
STATIC OPTIMIZATION OF DATA INTEGRATION PLANS
IN GLOBAL INFORMATION SYSTEMS

Janusz R. Getta
School of Computer Science and Software Engineering, University of Wollongong, Wollongong, Australia

Keywords: Data integration, Global information system, Multidatabase system, Online data integration, Integration plan,
Static optimization.

Abstract: Global information systems provide its users with a centralized and transparent view of many heterogeneous
and distributed sources of data. The requests to access data at a central site are decomposed and processed
at the remote sites and the results are returned back to a central site. A data integration component of the
system processes data retrieved and transmitted from the remote sites accordingly to the earlier prepared data
integration plans.
This work addresses a problem of static optimization of data integration plans in a global information system.
Static optimization means that a data integration plan is transformed into more optimal form before it is used
for data integration. We adopt an online approach to data integration where the packets of data transmitted
over a wide area network are integrated into the final result as soon as they arrive at a central site. We show
how data integration expression obtained from a user request can be transformed into a collection of data
integration plans, one for each argument of data integration expression. This work proposes a number of static
optimization techniques that change an order operations, eliminate materialization and constant arguments
from data integration plans implemented as relational algebra expressions.

1 INTRODUCTION

Efficient integration of data retrieved and transmitted
from the remote sources is one of the central problems
in the development of global information systems that
provide the users with a centralized and transparent
view of many heterogeneous and distributed sources
of data. A data integration component of a global
information system processes data retrieved from the
remote sites and transmitted to a central site. A typ-
ical architecture of a global information system de-
composes the user requests into the requests related
to the remote source of data and submits the requests
fro the processing at the remote sites. The results of
processing at the remote sites are transmitted back to
a central site and integrated with data already avail-
able there. A process of data integration acts upon a
data integration plan which is prepared when a user’s
request is decomposed into the requests related to the
remote sources. A data integration plan determines an
order in which the individual requests are issued and
a way how the results of these request are combined
into the final result. The individual requests can be
issued accordingly toentirely sequentialor entirely

parallel, or mixed sequential and parallel strategies.
Accordingly to anentirely sequentialstrategy a re-
questqi can be submitted for processing at a remote
site only when all results of the requestsq1, . . . ,qi−1
are available at a central site. An entirely sequential
strategy is appropriate when the results received so
far can be used to reduce the complexity of the re-
maining requestsqi , . . . ,qi+k. Accordingly to anen-
tirely parallel strategy all requestsq1, . . . ,qi , . . . ,qi+k
are submitted simultaneously for the parallel process-
ing at the remote sites. An entirely parallel strategy
is beneficial when the computational complexity and
the amounts of data transmitted is more or less the
same for all requests. Accordingly to amixed sequen-
tial and parallelstrategy some requests are submitted
sequentially while the others in parallel. Optimiza-
tion of data integration plans is eitherstaticwhen the
plans are optimized before a stage of data integration
or it is dynamicwhen the plans are changed during
the processing of the requests.

The problem of static optimization of data inte-
gration plans can be formulated in the following way.
Given a global information system that integrates a
number of remote and independent sources of data.

141R. Getta J..
STATIC OPTIMIZATION OF DATA INTEGRATION PLANS IN GLOBAL INFORMATION SYSTEMS.
DOI: 10.5220/0003423901410150
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 141-150
ISBN: 978-989-8425-53-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Consider a user requestq to a global information sys-
tem and its decomposition into the individual requests
q1, . . . ,qn simultaneously submitted for the process-
ing at the remote sites. Let a requestq be equivalent
to an expressionE (q1, . . . ,qn) over the individual re-
quests. If the remote sites return the resultsr1, . . . , rn
in the response to the individual requestsq1, . . . ,qn
then the final result a user requestq is equal to the
result of an expressionE (r1, . . . , rn). Then, static op-
timization of data integration plan is equivalent to the
optimization of an expressionE (r1, . . . , rn).

A naive and quite ineffective approach would be
to postpone data integration until the resultsr1, . . . , rn
returned from the remote sites are available at a cen-
tral site. A more effective solution is to consider
an individual replyr i as a sequence of data pack-
ets r i1, r i2, . . . , r ik−1, r ik and to perform data integra-
tion each time a new packet of data is received at
a central site. Such approach to data integration is
more efficient because there is no need to wait for the
complete results when a data integration expression
E (r1, . . . , rn) is evaluated accordingly to a given or-
der of operations. Instead, whenever a new packet
of data is received at a central site it is immedi-
ately integrated into the intermediate result no mat-
ter which partial result it comes from. Then, static
optimization of data integration plan finds the best
processing strategy for the sequences of packets of
datar i1, r i2, . . . , r ik−1, r ik wherei = 1, . . . ,n. Such ob-
jective requires the transformation of data integra-
tion expressionE (r1, . . . , r i , . . . , rn) into the individ-
ual data integration plans for the sequences of packets
r i1, r i2, . . . , r ik−1, r ik wherei = 1, . . . ,n.

A starting point for the optimization is a data inte-
gration expressionE (r1, . . . , r i , . . . , rn) obtained from
decomposition of a user request to a global infor-
mation system. Processing of the individual pack-
ets means that an expressionE (r1, . . . , r i ⊕ δi , . . . , rn)
must be recomputed each time a data packetδi is ap-
pended to an argumentr i . Of course reprocessing of
the entire data integration expression is too time con-
suming and a better idea is to perform an incremental
processing of the expression, i.e. to find how the pre-
vious result of an expressionE (r1, . . . , r i , . . . , rn) must
be changed afterδi is appended to an argumentr i . A
data integration expression is transformed into a set
of data integration planswhere each plan represents
an integration procedure for the increments of one ar-
gument of the original expression. In our approach
a data integration plan is a sequence of so calledid-
operationson the increments or decrements of data
containers and other fixed size containers. In order
to reduces the size of arguments, static optimization
of data integration plans moves the unary operation

towards the beginning of a plan. Additionally, the fre-
quently updated materializations are eliminated from
the plan and constant arguments and subexpressions
are replaced with the pre-computed values.

The paper is organized in the following way. First,
we overview the related works in an area of optimiza-
tion of data integration in distributed global informa-
tion systems. Next, we derive the incremental pro-
cessing of modification and we find a system of oper-
ation on modifications of data items for the system of
operations included in the relational algebra. Trans-
formation of data integration expressions into the sets
of individual data integration plans is discussed in a
section 4 and it is followed by presentation of static
optimization of data integration plans in the next sec-
tion. Finally, section 6 concludes the paper.

2 RELATED WORK

Optimization of data integration in global information
systems can be traced back to optimization of query
processing in multidatabase and federated database
systems (Ozcan et al., 1997).

The external factors affecting the performance of
query processing in multidatabase systems promote
the reactive query processingtechniques. The early
works on the reactive query processing techniques
are based onpartitioning (Kabra and DeWitt, 1998)
anddynamic modification of query processing plans
(Getta, 2000). A dynamic modification technique
finds a plan equivalent to the original one and such
that it is possible to continue integration of the avail-
able data sets. The similar approaches dynamically
change an order in which the join operations are exe-
cuted depending on the arguments available at a cen-
tral site. These techniques includequery scrambling
(Amsaleg et al., 1998) anddynamic scheduling of
operators(Urhan and Franklin, 2001), andEddies
(Avnur and Hellerstein, 2000),

Optimization of relational algebra operations used
for the data integration includes new versions of join
operation customised to online query processing, e.g.
pipelined join operator XJoin(Urhan and Franklin,
2000),ripple join (Haas and Hellerstein, 1999),dou-
ble pipelined join(Ives et al., 1999), andhash-merge
join (Mokbel et al., 2002).

A technique ofredundant computationssimulta-
neously processes a number of data integration plans
leaving a plan that that provides the most advanced
results (Antoshenkov and Ziauddin, 2000).

A concept ofstate modulesdescribed in (Raman
et al., 2003) allows for concurrent processing of the
tuples through the dynamic division of data integra-

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

142

tion tasks. Adaptive data partitioning(Ives et al.,
2004) technique processes different partitions of the
same argument using different data integration plans.
The works on adaptive data partitioning (Ives et al.,
2004) and optimization of data stream processing
(Getta and Vossough, 2004) were the first attempts to
use the associativity of join operation to integrate the
separate partitions of the same arguments with the dif-
ferent integration plans. An adaptive and online pro-
cessing of data integration plans proposed in (Getta,
2005) and later on in (Getta, 2006) considers the sets
of elementary operations for data integration and the
best integration plan for recently transmitted data.

Many of the techniques developed for the effi-
cient processing ofdata streams(Getta and Vossough,
2004) can be applied to data integration. The reviews
of the most important data integration techniques pro-
posed so far are included in (Gounaris et al., 2002).

3 INCREMENTAL PROCESSING
OF MODIFICATIONS

Initially we consider a process of data integration in
the separation from any particular model of data. We
adopt a general view of a database where a set of
generic unary and binary operations processes a col-
lection of data containers. We do not consider any
particular internal structure of data containers and any
particular system of operations on data containers.
Data containers may represent relational tables, XML
documents, set of persistent objects, files of records,
etc.

3.1 Id-operations

Let r1, . . . , rk be data containers whose structure is
consistent with a given model of data. Ageneric op-
eration of the model is an operationP such that its
arguments are the data containersr ands and whose
result is another data container.

A modificationof a data containerr is denoted by
δ and it is defined as a pair of disjoint data containers
<δ−, δ+> such thatr ∩δ− = δ− andr ∩δ+ = /0.

An data integration operationthat applies a mod-
ification δ to a data containerr is denoted byr ⊕ δi.
For example, in the relational model integration of a
modificationδ to a relational tabler is defined as an
expression(r − δ−)∪δ+.

Consider a generic operationP (r,s) on the data
containersr ands. An incremental/decremental oper-
ation later on called as anid-operationof an argument
r of a generic operationP (r,s) is denoted byαP (δ,s)
and it is defined as the smallest modificationδP that

should be integrated with the result ofP (r,s) to obtain
the result ofP (r ⊕ δ,s), i.e.

P (r,s)⊕αP (δ, r) = P (r ⊕ δ,s) (1)

An incremental/decremental operationof an argu-
ment s of a generic operationP (r,s) is denoted by
βP (r,δ) and it is defined as the smallest modification
δP that should be integrated with the result ofP (r,s)
to obtain the result ofV(r,s⊕ δ), i.e.

P (r,s)⊕βP (r,δ) = P (r,s⊕ δ) (2)

If a generic operationP (r,s) is a component of
an integration expression thenid-operationsallow for
faster re-computation ofP (r,s) when one of its ar-
guments is integrated with data transmitted from an
external data site An ineffective approach would be to
integrate the transmitted data with an argument and to
re-compute entire generic operation. It is represented
by the right hand sides of the equations (1) and (2).

A better idea is to apply an id-operation to trans-
mitted data and the other argument of the base opera-
tion to get a modification that can be integrated with
the previous result of generic operation. It is repre-
sented by the left hand sides of the equations (1) and
(2). The application of id-operations speeds up data
integration because it is possible to immediately pro-
cess data received at a central site. Id-operations al-
low for the incremental processing of data integration
expressions such that an increment of one of the ar-
guments triggers the computations of a sequence of
id-operations that return a modification, which should
be applied to the final result of integration.

3.2 Relational Algebra based
Id-operations

Let x be a nonempty set of attribute names later on
called as aschemaand letdom(a) denotes a domain
of attributea∈ x. A tuple t defined over a schemax
is a full mappingt : x → ∪a∈xdom(a) and such that
∀a∈ x, t(a) ∈ dom(a). A relational tablecreated on
a schemax is a set of tuples over a schemax.

Let r, s be the relational tables such that
schema(r) = x, schema(s) = y respectively and let
z⊆ x, v⊆ (x∩y), andv 6= /0. The symbolsσφ, πz, ⋊⋉v,
∼v, ⋉v, ∪, ∩, − denote the relational algebra opera-
tions ofselection, projection, join, antijoin, semijoin,
and set algebra operations ofunion, intersection, and
difference. All join operations are considered to be
equijoin operations over a set of attributesv.

To find the analytical solutions of the equations (1)
and (2) we we assume that a data integration operation
is computed in the relational model in the following
way.

r ⊕ δ = (r − δ−)∪δ+. (3)

STATIC OPTIMIZATION OF DATA INTEGRATION PLANS IN GLOBAL INFORMATION SYSTEMS

143

Then, theid-operationsαP and βP can be decom-
posed into the pairs of operations each one acting on
either negative (δ−) or positive (δ+) component of a
modificationδ.

αP (δ,s) =< α−
P
(δ−,s),α+

P
(δ+,s) >, (4)

βP (r,δ) =< β−
P
(r,δ−),β+

P
(r,δ+)> . (5)

If we separately consider the negative and positive
components of a modificationδ and we replace data
integration operation with its relational definition then
we get the following equations.

P (r,s)−α−
P
(δ−,s) = P (r − δ−,s) (6)

P (r,s)∪α+
P
(δ+,s) = P (r ∪δ+,s) (7)

P (r,s)−β−
P
(r,δ−) = P (r,s− δ−) (8)

P (r,s)∪β+
P
(r,δ+) = P (r,s∪δ+) (9)

To find the id-operationswe solve the equations
above for the generic operations of union (∪), join
(⋊⋉), and antijon (∼) and we assume that selection op-
eration is always directly applied to the arguments of
binary operations and projection is applied only one
time to the final result of query processing.

The analytical solutions of the equations (6) and
(7) provide the following results.

α∪(δ,s) =< δ−− s,δ+− s> (10)

β∪(r,δ) =< δ−− r,δ+− r > (11)

The derivations ofid-operationfor the generic opera-
tions of join and antijoin can be obtained in the same
way.

α⋊⋉(δ,s) =< δ− ⋊⋉v s,δ+ ⋊⋉v s> (12)

β⋊⋉(r,δ) =< δ− ⋊⋉v r,δ+ ⋊⋉v r > (13)

α∼(δ,s) =< δ− ∼v s,δ+ ∼v s> (14)

β∼(r,δ) =< r ⋉ vδ+, r ⋉ vδ− > (15)

3.3 Application of Id-operations to Data
Integration

Consider a data integration expressionE (r,s, t) =
t ∼v (r ⋊⋉z s) where r, s, t are the remote data
sources andv = schema(r) ∩ schema(t) and z =
schema(r)∩ schema(s). Assume, that a new incre-
ment δs =< /0,δ+s > of an arguments has been just
transmitted to a central site. We would like like to re-
compute a data integration expressionE (r,s⊕ δs, t)
immediately after the integration of an incrementδs
with an arguments.

To avoid re-computation of entire data integration
expression we first find a modificationδrs that should
be applied to a result ofr ⋊⋉z s after the extension of
an arguments with δs. Next, we find a modification

δrst that should be applied to the result oft ∼v (r ⋊⋉z s)
after modificationδrs is applied to the result ofr ⋊⋉z s
From the equation (13) we getδrs =< /0,δ+s ⋊⋉ r >.
Next, to findδrst we findβ∼(t,δrs). From the equation
(15) we getδrst =< t ⋉vδ+rs, r ⋉ v /0>. Finally,δrst =<
t ⋉v(δ+s ⋊⋉ r), /0 >. Hence, in order to get the result of
E (r,s⊕ δs, t) after the extension ofs with δs we have
to computeE (r,s, t)− (t ⋉v(δ+s ⋊⋉ r)).

Next, we consider the same data integration ex-
pressiont ∼v (r ⋊⋉z s) and a new incrementδt of a
remote data sourcet. Now, processing of an incre-
mentδt needs either materialization of an intermedi-
ate result of a subexpression(r ⋊⋉z s) or transforma-
tion of the data integration expression into an equiv-
alent one with either left (right)-deep syntax tree and
with an argumentt in the leftmost (rightmost) position
of the tree. Materialization of an intermediate results
decreases the overall performance because when one
of its arguments is extended then entire subexpression
of materialization must be re-computed. On the other
hand it is not always possible to transform an inte-
gration expression into a left or right deep syntax tree
such that a modification is located at the lowest leaf
level of the tree.

If materializationmrs = r ⋊⋉ s is available then
from an equation (14) we getδrst =< /0,δ+t ∼v mrs >.
Hence, in order to get the result ofE (r,s, t ⊕ δt) af-
ter the extension oft we have to computeE (r,s, t)∪
(δ+t ∼v mrs).

If materializationmrs is not available then an in-
teresting option is to transform an expressionδ+t ∼v
(r ⋊⋉ s)) into δ+t ∼v ((r ⋉δ+t)⋊⋉ s). Such transforma-
tion is correct because we do not need the entire result
of r ⋊⋉ s to be computed, we only need the rows from
r that can be joined withδ+t over the attributes inv. A
subexpressionr ⋉δ+t will reduce the size of an argu-
mentr before join withs and its computation can be
done faster becauseδ+t is small.

4 DATA INTEGRATION PLANS

In this section we introduce a concept ofdata inte-
gration plan and we show how to transform a data
integration expression into a set of data integration
plans. LetE (r1, . . . rn) be a data integration expres-
sion built over the generic operations and data con-
tainersr1 . . . , rn. A syntax treeTe of an expressionE
is a binary tree such that:

(i) for each instance of argumentr1, . . . rn there is a
leaf node are labelled with a name of argument,

(ii) for each subexpressionP (e′,e′′) of E whereP is
a generic operation ande′ ande′′ are the subex-

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

144

pression ofE there is a node labelled withP that
has two subtreesTe′ andTe′′ .

A data integration plan is a sequence of assignment
statementss1, . . . ,sm where the right hand side of each
statement is either an application of a modification to
a data container (mj := mj ⊕ δi) or an application of
left or right id-operation (δ j := α j(δi ,mk)).

Consider an argumentr i of a data integration expres-
sion E . An implementation of data integration ex-
pression for an argumentr i is constructed in the fol-
lowing steps.

1: Assign unique numbers to each node of a syntax
treeTe.

2: Make an implementationpi empty.

3: Start from a leaf node ofTe labelled withr i .

4: While not in the root node ofTe move to ancestor
node of the current node and execute a procedure
moveToAncestor(i, j) where i is an identifier of
the current node andj is an identifier of the an-
cestor node.

5: When in the root nodei append a statement
result := result⊕ δi ;

A proceduremoveToAncestor(i, j) consists of the fol-
lowing steps.

1: If i is a leaf node and it is the left descendant of
a node j then append a statement that computes
id-operationpi : δ j := αoperationj (δr i , mk); where
mk is either a data container or a materialization
in the right descendant of nodej.

2: If i is a leaf node and it is the right descendant of
a node j then append a statement that computes
id-operationpi : δ j := βoperationj (mk, δr i); where
mk is either a data container or a materialization
in the left descendant of nodej.

3: If i is not a leaf node ofTe then append a statement
mi :=mi ⊕ δi ; wheremi is a materialization in a
nodei.

4: If i is not a leaf node and it is the left descendant
of a nodej then append a statement that computes
id-operationδ j := αoperationj (δi , mk); wheremk is
either a data container or a materialization in the
right descendant of nodej.

5: If i is not a leaf node and it is the right descendant
of a nodej then append a statement that computes
id-operationδ j := βoperationj (mk, δi); wheremk is
either data container or a materialization in the left
descendant of node j.

As a simple example consider a data integration
expressionP (r,s, t) = t ⋊⋉v (r ∼w s) and its syntax tree

~t

r s

1:

2: 3:

4: 5:

Figure 1: A syntax tree of an expressiont ⋊⋉v (r ∼w s).

with the numbered nodes given in Figure (1). Starting
from a node 4 we get a data integration plan for the
modifications of argumentr:
p4 : δ3 := α∼(δr ,s);
m3 := m3⊕ δ3;
δ1 := β⋊⋉(t,δ3);
result := result⊕ δ1;
An equivalent relational data integration plan is ob-
tained by the substitution of id-operations with the
equivalent relational algebra expressions.
p4 : δ3 := δr ∼ s;
m3 := m3⊕ δ3;
δ1 := t ⋊⋉ δ3;
result := result⊕ δ1;
The relational algebra operations on the relational
tables and modifications process both negative and
positive components of the modifications. For ex-
ample,δ3 := δr ∼ s; is equivalent toδ−3 := δ−r ∼ s;
δ+3 := δ+r ∼ s;
The data integration plans for the argumentss andt
are the following.
p5 : δ3 := β∼(r,δs);
m3 := m3⊕ δ3;
δ1 := β⋊⋉(t,δ3);
result := result⊕ δ1;

p3 : δ1 := α⋊⋉(δt ,m3);
result := result⊕ δ1;

5 STATIC OPTIMIZATION OF
DATA INTEGRATION PLANS

Static optimization of data integration plan means
that transformation of the plans is performed before a
stage of data integration while dynamic optimization
of data integration plans changes the plans during a
stage of data integration. In order to get more sound
results we consider a language of data integration ex-
pressions to be the relational algebra and we consider
data integration expressions built from the operations
of join, antijoin, anduniononly. We also assume, that
operation ofselectionis always processed together
with an adjacent binary operation andprojection is
computed at the very end of data integration.

STATIC OPTIMIZATION OF DATA INTEGRATION PLANS IN GLOBAL INFORMATION SYSTEMS

145

5.1 Preliminary Optimizations

The preliminary optimizations are performed be-
fore the transformation of data integration expression
into data integration plans and it includes the stan-
dard transformations of relational algebra expressions
where the selections and projections are ”pushed”
down the syntax trees of data integration expression
and join operations are reordered such that the joins
on the small arguments are performed first. Next, the
selection operations are associated with the binary op-
erations such that the rows that satisfy a selection con-
dition are directly ”piped” to the first stage of the com-
putations of the binary operations. For example, if
a join operation implemented as hash-based join fol-
lows a selection then a row that satisfies a selection
condition is not saved in a temporary results of se-
lection and instead is hashed in the first stage of the
computations of a hash-based join. The same tech-
niques is applied to the selection operations that can-
not be ”pushed” down below the binary operations,
for exampleσa>c(r(ab) ⋊⋉b s(bc)) are computed by
”piping” the rows obtained as the results of binary
operationr(ab) ⋊⋉b s(bc) directly to a selection op-
erations. It is also possible to implement a selection
operation as an additional comparison when the rows
from the arguments are matched during the process-
ing of binary operation, for example in the example
above, testing of equality conditionr.b = s.b can be
followed by testing of a conditionr.a > s.c. After
the preliminary stage of optimizations data integra-
tion expressions are transformed into data integration
plans.

5.2 Optimization through Reordering of
Operations

The following example shows how further optimiza-
tion of data integration plans can be achieved through
reordering of the operations. Consider a fragment of
data integration planpt : δ j := δt ⋊⋉v r; mj := mj ⊕δ j ;
δk := δ j ∼w s; The following two observations lead to
the transformations that may have a positive impact
on the performance of data integration plans. First, if
a data containerr is significantly larger than a data
containers then it would be more efficient to start
from the computations on a data containers because
the results would be smaller. Second, some of the
data items inδ j may not contribute to the results of
δk := δ j ∼w s and can be removed fromδ j before the
computations ofantijoin operation. We compute an
operationδi ÷ s to partition boths andδ j into pairs

<s(δ j+),s(δ j−)> and <δ(s+)
j ,δ(s−)

j > such that only

s(δ j+) and δ(s+)
j have an impact on the result of

δk := δ j ∼w s; The partitioning is performed such that

δ(s+)
i := δi ⋉s, δ(s−)

i := δi ∼ s, s(δi+) := s⋉δi , and

s(δi−) := s∼ δi . Then, we compute<δ(s+)
i ,δ(s−)

i >⋊⋉ r

and later on the result ofδ(s−)
i ⋊⋉ r is directly passed

to δk and it is unioned with with the result of(δ(s+)
i ⋊⋉

r)∼ s(δi+).
The complexity of the partitioningδi ÷ s is com-

parable with the complexity of an ordinary join op-
eration. The complexity of the computations of

<δ(s+)
i ,δ(s−)

i >⋊⋉ r is the same as the complexity of
δi ⋊⋉ r. It is expected that the additional computations
of δi ÷ s will take less time than the difference be-
tween the computations of(δi ⋊⋉ r) ∼ s and the com-

putations of(δ(s+)
i ⋊⋉ r)∼ s(δi+). The benefits depend

on how far the partitioning reduces the size ofs(δi+)

and(δ(s+)
i ⋊⋉ r).

5.3 Elimination of Materializations

An algorithm that transforms a syntax tree of data
integration expression into the data integration plans
creates the references to so calledmaterializations.
Materialization is a relational table that contains the
intermediate results of processing of one of subex-
pression of a data integration plan. Materializations
are needed when when an online processing plan is
created for an argument which is not at the bottom
level of a syntax tree or a syntax tree is not left-
/right-deep syntax tree. Materializations require the
additional integration operations in online processing
plans and because of that frequently performed in-
tegrations of the partial results with materializations
may consume a lot of additional time. To avoid this
problem we find the ways how to remove materializa-
tions from data integration plans.

Consider an integration expressiont ⋊⋉w (r ⋊⋉v s).
An integration plan for an argumentt, i.e. pt : δtrs :=
δt ,⋊⋉w mrs; result := result⊕ δtrs; uses a materializa-
tion mrs which contains the intermediate results of a
subexpressionr ⋊⋉v s. The plans for the argumentsr
and s integrate the intermediate results of the same
subexpression with the materializationmrs, for exam-
ple pr : δrs := δr ⋊⋉v s; mrs :=mrs⊕δrs; δrst := δrs,⋊⋉ t;
result := result⊕ δrst; A simple solution to eliminate
a materializationmrs is to apply the associativity of
join operation and to transform the expression into an
expression which has left-/right-deep syntax tree and
argumentt is located at at one of the bottom leaf level
nodes of the tree. To do so, we transform the integra-
tion expression into(t ⋊⋉w r)⋊⋉v sand we create a new
integration planp′t : result := result⊕ (δt ⋊⋉ r) ⋊⋉v s;

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

146

Additionally, we eliminate the integration of partial
results with a materializationmrs from the integration
plans forr ands.

The next example shows, that associativity of the
operations involved in an expression is not a neces-
sary condition for the elimination of materialization.
We consider a data integration expression(r ∼v s)⋊⋉w
t. The objective is to eliminate a materialization that
contains the intermediate results ofr ∼v s from an
integration plan for the argumentt, i.e. pt : δrst :=
mrs ⋊⋉ δt ; result⊕ δrst. We transform an expression
mrs ⋊⋉ δt into a form where a modificationδt is lo-
cated at the bottom level of left-/right-deep syntax
tree in the following way. First we substitutemrs with
r ∼v s. Next, we replace an argumentr with an equiv-
alent expression(r ⋉ y δt) + (r ∼y δt) where opera-
tion + denotes a concatenation of the disjoint results
of semijoin and antijoin operations. The distribu-
tivity of concatenation operation over semijoin and
join operations allows us to transform an expression
(((r ⋉ yδt)+(r ∼y δt))∼v s)⋊⋉w δt into concatenation
of two subexpressions((r ⋉ yδt)∼v s)⋊⋉w δt +((r ∼y
δt) ∼v s) ⋊⋉w δt . The results of processing a subex-
pression((r ∼y δt) ∼v s) ⋊⋉y δt are always empty be-
causey-values removed fromr by (r ∼y δt return no
results when join withδt is performed later on. We
get an expression((r ⋉ yδt)∼v s)⋊⋉w δt equivalent to
an expressionmrs ⋊⋉ δt in the original integration plan
pt . Because the transformations above eliminated a
materializationmrs from pt it is possible to elimi-
nate it from the remaining planspr and ps. Hence,
the data integration plans for an integration expres-
sion(r ∼v s)⋊⋉w t are as follows.
pr : result := result⊕ (δr ∼v s)⋊⋉w t;
ps : result := result⊕ (r ⋉vδs)⋊⋉w t;
pt : result := result⊕ (((r ⋉ yδt)∼v s)⋊⋉w δt);

Next, we discuss how to eliminate materializa-
tion in a more general case. Consider an argument
r whose integration plan uses a materialization. Ifr
has at least one common attribute with a modifica-
tion of δs of another arguments of integration ex-
pression than it is always possible to replacer with
(r ⋉ vδs)+ (r ∼v δs). Then it is possible to apply dis-
tributivity of concatenation operation and to eliminate
one of the components of the expression later on like
in the example above. A problem is how to find when
such transformation is possible. Consider an imple-
mentation of online processing plan where an oper-
ation pz(δ(x),m(y)) acts on a modificationδ(x) and
materializationm(y) such thatx∩ y = z and z 6= /0.
It is possible to eliminate materializationm(y) from
the online processing plan when there exists an ar-
guments(v) of subexpression of materializationm(y)
(see Figure 2) such that:

δ (x)

r1 r2 rk rn

u1

un

pz

u

m(y)

... ...

Figure 2: Elimination of materializationm(y).

(i) v∩x 6= /0 and

(ii) (v∩x) ∈ z.

Elimination of materializationm(y) is performed
by the substitution ofs(v) in a subexpression of
the materialization with(s(v)⋉ v∩xδ(x))+(s(v)∼v∩x
δ(x)). Then processing of modificationδ(x) triggers
the computations along a path that leads from the pro-
cessing of semijoin and antijoin ofs(v) with δ(x) to a
materializationm(y). Unfortunately, it does not solve
the problem from performance point of view . The
substitution ofs(v) with a concatenation of semijoin
and antijoin ofs(v) with a modificationδ(x) still pro-
vides a completes(v) and requires the reprocessing of
entire materializationm(y). In fact, when modifica-
tion δ(x) is small then only a fraction of materializa-
tion m(y) affects the result ofpz(δ(x),m(y)). Then, a
solution would be to recompute only such component
of materialization that affect the result of operation
pz. If it is possible to eliminate one of semijoin of
s(v) with δ(x) or antijoin ofs(v) with δ(x) then only
a subset of arguments(v) is involved in the process-
ing. Next, we show a formal method that finds when
a materialization can be removed and what transfor-
mations of the arguments of a relational implemen-
tation of data integration plan are required to do so.
Let Te be a syntax tree of a relational algebra expres-
sion e(r1, . . . , rn) built over the operations ofset dif-
ference, join, semijoin, andantijoin. Let a nodenp
in Te represents a binary operationpv(r(x),s(y)) such
thatv= x∩y. Labelling ofTe is performed in the fol-
lowing way.

(i) An edge between a leaf node that represent an ar-
gumentr(x) can be labeled withzr wherez⊆ x
andz 6= /0.

(ii) If a node np in Te represents an operationp that
produces a resultr(x) and ”child” edge of a node
np is labeled with one of the symbolsz, z−, −z,
z∗ then a ”parent” edge ofnp can be labeled with
a symbol located in a row indicated by a label of
”child” edge and a column indicated by an opera-
tion pv in a Table 1.

Labelling of syntax tree is performed to discover the
types of coincidences between thez-values of one or
more arguments of relational algebra expression. The

STATIC OPTIMIZATION OF DATA INTEGRATION PLANS IN GLOBAL INFORMATION SYSTEMS

147

Table 1: The labelling rules for syntax trees of relational algebra expressions.

⋊⋉v (le f t) ∼v ∼v (right) (le f t)⋉ v ⋉ v(right) (le f t)− −(right)

z z− z− −(z∩v) z− (z∩v)− z− −z
z− z− z− (z∩v)∗ z− (z∩v)− z− z∗
−z −z −z (z∩v)∗ −z (z∩v)∗ −z z∗
z∗ z∗ z∗ (z∩v)∗ z∗ z∗ z∗ z∗

~y
δt(yz)

y
t

y
r

y
s

−ys
r

y −
mrs

y

r(xy) s(yz)

Figure 3: A labelled syntax tree of online processing plan
pt : result := result⊕ ((r(xy)∼y s(yz))⋊⋉y δt(yz)).

coincidences and their types are needed to find out if it
is possible to remove the materializations and whether
their elimination is beneficial.

As an example, consider an integration expres-
sion(r(xy) ∼y s(yz)) ⋊⋉y t(yz) and an integration plan
pt : result := result⊕ (mrs(xy) ⋊⋉y δt(yz)); for pro-
cessing the increments of an argumentt. A materi-
alization is computed asmrs(xy) = r(xy) ∼y s(yz). A
syntax tree of the plan with the materializationmrs re-
placed withr(xy) ∼y s(yz) is given in Figure 3. To
eliminate the materialization we try to find the coin-
cidences betweeny-values ofr(xy) andδt(yz) and we
perform the labelling of the syntax tree in a way de-
scribed above. The ”parent” edges of the nodesr(xy),
s(yz), andδt(yz) obtain the labelsyr , ys, andyt . A
left ”child” edge of the root node obtained a labelyr−
indicated by a location in the first row and the sec-
ond column in Table 1. Moreover, the same edge ob-
tained a label−ys indicated by a location in the first
row and the third column in Table 1. The final la-
belling of the syntax tree is given in Figure 3. The
interpretations of the labels are the following. A label
yt attached to a ”child” edge of join operation at root
node of the tree indicate that ally-values of an argu-
mentδt(yz) are processed by the operation. A label
yr− attached to a ”child” edge of the same operation
indicates that only a subset ofy-values of an argument
r(xy) and no othery-values are processed by the oper-
ation. A label−ys attached to the same edge indicates
that none ofy-values ins(y,z) is included in the result
of r(xy) ∼y s(yz). The above interpretation of the la-
belsyr− andyt in a context of join operation over a
set of attributesy means thaty-values not included in
the argumentsr(xy) andδt(yz) have no impact on the
result of join operation. It means thatr(xy) can be re-
placed withr(xy)⋉ yδt(yz) andδt(yz) can be replaced
with δt(yz)⋉ yr(xy) without changing the result of the

expression. The interpretation of the labels−ys andyt
in a context of join operation allows for the elimina-
tion fromδt(yz) of all y-values, which are included in
s(yz) because these values have no impact on join op-
eration. It means thatδt(yz)⋉ yr(xy) can be replaced
with (δt(yz)⋉ yr(xy)) ∼y s(yz) with changing the re-
sult of the expression. It is also possible to replace
s(yz) with s(yz)⋉δt(yz) because ally-values included
in s(yz) and not included inδt(yz) have no impact on
the result of join operation. However, the last modi-
fication is questionable from a performance point of
view. It definitely, speeds up antijoin operation but it
also delays join operation because the results of anti-
join operation are larger after the reduction ofs(y,z).

The labelling and the possible replacements of ar-
guments are summarized in the Tables 2 and 3. The
interpretations of the Tables are the following. Con-
sider a relational algebra expressione(r, r1, . . . , rn,s)
such that operationpx is included in the root node of
its syntaxTe. If an operationpx is either join or semi-
join operations then the possible replacements of the
argumentsr andsare included in a Table 2. If an op-
erationpx is either antijoin or set difference the the
possible replacements are included in a Table 3. The
replacements of the argumentsr and s over a com-
mon set of attributesz⊆ x can be found after the la-
belling of both paths from the leaf nodes representing
the argumentsr ands towards the root node ofTe la-
beled with px. The replacements of the arguments
r and s are located at the intersection of a row la-
beled with a label of left ”child” edge and a column
labeled with a label of ”right” child edge of the root
node. For instance, consider a subtree of the argu-
mentss andr such that an operation⋊⋉x is in the root
node of the subtree. If a left ”child” edge of the root
node is labeled with−zr , and a right ”child” edge of
the root node is labeled withzs∗ then Table 2 indi-
cates that it is possible to replace the contents of an
arguments with an expressions∼z r. A sample
justification of the replacements included in the Ta-
ble 2 at the intersection of a row labeled with−zr
and a column labeled withzs∗ is the following. Let
Te be a syntax tree of a relational algebra expression
e(r, r1, . . . , rn,s) built of the operations of join, semi-
join, antijoin, and set difference, and such that root
node of the tree is labeled with either⋊⋉x or ⋉x and

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

148

Table 2: The replacements of arguments in integration
plans.

⋊⋉x,⋉x zs zs− −zs zs∗

zr n/a r ⋉ zs r ∼z s s⋉ zr
s⋉ zr s⋉ zr

zr− r ⋉ zs r ⋉ zs r ∼z s s⋉ zr
s⋉ zr s⋉ zr s∼z r

−zr s∼z r s∼z r either s∼z r s∼z r
r ⋉ zs r ∼z s or r ∼z s

zr∗ r ⋉ zs r ⋉ zs r ∼z s none

Table 3: The replacements of arguments in integration
plans.

∼x,− zs zs− −zs zs∗

zr n/a s⋉ zr s⋉ zr s⋉ zr
zr− s⋉ zr s⋉ zr s⋉ zr s⋉ zr
−zr either s∼z r s∼z r either s∼z r s∼z r

or r ∼ s or r ∼ s
zr∗ r ∼z s r ∼z s none none

its left ”child” edge is labeled with−zr and its right
”child” edge is labeled withzs∗, z ⊆ x. Then, for
any values of the argumentsr, r1, . . . , rn,s an expres-
sion e(r, r1, . . . , rn,s) = e(r, r1, . . . , rn,(s∼z r)). A la-
bel−zr attached to a left ”child” edge of join of op-
eration⋊⋉x or ⋉x means that none ofz-values of an
argumentr is include in an argument of join or semi-
join. Then, thesez-values can be removed from an
arguments because they will never participate in join
or semijoin operation. On the other hand we cannot
replace an argumentr because labelzs∗ means that
some newz-values can be added to the original set of
z-values ins.

Let em(r1, . . . , rn) be an expression that defines a
materializationm in an integration plan for the in-
crementsδs of an arguments. Elimination of mate-
rialization m from integration plan forδs is possible
when some of the argumentsr1, . . . rn can be replaced
with the subexpressions involvingδs such that syntax
tree ofe′m(r1, . . . , rn,δs) does not contain a subexpres-
sion that does not involvesδs. In the other words, we
try to replace some of the arguments in an expression
that defines a materialization such that entire expres-
sion can be recomputed with an argumentδs and no
subexpression exists that does not involveδs.

An interesting problem is whether any material-
ization can be removed using the replacements de-
scribed above. The analysis of the Tables 2 and 3 and
the structural properties of relational implementations
of integration plans reveal three cases when material-
izations cannot be removed through the replacements.

(1) An operation at the root node syntax tree of online
processing plan is a join operation and its both left

and right ”child” edges are labeled withzr∗ and
zs∗ respectively, see a location in the right lower
corner of Table 2.

(2) An operation at the root node syntax tree of on-
line processing plan is either a join operation or
semijoin operation, a materialization is the fist ar-
gument of the operation and right ”child” edge is
labeled withzs∗. This is because all reduction in
the last column of 2 are applicable to the second
argument of the operation which is obtained from
the processing of modification and not material-
ization.

(3) An operation at the root node of a syntax tree of
online processing plan is either an antijoin opera-
tion or difference operation, materialization is the
second argument of the operation and left ”child”
edge of the node is labeled withzr∗. This is be-
cause all replacements in the last row of Table
3 are applicable to the first argument of the op-
eration which is obtained from the processing of
modification and not materialization.

6 SUMMARY, CONCLUSIONS,
AND FUTURE WORK

This work addresses a problem of static optimization
of data integration plans in the global information sys-
tems. The users’ requests submitted at a central site
are decomposed into the individual requests and si-
multaneously submitted for processing at the remote
sites. We show how data integration plans for the in-
crements of the individual arguments can be derived
from a data integration expression and we propose a
number of static optimization techniques for data in-
tegration plans implemented as relational algebra ex-
pressions.

A technique of immediate processing of data
packets as they are received from the remote sites al-
lows for better utilization of data processing resources
available at a central site. The continuous processing
of small portions of data transmitted from the remote
sites eliminates idle time when a data integration sys-
tem has to wait for the transmission of an entire argu-
ment. Decomposition of data integration expression
into the individual plans allows for more precise op-
timization of data integration and it also allows for
better scheduling of data processing on multiproces-
sor systems. Identification of coincidences between
the arguments of data integration expression leads to
elimination of materializations from data integration
plans and reduction of the processing load when ma-
terializations are frequently change.

STATIC OPTIMIZATION OF DATA INTEGRATION PLANS IN GLOBAL INFORMATION SYSTEMS

149

A number of problems remains to be solved.
Elimination of materialization from data integration
plans depends on the parameters of transmission of
the arguments and a problem is how predict these pa-
rameters at static optimization phase. Another inter-
esting problem is identification of all materializations
that can be eliminated in a given moment of time
and scheduling of the replacements in a process of
online data integration. The other problems include
the derivations of more sophisticated systems of id-
operations from the systems of binary operations dif-
ferent from the relational algebra e.g. a system in-
cluding aggregation operations, further investigations
of the properties of data integration plans and more
advanced data integration algorithms where the ap-
plication of a particular online plan depends on what
increments of data are available at the moment.

REFERENCES

Amsaleg, L., Franklin, J., and Tomasic, A. (1998). Dynamic
query operator scheduling for wide-area remote ac-
cess.Journal of Distributed and Parallel Databases,
6:217–246.

Antoshenkov, G. and Ziauddin, M. (2000). Query process-
ing and optmization in oracle rdb.VLDB Journal,
5(4):229–237.

Avnur, R. and Hellerstein, J. M. (2000). Eddies: Contin-
uously adaptive query processing. InProceedings of
the 2000 ACM SIGMOD International Conference on
Management of Data, pages 261–272.

Getta, J. R. (2000). Query scrambling in distributed multi-
database systems. In11th Intl. Workshop on Database
and Expert Systems Applications, DEXA 2000.

Getta, J. R. (2005). On adaptive and online data integration.
In Intl. Workshop on Self-Managing Database Sys-
tems, 21st Intl. Conf. on Data Engineering, ICDE’05,
pages 1212–1220.

Getta, J. R. (2006). Optimization of online data integration.
In Seventh International Conference on Databases
and Information Systems, pages 91–97.

Getta, J. R. and Vossough, E. (2004). Optimization of data
stream processing.SIGMOD record, 33(3):34–39.

Gounaris, A., Paton, N. W., Fernandes, A. A., and Sakellar-
iou, R. (2002). Adaptive query processing: A survey.
In Proceedings of 19th British National Conference
on Databases, pages 11–25.

Haas, P. J. and Hellerstein, J. M. (1999). Ripple joins for
online aggregation. InSIGMOD 1999, Proceedings
ACM SIGMOD Intl. Conf. on Management of Data,
pages 287–298.

Ives, Z. G., Florescu, D., Friedman, M., Levy, A. Y., and
Weld, D. S. (1999). An adaptive query execution sys-
tem for data integration. InProceedings of the 1999
ACM SIGMOD International Conference on Manage-
ment of Data, pages 299–310.

Ives, Z. G., Halevy, A. Y., and Weld, D. S. (2004). Adapt-
ing to source properties in processing data integration
queries. InProceedings of the 2004 ACM SIGMOD
International Conference on Management of Data.

Kabra, N. and DeWitt, D. J. (1998). Efficient mid-query re-
optimization of sub-optimal query execution plans. In
Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data.

Mokbel, M. F., Lu, M., and Aref, W. G. (2002). Hash-merge
join: A non-blocking join algorithm for producing fast
and early join results.

Ozcan, F., Nural, S., Koksal, P., Evrendilek, C., and Do-
gac, A. (1997). Dynamic query optimization in mul-
tidatabases.Bulletin of the Technical Committee on
Data Engineering, 20:38–45.

Raman, V., Deshpande, A., and Hellerstein, J. M. (2003).
Using state modules for adaptive query processing. In
Proceedings of the 19th International Conference on
Data Engineering, pages 353–.

Urhan, T. and Franklin, M. J. (2000). Xjoin: A reactively-
scheduled pipelined join operator.IEEE Data Engi-
neering Bulletin 23(2), pages 27–33.

Urhan, T. and Franklin, M. J. (2001). Dynamic pipeline
scheduling for improving interactive performance of
online queries. InProceedings of International Con-
ference on Very Large Databases, VLDB 2001.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

150

