not cause any prob-
lems here because postconditions are the responsibil-
ity of the service supplier; that is, the Stack itself.
They do not need to be checked by outside clients and
can therefore refer to the private details of the Stack.

The invariant of the Stack ensures that its size
never drops below zero or exceeds the array’s capac-
ity. This invariant must be satisfied in all observ-
able states of every instance of a class (Meyer, 1989).
Specifically, the class invariant must be true after the
constructor has finished constructing a class instance
and before and after each call to an exported method
of the class; that is, a method accessible from outside
the class. This implies that while methods of the class
are executing, they may violate the class invariant, as
long as it is again satisfied when the method returns
(Meyer, 1997).

Software contracts also apply in the presence of
inheritance, through the concept of subcontracting
(Meyer, 1997); that is, the original contractor engages
a subcontractor for part of or all of the work. For this
to work, the subcontractor “must be willing to do the
job originally requested, or better than requested, but
not less” (Meyer, 1997, page 576).

Inheritance allows substitution of a subtype in
place of an expected type. This means, for example,
that a method expecting an object of type A may be
given an object of type B as long a B inherits from
A. Whenever a client makes use of a supplier, it does
not need to know whether the supplier is an imme-
diate instance of the specified type or an instance of
some subtype. Therefore, for contracting to continue
to work, the subclass must adhere to the contract spec-
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ified by the superclass (Meyer, 1989). This means that

Preconditions must be the same or weaker than in
the superclass. The subclass cannot expect more
of the client, although it may expect less;

Postconditions must be the same or stronger than
in the superclass. The client expects certain re-
sults which must be delivered by the subclass. In
addition, the subclass may choose to deliver more
than promised by the superclass; and

Class invariants are inherited from the superclass.
The subclass may introduce additional class in-
variants (Meyer, 1997).

In the next section, we present several different
contract technologies and contrast their approaches
to the implementation and interpretation of software
contracts.

3 CONTRACT TECHNOLOGIES

We investigated a number of technologies and pro-
gramming languages which allow the addition of soft-
ware contracts to programs, with a particular focus on
the following eleven:

Java contract tools, including

— JAVA MODELING LANGUAGE (JML) (Leav-
ens et al., 2006; Leavens et al., 2005; Leavens
and Cheon, 2006);

— ICONTRACT (Kramer, 1998);

— CONTRACT JAVA (Findler and Felleisen,
2000);

— HANDSHAKE (Duncan and Hoelzle, 1998);
— JAss (Bartetzko et al., 2001);

— JCONTRACTOR (Karaorman and Abercrombie,
2005; Karaorman et al., 1999); and

— JMSASSERT (Man Machine Systems, 2009).

.NET contract languages, including

— SpPecC# (Barnett et al., 2004b; Leino and Mon-
ahan, 2008); and

— CoDE CONTRACTS (Féhndrich et al., 2010;
Microsoft Corporation, 2010).

EIFFEL (Meyer, 1989; Meyer, 1992; Meyer,

1997); and

OBJECT CONSTRAINT LANGUAGE (OCL) (Ob-

ject Management Group, 2010; Warmer and
Kleppe, 2003)

The large number of existing software contract
tools made it impractical to consider all of them and
we therefore focused our investigation on the main
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technologies which add contract support to the pop-
ular programming platforms Java and .NET. In addi-
tion, we looked at Eiffel, the original software con-
tract language. OCL was included because of its close
links to Java technologies such as JML.

All the tools we investigated aim to support soft-
ware contracts, most of them at the implementation
level. OCL is the only technology to work exclusively
at the software design level; it allows contracts in-
cluding preconditions and postconditions to be added
to UML diagrams, while all other tools we looked at
allow developers to augment source code using con-
tracts.

We have identified significant differences and
shortcomings in what they deliver. Table 1 gives an
overview of the similarities and differences of the
tools. In the following section, we describe the main
characteristics of the technologies, and in the sub-
sequent section we summarise the most important
themes and highlight areas of inconsistency.

3.1  Core Contract Support

All of the technologies we looked at provide core con-
tract support, allowing the specification of precondi-
tions, postconditions and class invariants, with the ex-
ception of CONTRACT JAVA which omits class invari-
ants.

In addition to the basic contract specifica-
tions, some technologies offer additional constructs.
SPeEC#, JML and Jass allow the specification of
frame conditions. Frame conditions specify which
parts of the memory a method is allowed to mod-
ify. This ensures that a method does not unexpectedly
change the value of variables it should not be allowed
to modify (Barnett et al., 2004b; Leino and Monahan,
2008). A variable is deemed to have been modified if
it is accessible at the start and the end of a method and
its value has been changed. This means that newly
created objects and local variables are not included
in the restrictions of frame conditions (Leavens et al.,
2006).

SPEC#, CODE CONTRACTS and JML further
allow the definition of exceptional postconditions,
which specify conditions that need to be satisfied if
the method terminates with an exception.

Of the technologies we considered, JML provided
the most extensive contract support. Among other
constructs, it also supports history constraints which
describe how the value of a field is allowed to change
between two publicly visible states. This can for ex-
ample be used to express that the value of a field
may only increase (Leavens et al., 2006). JML fur-
ther introduces the concept of model fields which can

be used when the inner data representation of a class
needs to be changed but the developer does not want
to update all of the contracts to the new data format.
The model field of the old data format can be used
from within the contracts and a correspondence is de-
fined between the new data format and the model field
(Leavens and Cheon, 2006).

3.2 Special Operators and Quantifiers

The different technologies also offer varying amounts
of special operators and quantifiers for use in con-
tracts. All allow postconditions to refer to the return
value of the method,; this functionality is usually pro-
vided by the result or return operator. In addition,
all except CONTRACT JAVA and HANDSHAKE also
allow postconditions to refer to the value of a variable
before method execution, often through the old op-
erator. This is important to check that the value of a
field is changed correctly by a method, as we did in
our Stack example above.

Most technologies also offer some 'quantifiers
such as for all and exists; no such quantifiers are
available in EIFFEL, but Meyer argues that they can
be easily emulated using conventional programming
language constructs (Meyer, 1989). Several tools,
including JML, Spec#, JCONTRACTOR and OCL,
have a sophisticated range of additional operators in-
cluding quantifiers, counting functions and predicate
logic operators.

3.3 The Contract Language

Contract specifications for Java and .NET repre-
sent additions to an existing programming lan-
guage. Some tools, including CobE CONTRACTS
and JCONTRACTOR, specify contracts in the exist-
ing language. EIFFEL and SPEC# are both languages
which natively support contracts and thus the lan-
guage used to specify contracts is part of the wider
programming language. The advantage of this ap-
proach is that there is no need for a separate com-
piler and contracts can be processed by standard tools
along with the remainder of the program. In CoDE
CONTRACTS, contracts are specified by calling the
static methods of the Contract class; for example,
preconditions are defined by calling the Requires
method of the Contract class. In JCONTRACTOR,
method contracts are specified in contract methods,
using standard Java. Postcondition methods take the
additional parameter RESULT, which can be used to
refer to the return value of the method. Postcondi-
tions also have access to a special object called OLD,
which contains the state of the current object as it was
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Table 1: Overview of Contract Tools.

© Q
g | 5| % £
= = ]
| 1= ‘E -8 » 1= %) (&) % ) -
=|8| 8 | £|8]|8|z|5 |5|5]|8
Contract Pre / Postconditions X | X X [ X | X[ X]X] X X | X]|] X
Support Class Invariant X | X X | X | X | X X X | X X
Frame Conditions X X X
Exceptional Postconditions | X X X
Operators Result X | X X X | X X X X
Old X | X X X| X | X|X]| X
Contract Original Language X X
Language Modified Language X X X | X
Scripting Language X
Contract Comment X X X
Placement Annotation X
With Program X | X X | X X | X
Separately X X X X
Method Purity | Enforced X X
Precondition Visible Members Only X X X
Invariant After Method X X X
Check Before and After X N/A | X X | X X | N/A
Expose Block X
Invariant All Methods X
Check Non-private Methods X | N/A X | N/A N/A
Public Methods Only X X
Contract Enforced XX | X X | X | X X | X | N/A
Inheritance Precondition Weakening X | X X | X X X X | N/A
Contract Preprocessor X X X
Compilation Custom Compiler X X N/A
Standard Compiler X X | X
Runtime Linking X X

before the method executed (Karaorman et al., 1999).

The remaining tools we considered take a slightly
different approach: they take the original program-
ming language as a basis but augment it using addi-
tional keywords and operators. This approach is taken
by ICONTRACT, JML and others; it requires special
tools to translate the contracts into the original pro-
gramming language.

JMSASSERT takes this approach a step further by
using a full scripting language, JMScript, for con-
tract specification. While JMScript is similar to Java,
the underlying programming language, it differs suf-
ficiently that developers need to learn the scripting
language before being able to write contracts, signifi-
cantly steepening the learning curve.

3.4 Integration of Contracts into Source

Code

There are several ways in which contracts can be in-
corporated into source code. Some contract technolo-
gies, including JML, JAss and JMSASSERT, require
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contracts to be added in the form of comments, while
in ICONTRACT they are defined as annotations. The
advantage of these two approaches is that they work
when the contract language is not the same as the stan-
dard programming language; the contracts are sim-
ply ignored by the standard compiler, meaning that
no special compiler is needed when working with
contracts. Instead, the contracts are inserted into the
source code by a preprocessor and the program is then
compiled using the standard compiler.

In EIFFEL, SPEC#, CODE CONTRACTS and
JCONTRACTOR, contracts are defined as an integral
part of the program and are compiled and checked by
the standard compiler. This approach works for these
technologies because the contracts are expressed in
the same language as the rest of the program.

The placement of contracts in the programs also
varies between different technologies. In most
cases, for example in JML, ICONTRACT and SPECH#,
method contracts including preconditions and post-
conditions are specified as part of the method header.
In Cobe CONTRACTS, preconditions and postcondi-
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tions are placed inside the method body along with the
method implementation. These two approaches have
the advantage of clearly showing which contracts ap-
ply to which methods.

Other technologies enforce a separation between
contracts and the code to which they apply. In HAND-
SHAKE, specifications are placed in separate contract
files (Karaorman et al., 1999); in CONTRACT JAVA
they are placed in separate interfaces (Findler and
Felleisen, 2000). This approach has the advantage
of clearly separating contracts from standard code, al-
lowing them to be considered independently of imple-
mentation. It further allows the addition of contracts
even when source code is not available, for example
when working with third party software.

JCONTRACTOR allows both of these approaches:
contract methods to define preconditions and post-
conditions may be placed in the same class as the
methods to which they apply; alternatively, they
can 'be defined in a separate contract class named
ClassName_CONTRACT, which must extend the class
to which it is adding contracts in order to inherit rele-
vant behaviour and to make the objects with contracts
substitutable for objects without contracts (Karaor-
man et al., 1999).

3.5 Side Effects in Contracts

Preconditions, postconditions and invariants should
not call methods which cause side effects since this
can create bugs which are difficult to trace. Some
technologies, including Spec# and JML, enforce
this and allow only methods which have been de-
clared free of side effects (pure methods) to be called
from within contracts. Pure methods may only call
other pure methods and may not modify any part of
the memory. For example, the two query methods
we used to define our Stack contract, isEmpty and
isFull, have no side effects and can therefore safely
be called from within a contract.

Most of the technologies do not explicitly enforce
method purity; they only recommended that no meth-
ods with side effects are called from within contracts.
CoDE CONTRACTS is expected to enforce purity in
the future (Microsoft Corporation, 2010). OCL is a
modeling language and all its code is implicitly free
of side effects and thus any methods called from the
contract are guaranteed to have no side effects.

3.6 Precondition Visibility
Contract theory requires clients to ensure that pre-

conditions hold; therefore, it is important to ensure
that preconditions do not refer to any data or meth-

ods which are not visible to clients. Some contract
technologies enforce this restriction, while others do
not.

CobE CONTRACTS ensures that anything used to
define the precondition is visible to clients. JAss and
JML require anything referred to by the precondition
to be at least as visible as the method itself. Thus,
the preconditions of public methods must be defined
using only publicly visible data and methods; pre-
conditions for protected methods may refer to both
public and protected items.

3.7 Checking of Class Invariants

Class invariants are constraints that need to be main-
tained in all visible states of the objects of a class; that
is they must be true at the start and the end of each
method that can be called by a client. For this rea-
son, Meyer asserts that each invariant essentially rep-
resents an additional precondition and postcondition
for each exported method in a class (Meyer, 1989).
EIFFEL, JML and JMSASSERT therefore check class
invariants at the start and end of each method execu-
tion.

However, seeing the invariant as an addition to
each method’s precondition raises a new problem:

The object invariant of class T is a condition
on the internal representation of T objects, the
details of which should be of no concern to
a client of T, the party responsible for estab-
lishing the precondition. Making clients re-
sponsible for establishing the consistency of
the internal representation is a breach of good
information hiding practices. (Barnett et al.,
20044, page 30)

For this reason, other technologies, including
CoDE CONTRACTS, ICONTRACT and JAss, check
the class invariant only at the end of method execu-
tions; that is, only in the postconditions, not the pre-
conditions.

SPEC# takes a more complex approach to invari-
ant checking. It allows changes to memory only
inside special expose blocks because such changes
could invalidate class invariants. At the start of each
expose block, the object’s invariant is set to false.
Changes to data are now allowed and at the end of the
expose block the invariant is re-checked. This pro-
tects invariants even in the presence of concurrency
and reentrancy: an expose block can only be entered
when the object’s invariant is true; that is, it can only
be entered by one thread of execution at a time (Bar-
nett et al., 2004b). While this approach has the ad-
vantage of working in the presence of concurrency, it

43



ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

greatly increases the complexity of writing programs
with contracts.

Apart from the disagreement over when the invari-
ant needs to be checked, there is also some debate
about which methods this check applies to. Strictly
speaking, the class invariant must be maintained in
all externally visible states but may be broken while
internal methods are executed. For example, a recur-
sive method needs to maintain the invariant only for
its outermost invocation. Private methods should be
allowed to break the invariant; only methods called by
the client should need to maintain it.

Of the technologies we considered, only JASs
checks the invariant after each method execution,
effectively forcing all methods, including private
methods, to maintain the invariant. EIFFEL, ICON-
TRACT, HANDSHAKE and JMSASSERT require all
non-private methods to maintain the invariant, while
CoDE CONTRACTS, JML and JCONTRACTOR only
require public methods to do so.

Some of the Java technologies allow only
private methods to break the class invariant, while
others allow private, package and protected
methods to do so. The latter approach is problematic,
since calls to package and protected methods may
come from a different class, and therefore should be
forced to maintain the invariant. On the other hand,
this allows methods from the subclass to call methods
in the superclass while the invariant is broken, which
may provide valuable flexibility.

3.8 Inheritance of Contracts

Inheritance is an important mechanism in object ori-
ented (OO) programming and consequently contract
tools need to support it. In many technologies, includ-
ing EIFFEL, ICONTRACT, JML and JCONTRACTOR,
correct contract inheritance is enforced by disjunct-
ing inherited preconditions and conjuncting inherited
postconditions; this leads to a weakening of precon-
ditions and a strengthening of postconditions and in-
variants. CODE CONTRACTS and CONTRACT JAVA
take a more restrictive approach: while postcondi-
tions and invariants may be added by subclasses, pre-
conditions must be specified completely in the super-
class; subclasses are not allowed to specify any addi-
tional preconditions. This ensures that preconditions
are not strengthened, but also makes developers un-
able to weaken them.

While almost all technologies we investigated al-
ways enforce correct use of contract inheritance, JASS
takes a more flexible approach. It can check for cor-
rect inheritance using refinement checks, but this is
optional and can be turned off by the developer. In
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OCL, the semantics of contract inheritance are not
fully specified because it is a general purpose mod-
elling language rather than a concrete implementa-
tion.

3.9 Conversion of Contracts into
Runtime Checks

Once contracts have been written, they can be turned
into runtime checks that report whenever a contract
is violated. This conversion may be done in several
ways.

Programs written in EIFFEL, CODE CONTRACTS
and SPec# can simply be compiled using a stan-
dard language compiler, since contracts are expressed
in the same language as the rest of the code. The
EIFFEL and Spec# compilers insert runtime checks
for contracts during compilation; CODE CONTRACTS
uses library classes to implement contract checking.
JML and CONTRACT JAVA provide a customised
Java compiler which not only compiles the program
but also generates the runtime checks. ICONTRACT,
Jass and JIMSASSERT all use a preprocessor which
inserts Java statements into the code before it is com-
piled by the standard Java compiler. This has the
advantage that the standard Java compiler can be
used after preprocessing is completed. HANDSHAKE
and JCONTRACTOR use a dynamic library and class
loader to inject runtime checks when the program is
executed, rather than at compile time.

4 DISCUSSION

In our investigation of existing software contract tech-
nologies we have found some areas of significant dis-
agreement. The approaches of the technologies vary
widely and from Table 1 it becomes clear that no two
tools take exactly the same approach.

Interestingly, we have uncovered some relatively
basic issues which are handled inconsistently, for ex-
ample concerning the checking of class invariants.
We believe that it is important that the inconsisten-
cies are resolved - or at least justified - in order to
increase developers’ confidence in contract tools and
the practice of using software contracts in general.

We found good support for core contract concepts,
including preconditions, postconditions and invari-
ants, in nearly all tools. We believe that any contract
tool which does not support these basic constructs is
inadequate for practical use. CONTRACT JAvA, for
example, does not support the specification of class
invariants, representing a serious gap in this tool.
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In addition to preconditions, postconditions and
class invariants, we find the concept behind frame
conditions useful. It is often difficult to know what
data is changed when calling a method, particularly if
this method calls other methods. In some cases, un-
expected data changes can be difficult to trace to their
origins. Defining frame conditions forces developers
to think carefully about which parts of the memory a
method should be able to access and modify. They in-
form the programmer of inappropriate memory mod-
ifications, reducing the incidence of unexpected data
changes.

Some contract technologies provide a wide range
of special operators and quantifiers; most tools pro-
vide at least two: the result or return operator to
access the return value of a method and the old opera-
tor to refer to the value of variables before the method
execution. However, two tools, CONTRACT JAVA and
HANDSHAKE, do not provide an old operator. This
is a serious omission and severely restricts what con-
tracts can be expressed, such as the size checks in our
Stack example.

Most tools we considered here declared contracts
using the same programming language as for the rest
of the program, although many introduced small ad-
ditions in the form of operators and quantifiers. Only
one tool, JMSASSERT, used a significantly different
language to define contracts. We suggest that this is
an unnecessary burden on developers and is likely to
inhibit uptake of the technology.

With the exception of CODE CONTRACTS, all of
the technologies we investigated use contract defi-
nition syntax that groups contract information with
method declaration information. CODE CONTRACTS
places contracts inside the actual methods. We feel
that this approach is not ideal, since it mixes con-
tracts with implementation code and makes it diffi-
cult to distinguish between them. We suggest that
contracts should ideally be declared separately from
the implementation as part of a type definition. This
is consistent with existing literature, which suggests
that public interfaces, or types, should be separated
(Bruce, 2002; Canning et al., 1989); that is, the type
definition should contain signatures of visible meth-
ods, but no internal details. By extension, such a type
definition should include contracts for publicly visible
methods since, similarly to method signatures, con-
tracts provide vital information to clients wanting to
use a service.

Some tools do not allow contracts to call meth-
ods with side effects since this can create bugs which
are difficult to trace; other technologies do not im-
pose this restriction. \We agree with Barnett et al.,
who claim that the latter approach gives developers

too much freedom and is unsound (2004). As we ar-
gued above, it can be difficult to see which parts of the
memory a method madifies; similarly, it can be diffi-
cult to determine whether or not a method is pure, par-
ticularly when this method calls other methods, which
in turn could have side effects. This makes both frame
conditions and explicit declarations of pure methods
very useful.

Clients are responsible for ensuring that precondi-
tions are met before calling a method. We are there-
fore surprised that not more tools ensure that meth-
ods and data referred to in preconditions are visible
to clients. If this is not the case, clients may not be
able to check preconditions and may therefore fail to
fulfill their responsibilities under the contract. Con-
tracts are based on the idea of shared responsibility
between clients and service providers and having po-
tentially invisible preconditions violates the founda-
tion of software contracts.

In the tools we studied, we found a particularly
variable approach to invariant checking. Some tools
check invariants after each method, others before and
after; some tools require the invariant to hold at the
start and end of all methods while others only ap-
ply this restriction to public methods. In our view,
the wide range of approaches stems from the incom-
plete body of theory about this aspect of contracts. We
have found no research that explains when invariants
should be checked and what implications the different
approaches have. Given the wide range of different
approaches, we feel that this is an area where further
investigation is warranted.

Most of the technologies allow private methods to
break the invariant temporarily. This makes sense be-
cause the internal operations of an object may not al-
ways maintain the invariant at all times; however, it
needs to be restored before returning control to the
client to ensure that the object is left in a consistent
state. We therefore argue that ideally the invariant
should to be checked before and after every method
call originating from outside the object. This would
allow the object to break its own invariant temporar-
ily (possibly while calling code in the superclass) but
would also ensure that the object remains in a consis-
tent state when it returns control.

In the context of invariant checking, SPEC#’s ap-
proach is far more complex than that of any other
technology we investigated. It requires the object to
be explicitly exposed whenever its state is modified
to ensure that its invariant cannot be violated by op-
erations from the outside or through the presence of
reentrancy and concurrency. Although this approach
is sound, we argue that it is too complex; it requires
the use of complicated constructs even when writing
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simple programs. We believe that this complexity is
likely to alienate new users and slow the uptake of
SPEC# and software contracts in general.

Support for inheritance of contracts is essential for
their use in OO programming. We found that all the
tools with the exception of JASS ensure that contracts
are inherited correctly. JAss also allows correct con-
tract inheritance to be enforced but makes this op-
tional. We are encouraged by this high level of sup-
port for correct inheritance. Using inheritance cor-
rectly is notoriously difficult and our intuition some-
times leads us to use it incorrectly. This is particularly
evident in the well-known square-rectangle problem
(Martin, 1996). Our own experience shows that con-
tracts are very valuable when creating inheritance hi-
erarchies because they force us to ensure that an in-
stance of the subclass is substitutable for an instance
of the superclass; problems with contract inheritance
usually signal incorrect use of inheritance.

Most of the tools we looked at enforce the cor-
rect use of contracts by allowing weaker precondi-
tions through disjuncting inherited preconditions and
allowing stronger postconditions through conjuncting
inherited postconditions. CODE CONTRACTS USeS
this approach to ensure postconditions are strength-
ened; however, the tool does not allow the weakening
of preconditions because “We just haven’t seen any
compelling examples where weakening the precon-
dition is useful” (Microsoft Corporation, 2010, page
15). Cobe CoONTRACTS forces developers to declare
all preconditions on the root method of an inheritance
chain. In our work with CODE CONTRACTS, we have
found this approach very frustrating because it does
not allow for flexible precondition definition. In par-
ticular, problems arise when a class inherits the same
method from multiple interfaces. In this situation, the
preconditions of this method in all ancestors must be
compatible; this is an example where we feel that al-
lowing precondition weakening is essential.

5 CONCLUSIONS

In our investigation of existing software contract tools
we have uncovered a range of differences, clearly
demonstrating a level of confusion and conflict sur-
rounding even some basic concepts of software con-
tracts. This indicates to us that more work is needed
in this area to resolve these issues and create a con-
sensus or at least a clear taxonomy of the different
semantics of software contracts. We have identified
a number of shortcomings of existing tools and areas
that require more research, including:

The checking of class invariants;
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The separation of contracts and implementation;
and

The inheritance of contracts, particularly the
weakening of preconditions.

We believe that using software contracts has the
potential to greatly increase the quality of software
and speed up software development. Not only do they
ensure that different components of a system know
how to interact with each other correctly, but they also
serve as documentation of developers’ intentions and
can be used as a basis of automated testing tools. Fur-
thermore, we believe that they are a highly valuable
tool for creating correct inheritance hierarchies.

We are currently developing our own contract
tool; having carefully studied other contract tools, we
are now aware of the major issues and questions in
the area. We plan to create a contract tool that empha-
sises:

Rigorous separation of interface (i.e. contracts)
from implementation. This will ensure clients can
depend only on public information.

Enhanced explicit support for inheritance and
substitutability and enforcement of correct con-
tract inheritance.

Prevention of invalid contracts, such as precondi-
tions that cannot be tested by clients, or use of
methods with side-effects in contracts.

Support for more flexible and expressive defini-
tion of contracts.
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