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Abstract: Global information systems provide its users with a centralized and transparent view of many heterogeneous
and distributed sources of data. The requests to access data at a central site are decomposed and processed
at the remote sites and the results are returned back to a central site. A data integration component of the
system processes data retrieved and transmitted from the remote sites accordingly to the earlier prepared data
integration plans.

This work addresses a problem of static optimization of data integration plans in a global information system.
Static optimization means that a data integration plan is transformed into more optimal form before it is used
for data integration. We adopt an online approach to data integration where the packets of data transmitted
over a wide area network are integrated into the final result as soon as they arrive at a central site. We show
how data integration expression obtained from a user request can be transformed into a collection of data
integration plans, one for each argument of data integration expression. This work proposes a number of static
optimization techniques that change an order operations, eliminate materialization and constant arguments
from data integration plans implemented as relational algebra expressions.

1 INTRODUCTION parallel, or mixed sequential and parallel strategies
Accordingly to anentirely sequentiaktrategy a re-
Efficient integration of data retrieved and transmitted questg; can be submitted for processing at a remote
from the remote sources is one of the central problemssite only when all results of the requess...,qgi—1
in the development of global information systems that are available at a central site. An entirely sequential
provide the users with a centralized and transparentstrategy is appropriate when the results received so
view of many heterogeneous and distributed sourcesfar can be used to reduce the complexity of the re-
of data. A data integration component of a global maining requestsj,...,qgi1k. Accordingly to anen-
information system processes data retrieved from thetirely parallel strategy all requesi, ..., Gi,. .., G+
remote sites and transmitted to a central site. A typ- are submitted simultaneously for the parallel process-
ical architecture of a global information system de- ing at the remote sites. An entirely parallel strategy
composes the user requests into the requests relateis beneficial when the computational complexity and
to the remote source of data and submits the requestgshe amounts of data transmitted is more or less the
fro the processing at the remote sites. The results of same for all requests. Accordingly torxed sequen-
processing at the remote sites are transmitted back totial and parallelstrategy some requests are submitted
a central site and integrated with data already avail- sequentially while the others in parallel. Optimiza-
able there. A process of data integration acts upon ation of data integration plans is eithstaticwhen the
data integration plan which is prepared when a user’s plans are optimized before a stage of data integration
request is decomposed into the requests related to theor it is dynamicwhen the plans are changed during
remote sources. A data integration plan determines anthe processing of the requests.
order in which the individual requests are issued and  The problem of static optimization of data inte-
a way how the results of these request are combinedgration plans can be formulated in the following way.
into the final result. The individual requests can be Given a global information system that integrates a
issued accordingly teentirely sequentiabr entirely number of remote and independent sources of data.
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Consider a user requesto a global information sys-  towards the beginning of a plan. Additionally, the fre-
tem and its decomposition into the individual requests quently updated materializations are eliminated from
di,---,0n Simultaneously submitted for the process- the plan and constant arguments and subexpressions
ing at the remote sites. Let a requgdie equivalent  are replaced with the pre-computed values.

to an expressior (g, ...,qn) over the individual re- The paper is organized in the following way. First,
quests. If the remote sites return the resuts. ., rp we overview the related works in an area of optimiza-
in the response to the individual requests. .. ,qn tion of data integration in distributed global informa-

then the final result a user requepis equal to the  tion systems. Next, we derive the incremental pro-
result of an expression(ri,...,r). Then, static op-  cessing of modification and we find a system of oper-
timization of data integration plan is equivalent to the ation on modifications of data items for the system of

optimization of an expression(ry,...,ry). operations included in the relational algebra. Trans-
A naive and quite ineffective approach would be formation of data integration expressions into the sets
to postpone data integration until the results .., rp of individual data integration plans is discussed in a

returned from the remote sites are available at a cen-section 4 and it is followed by presentation of static
tral site. A more effective solution is to consider optimization of data integration plans in the next sec-
an individual replyr; as a sequence of data pack- tion. Finally, section 6 concludes the paper.
etsri,ri,,...,M,_,,M, and to perform data integra-

tion each time a new packet of data is received at

a central site. Such approach to data integration is

more efficient because there is no need to wait for the 2 RELATED WORK

complete results when a data integration expression =~ =~ 4 I : .

£ (I1,...,In) is evaluated accordingly to a given or- Optimization of data integration in global information
der of operations. Instead, whenever a new packetSyStéms can be traced back to optimization of guery
of data is received at a central site it is immedi- Processing in multidatabase and federated database

ately integrated into the intermediate result no mat- Systems (Ozcanetal,, 1997).
ter which partial result it comes from. Then, static The external factors affecting the performance of
optimization of data integration plan finds the best dU€ry processing in multidatabase systems promote

processing strategy for the sequences of packets ofih€ réactive query processingchniques. The early
datari,,ri,,...,F, ,,F, Wherei = 1,...,n. Such ob- works on the reactive query processing techniques

jective requires the transformation of data integra- '€ based opartitioning (Kabra and DeWitt, 1998)

tion expressiore (I, ....ri,...,rn) into the individ- anddynamic modification of query processing plans
ual data integration plans for the sequences of packetsG€tta, 2000). A dynamic modification technique
o o P — inds uivi igi su
Fiolio.... i .ri, wherei=1,....n. finds a plan equivalent to the original one and such
"' X starting point for the optimization is a data inte- that it is possible to continue integration of the avail-
gration expressiot (1,...,fi,...,r) obtained from able data sets. The similar approaches dynamically

decomposition of a user request to a global infor- change an ord_er in which the join opera_tions are exe-
mation system. Processing of the individual pack- cuted depending on the arguments available at a cen-
ets means that an expressipfry, ..., & di,...,rnm) tral site. These techniques mcludgery scram_bllng
must be recomputed each time a data padkist ap- (Amsaleg et al., 1998) andynamlc schedullng of
pended to an argument Of course reprocessing of operators(Urhan an_d Franklin, 2001), anBiddies

the entire data integration expression is too time con- (Avnur and Hellerstein, 2000), _

suming and a better idea is to perform an incremental ~ Optimization of relational algebra operations used
processing of the expression, i.e. to find how the pre- for the data integration includes new versions of join
vious result of an expressian(ry,....ri,...,r)) must ~ Operation customised to online query processing, e.g.
be changed afteb; is appended to an argument A plpellngd join operator XJoir{Urhan gnd Franklin,
data integration expression is transformed into a set2000).ripple join (Haas and Hellerstein, 199%jou-

of data integration plansvhere each plan represents Ple pipelined join(lves et al., 1999), andash-merge

an integration procedure for the increments of one ar- /0in (Mokbel et al., 2002). o

gument of the original expression. In our approach A technique ofredundant computationsimulta-

a data integration plan is a sequence of so caled ~ Neously processes a number of data integration plans
operationson the increments or decrements of data !€aving a plan that that provides the most advanced
containers and other fixed size containers. In order results (Antoshenkov and Ziauddin, 2000).

to reduces the size of arguments, static optimization A concept ofstate moduleslescribed in (Raman

of data integration plans moves the unary operation et al., 2003) allows for concurrent processing of the
tuples through the dynamic division of data integra-
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tion tasks. Adaptive data partitioninglves et al., should be integrated with the result®fr, s) to obtain
2004) technique processes different partitions of the the result of (r & 9,s), i.e.
same argument using different data integration plans. _
The works on adaptive data partitioning (Ives et al., _ 2(18) S0 (81) =2(r ) _ @)
2004) and optimization of data stream processing Anincremental/decremental operatiofan argu-
(Getta and Vossough, 2004) were the first attempts to Ments of a generic operatior (r,s) is denoted by
use the associativity of join operation to integrate the Bz (1,8) and it is defined as the smallest modification
separate partitions of the same arguments with the dif- 92 that should be integrated with the resultzoffr, s)
ferent integration plans. An adaptive and online pro- 0 obtain the result o (r,s& 3), i.e.
cessing of data integration plans proposed in (Getta, P(r,8) @By (r,8) = 2(r,s® ) (2)
2005) and later on in (Getta, 2006) considers the sets
of elementary operations for data integration and the
best integration plan for recently transmitted data.
Many of the techniques developed for the effi-
cient processing afata streamgGetta and Vossough,
2004) can be applied to data integration. The reviews
of the most important data integration techniques pro-
posed so far are included in (Gounaris et al., 2002).

If a generic operatiore (r,s) is a component of
an integration expression thahoperationsallow for
faster re-computation of (r,s) when one of its ar-
guments is integrated with data transmitted from an
external data site An ineffective approach would be to
integrate the transmitted data with an argument and to
re-compute entire generic operation. It is represented
by the right hand sides of the equations (1) and (2).

A better idea is to apply an id-operation to trans-
mitted data and the other argument of the base opera-

3 INCREMENTAL PROCESSING tion to get a modification that can be integrated with

OF MODIFICATIONS the previous result of generic operation. It is repre-

sented by the left hand sides of the equations (1) and
Initially we consider a process of data integration in (2). The application of id-operations speeds up data
the separation from any particular model of data. We integration because it is possible to immediately pro-
adopt a general view of a database where a set of¢ess data (ecelved ata centrall site. Id-op_eraﬂon; al-
generic unary and binary operations processes a col-low for the incremental processing of data integration
lection of data containers. We do not consider any €xpressions such that an increment of one of the ar-
particular internal structure of data containers and any 9uments triggers the computations of a sequence of
particular system of operations on data containers. |d-0per§1t|onsthat return amod!flcatlon_, which should
Data containers may represent relational tables, XML e applied to the final result of integration.
documents, set of persistent objects, files of records, .
etc. 3.2 Relational Algebra based

| d-operations

3.1 Id-operations

Let x be a nonempty set of attribute names later on
Let ry,...,rx be data containers whose structure is called as sschemeand letdom(a) denotes a domain
consistent with a given model of data.g&neric op- of attributea € x. A tuple tdefined over a schema
eration of the model is an operation such thatits  is a full mappingt : x — Uaexdom(a) and such that
arguments are the data containeends and whose  Vae x, t(a) € doma). A relational tablecreated on

result is another data container. a schema is a set of tuples over a schema

A modificationof a data containaris denoted by Let r, s be the relational tables such that
o and it is defined as a pair of disjoint data containers schemér) = x, schemégs) = y respectively and let
<& ,8">suchtharNd =& andrndt = 0. zC x, vC (xNy), andv # 0. The symbolsyg, T, Xy,

An data integration operatiothat applies a mod-  ~y, xy, U, N, — denote the relational algebra opera-
ification d to a data containaris denoted by & §;. tions of selection projection join, antijoin, semijoin

For example, in the relational model integration of a and set algebra operationswfion, intersection and
modificationd to a relational table is defined as an  difference All join operations are considered to be
expression(r —5~)Ud™. equijoin operations over a set of attributes

Consider a generic operatian(r,s) on the data To find the analytical solutions of the equations (1)
containerg ands. An incremental/decremental oper- and (2) we we assume that a data integration operation
ationlater on called as aid-operationof an argument  is computed in the relational model in the following
r of a generic operation (r,s) is denoted by, (5,5) way.
and it is defined as the smallest modificat@ynthat red=(r—8)ud'. 3)
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Then, theid-operationsa, and, can be decom-

Orst that should be applied to the resultefy (r x; )

posed into the pairs of operations each one acting onafter modificationds is applied to the result af x; s

either negatived~) or positive ) component of a
modificationd.

Op (675) =< 0(;(6_,5),0(;(6’“,5) >,

B (r,8) =<B,(r,3),B,(r,8") >

4
®)

If we separately consider the negative and positive

components of a modificatiohand we replace data
integration operation with its relational definition then
we get the following equations.

T(I’,S)*(X ( ) (r o 75) (6)
P(r,s)Uua(d",s) =2(rudt,s) (7
?(r,s)—B,(r,0")=2(r,s—057) (8)
(rv S) U B;(ra 6+) . (I’,SU6+) (9)

To find the id-operationswe solve the equations
above for the generic operations of unian),( join

From the equation (13) we géfs =< 0,07 X r >.
Next, to finddst we findB.(t, drs). From the equation
(15) we gedrst =<t x O, I x vO >. Finally, &t =<
tx (83 ™ r),0>. Hence, in order to get the result of
£ (1,54 0s,t) after the extension afwith ds we have
to computez (r,s,t) — (t x y(dd X r)).

Next, we consider the same data integration ex-
pressiont ~y (r xz S) and a new incremerd; of a
remote data source Now, processing of an incre-
mentd needs either materialization of an intermedi-
ate result of a subexpressiénx; s) or transforma-
tion of the data integration expression into an equiv-
alent one with either left (right)-deep syntax tree and
with an argumerttin the leftmost (rightmost) position
of the tree. Materialization of an intermediate results
decreases the overall performance because when one
of its arguments is extended then entire subexpression
of materialization must be re-computed. On the other

(x), and antijon £) and we assume that selection op- hand it is not always possible to transform an inte-
eration is always directly applied to the arguments of gration expression into a left or right deep syntax tree
binary operations and projection is applied only one such that a modification is located at the lowest leaf

time to the final result of query processing.
The analytical solutions of the equations (6) and
(7) provide the following results.

au(éa S) (10)
Bu(r,d) =<& —rd" —r> (11)

The derivations ofd-operationfor the generic opera-
tions of join and antijoin can be obtained in the same
way.

=<& —58"—s>

Uy (8,5) =< & XyS 0" MyS> (12)

By (1,0) =< & my 13" Myr > (13)

a.(3,5) =< & ~ySd" ~yS> (14)

B(rd) =<rxyd,rxy > (15)

3.3 Application of Id-operationsto Data
I ntegration

Consider a data integration expressigfir,s,t) =

t ~v (r xz5) wherer, s, t are the remote data
sources andv = schem& ) N schemé&) and z =
schemér) N schemés). Assume, that a new incre-
ment ds =<0, > of an argumenst has been just
transmitted to a central site. We would like like to re-
compute a data integration expressiofr,s® 0s,t)
immediately after the integration of an increméat
with an argumens.

To avoid re-computation of entire data integration
expression we first find a modificati@ that should
be applied to a result of x; s after the extension of
an argumens with ds. Next, we find a modification
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level of the tree.

If materializationm,s = r x s is available then
from an equation (14) we gétst =< 0,8 ~y Mys >.
Hence, in order to get the result af(r,s,t & &) af-
ter the extension df we have to compute (r,s,t) U
(& ~v mys).

If materializationmys is not available then an in-
teresting option is to transform an expressign~
(r x s)) into & ~y ((r x &) x s). Such transforma-
tion is correct because we do not need the entire result
of r x sto be computed, we only need the rows from
r that can be joined with;” over the attributes in. A
subexpressionx & will reduce the size of an argu-
mentr before join withs and its computation can be
done faster becaugg is small.

4 DATA INTEGRATION PLANS

In this section we introduce a conceptadta inte-
gration planand we show how to transform a data
integration expression into a set of data integration
plans. Letz (r1,...rn) be a data integration expres-
sion built over the generic operations and data con-
tainersrs...,rn. A syntax tre€l of an expressiore

is a binary tree such that:

(i) for each instance of argument,...r, there is a
leaf node are labelled with a name of argument,

(i) for each subexpression(€,€’) of £ where? is
a generic operation angl and€e’ are the subex-
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pression ofe there is a node labelled with that
has two subtreefy andTg.

A data integration plan is a sequence of assignment
statementsy, ..., Sy where the right hand side of each
statement is either an application of a modification to
a data containemg; := m; @ &) or an application of
left or right id-operationg; := o (&, m)).

Figure 1: A syntax tree of an expressioRy (r ~w S).

with the numbered nodes given in Figure (1). Starting
from a node 4 we get a data integration plan for the
modifications of argumenmt

P4 :03:=0.(%,9);

Consider an argument of a data integration expres-
sion £. An implementation of data integration ex-
pression for an argumentis constructed in the fol-

lowing steps. Mg := Mg @ O3]
1: Assign unique numbers to each node of a syntax 8; := By (t,33);
treeTe. result:=result® &1;

An equivalent relational data integration plan is ob-
) tained by the substitution of id-operations with the
3: Start from a leaf node df labelled withr;. equivalent relational algebra expressions.
4: While not in the root node of, move to ancestor ~ P4:03:=0 ~ S,
node of the current node and execute a procedurems := Mg & d3;
moveToAncester, j) wherei is an identifier of =~ &1 :=1t x 83;
the current node anglis an identifier of the an- _result:= result® 8,
cestor node. The relational algebra operations on the relational
5: When in the root nodé append a statement tabl_e_s and modifications process _bot_h negative and
result:= result &: positive components of th_e mod|f|c§t|ons._ For ex-
o _ ample,d3 := & ~ s, is equivalent tad; = & ~ s
A procedurenoveToAncestdr, j) consists of the fol- 5 1=3" ~s
lowing steps. The data integration plans for the argumesiendt
1: If i is a leaf node and it is the left descendant of are the following.
a nodej then append a statement that computes Ps : 83 := B~(r,Js);
id-operationp; : 3 := Qoperation (3r;, Mk); where mg = M3 & 03;
my is either a data container or a materialization 01 := Bx (t,03);
in the right descendant of noge result:= result® d1;

2: If i is aleaf node and it is the right descendant of
a nodej then append a statement that computes
id-operationp; : 8 := Boperation (Mk, Or); where
my is either a data container or a materialization
in the left descendant of node

2. Make an implementatiop; empty.

P3: 01 1= Oy (&, Mg);
result:= result® d;;

3: Ifiis notaleaf node ofe then append a statement 5 STATIC OPTIMIZATION OF
m =m @ & wherem is a materialization in a DATA INTEGRATION PLANS

nodei.
Static optimization of data integration plan means
that transformation of the plans is performed before a
stage of data integration while dynamic optimization
of data integration plans changes the plans during a
stage of data integration. In order to get more sound
results we consider a language of data integration ex-
5: Ifiis not a leaf node and itis the right descendant pressions to be the relational algebra and we consider
of a nodej then append a statement that computes data integration expressions built from the operations
id-operationd; := Boperation ( Mk, 8i); wheremy is  of join, antijoin, anduniononly. We also assume, that
either data container or a materializationin the left operation ofselectionis always processed together
descendant of node j. with an adjacent binary operation apejection is

As a simple example consider a data integration cOmputed at the very end of data integration.
expressiore (r,s,t) =t xy (r ~y S) and its syntax tree

4: If i is not a leaf node and it is the left descendant
of a nodej then append a statement that computes
id-operationd; := Ooperation (i, my); wheremy is
either a data container or a materialization in the
right descendant of node

145



ICEIS 2011 - 13th International Conference on Enterprise Information Systems

5.1 Preiminary Optimizations s®i+) and 655” have an impact on the result of
o o & := 0j ~w S, The partitioning is performed such that

The preliminary optimizations are pgrformed b_e— 6i(s+) 5 xS, 5i(s—) =& ~s SO = sx &, and

fore the transformation of data integration expression ) (1) x(s-)

into data integration plans and it includes the stan- $” ' :=$~ ;. Then, we compute:d™ ',&~ "> r

dard transformations of relational algebra expressionsand later on the result aﬂfs*) X r is directly passed
where the selections and proj_ections_ are "pushed" to & and it is unioned with with the result @i(SJr) X
down the syntax trees of data integration expression £~ <5 t)

and join operations are reordered such that the joins '
on the small arguments are performed first. Next, the
selection operations are associated with the binary op-> "~ - . )
erations such that the rows that satisfy a selection con-era(t;f)n' (S:)I'he colmplexny of the computatlolns of
dition are directly "piped” to the first stage of the com- <9 ,& "> r is the same as the complexity of
putations of the binary operations. For example, if o X r. Itis _expected tha_t the additional computations
a join operation implemented as hash-based join fol- Of 6 s will- take less time than the difference be-
lows a selection then a row that satisfies a selection tween the computations ¢b; x r) ~ s and the com-
condition is not saved in a temporary results of se- putations of(éi(sﬂ x r) ~ s+ The benefits depend
lection and instead is hashed in the first stage of the on how far the partitioning reduces the sizestf*)
computations of a hash-based join. The same tech-and(égw) Mr).

nigues is applied to the selection operations that can- '

not be "pushed” down below the binary operations,

for exampleoasc(r(ab) xp s(bc))-are-.computed by
"piping” the rows obtained as the results of binary )
operationr (ab) x, s(bc) directly to a selection op- An algo_rlthm that t_ran_sforms a syn'_[ax tree_ of data
erations. It is also possible to implement a selection intégration expression into the data integration plans
operation as an additional comparison when the rows creates the references to so calkedterializations
from the arguments are matched during the proc:ess__l\/latenah;atlon is a relational taple that contains the
ing of binary operation, for example in the example intermediate results of processing of one of subex-
above, testing of equality conditiarb = s.b can be pression of a data integration plan. Matenahzaﬂong
followed by testing of a conditiom.a > s.c. After are needed when when an online processing plan is
the preliminary stage of optimizations data integra- created for an argument which is not at the bottom

tion expressions are transformed into data integration Vel of a syntax tree or a syntax tree is not left-
plans. [right-deep syntax tree. Materializations require the

additional integration operations in online processing

5.2 Optimization through Reordering of plans and because of that frequently performed in-
. tegrations of the partial results with materializations

Operations may consume a lot of additional time. To avoid this

. o problem we find the ways how to remove materializa-
The following example shows how further optimiza-  jons from data integration plans.

tion of data integration plans can be achieved through  ~gnsider an integration expressioRy (r My s).
reordering of the operations. Consider a fragment of 5, integration plan for an argumenti.e. p; : s :=
data integration plap : 9; := & Xy I; mj :=m; & d;; O, Xw Mys; result:= result® dys; uses a materializa-
O := O} ~w S, The following two observationslead to  {jon m which contains the intermediate results of a
the transformations that may have a positive impact subexpression xy s. The plans for the arguments
on the performance of data integration plans. First, if 54« integrate the intermediate results of the same

a data container is significantly larger than a data  gpexpression with the materializatiow, for exam-
containers then it would be more efficient to start plepr i 8rs = 8 Xy 'S, Mys = Mys B Ors; Brst 1= Brs, M L

from the computations on a data contais@lecause  reqy|t:— resulta & A simple solution to eliminate

the results would be smaller. Second, some of the 5 materializatiomms is to apply the associativity of
data items ind; may not contribute to the results of - 4in gperation and to transform the expression into an
O = 6j ~w Sand can be removed fro) before the gy pression which has left-/right-deep syntax tree and
computations o&intijoin operation. We compute an  4rqument is located at at one of the bottom leaf level
operationd; s to partition boths andd; into pairs  poges of the tree. To do so, we transform the integra-
<s%+) s8-)> and <6§S+),6ﬁsf)> such thatonly  tion expressionintét x, r) x, sand we create a new
integration plang; : result:=result® (& X r) Xy S;

The complexity of the partitioning; = s is com-
parable with the complexity of an ordinary join op-

5.3 Elimination of Materializations
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Additionally, we eliminate the integration of partial e
results with a materializatioms from the integration )
plans forr ands.

The next example shows, that associativity of the // k
operations involved in an expression is not a neces- 5 (x)

sary condition for the elimination of materialization. (R SR S
We consider a data integration expresgiofy S) Xy

t. The objective is to eliminate a materialization that
contains the intermediate results of-, s from an .
integration plan for the argumenti.e. p; : & == (i) vix#0and
mys X &; result® &st. We transform an expression (i) (vnx) € z
ms X & into a form where a modificatiod, is lo-
cated at the bottom level of left-/right-deep syntax
tree in the following way. First we substitutes with

r ~yvS. Next, we replace an argumentith an equiv-
alent expressiofr x y &) + (r ~y &) where opera-
tion + denotes a concatenation of the disjoint results
of semijoin and antijoin operations. The distribu-
tivity of concatenation operation over semijoin and
join operations allows us to transform an expression
(((rx y&)+(r ~y &)) ~ys) xw & into concatenation

of two subexpressiongr x y&) ~v S) Xw & + ((r ~y

O) ~v S) Xy O&. The results of processing a subex-
pression((r ~y &) ~y ) Xy & are always empty be-
causey-values removed from by (r ~y & return no
results when join with®, is performed later on. We
get an expressiof(r x y&) ~v S) My & equivalent to

an expressioms x & in the original integration plan

p:. Because the transformations above eliminated a
materializationmys from p; it is possible to elimi-
nate it from the remaining plang and ps. Hence,

the data integration plans for an integration expres-
sion(r ~y S) Xyt are as follows.

pr : result:= result®d (& ~v S) Xwt;

Figure 2: Elimination of materializatiom(y).

Elimination of materializationm(y) is performed
by the substitution ofs(v) in a subexpression of
the materialization withfs(v) x yxd(X)) + (S(V) ~vx
d(x)). Then processing of modificatiad{x) triggers
the computations along a path that leads from the pro-
cessing of semijoin and antijoin sfv) with 8(x) to a
materializatiorm(y). Unfortunately, it does not solve
the problem from performance point of view . The
substitution ofs(v) with a concatenation of semijoin
and antijoin ofs(v) with a modificationd(x) still pro-
vides a complets(v) and requires the reprocessing of
entire materializatiom(y). In fact, when modifica-
tion 8(x) is small then only a fraction of materializa-
tion m(y) affects the result op,(d(x),m(y)). Then, a
solution would be to recompute only such component
of materialization that affect the result of operation
p;. If it is possible to eliminate one of semijoin of
s(v) with &(x) or antijoin ofs(v) with d(x) then only
a subset of argumesstv) is involved in the process-
ing. Next, we show a formal method that finds when
a materialization can be removed and what transfor-
mations of the arguments of a relational implemen-
: : ) tation of data integration plan are required to do so.
ps_- result:: resultd (o< vds) dwt; ] Let Te be a syntax tree of a relational algebra expres-
Pt : result:= resulte (((r x y&) ~v'S) Mw &); sione(ry,...,rn) built over the operations dfet dif-

Next, we discuss how to eliminate materializa- ference join, semijoin andantijoin. Let a nodenp
tion in a more general case. Consider an argumentin T represents a binary operatipa(r (x),s(y)) such
r whose integration plan uses a materializationr If  thatv= xnNy. Labelling of Te is performed in the fol-
has at least one common attribute with a modifica- lowing way.

tion of & of another argumers of integration ex- ;) ap edge between a leaf node that represent an ar-
pression than it is always possible to replacaith gumentr(x) can be labeled witlz, wherez C x

(r x vOs) + (r ~v ). Then it is possible to apply dis- andz+ 0. -
tributivity of concatenation operation and to eliminate _ .

one of the components of the expression later on like(i!) If @ noden, in Te represents an operatignthat

in the example above. A problem is how to find when ~ Produces a resufi(x) and "child” edge of a node
such transformation is possible. Consider an imple- M!S Iabeyl,ed W'”], one of the symbois z—, —z,
mentation of online processing plan where an oper-  Z* then a "parent” edge afp can be labeled with

ation p,(8(x),m(y)) acts on a modificatioB(x) and ?syrrlbol located in a row |_nd|_cated by a label of
materializationm(y) such thatxNy = z and z # 0. child” edge and a column indicated by an opera-
It is possible to eliminate materialization(y) from tion py in a Table 1.

the online processing plan when there exists an ar-Labelling of syntax tree is performed to discover the
guments(v) of subexpression of materialization(y) types of coincidences between thgalues of one or
(see Figure 2) such that: more arguments of relational algebra expression. The
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Table 1: The labelling rules for syntax trees of relatiorigeara expressions.
| | xy [ (Ieft) ~y | ~y (right) | (left) x v | xy(right) | (Ieft)— | —(right) |

z | z- z— —(zNv) z— (znv)— z— -z
z— | z— z— (zNv)x z— (znv)— z— Zx
-z| -z -z (zNv)x A (zNv)x A Zx
Zx | zx Zx (zNv)x Zx Zx Zx Zx

expression. The interpretation of the labelg andy;

in a context of join operation allows for the elimina-
tion from & (y2) of all y-values, which are included in
s(yz) because these values have no impact on join op-
eration. It means thd(yz) x yr(xy) can be replaced
with (& (y2) x yr(xy)) ~y s(yz) with changing the re-
sult of the expression. It is also possible to replace
Figure 3: A labelled syntax tree of online processing plan s(y2z) with s(yz) x & (y2z) because alf-valuesincluded

P : result:= result® ((r(xy) ~y s(yz)) xy & (y2)). in s(y2) and not included i (yz) have no impact on
the result of join operation. However, the last modi-

coincidences and their types are needed to find outif it fication is questionable from a performance point of
is possible to remove the materializations and whether yiew, |t definitely, speeds up antijoin operation but it

their elimination is beneﬂqal. . ) also delays join operation because the results of anti-
_ As an example, consider an integration expres- join operation are larger after the reductiorsof, z).
sion(r(xy) ~y s(y2)) xy t(yz) and an integration plan The labelling and the possible replacements of ar-
P : result:= result® (Mys(xy) xy & (y2)); for pro-  guments are summarized in the Tables 2 and 3. The
cessing the increments of an argumen® materi-  jnterpretations of the Tables are the following. Con-
alization is computed asys(xy) = r(xy) ~ys(y2. A" sjder a relational algebra expressi,ry,...,rn,s)
syntax tree of the plan with the materializatiop re-  gych that operatiopy is included in the root node of

placed withr (xy) ~y s(y2) is given in Figure 3. To ji5 syntaxTe. If an operatiorpy is either join or semi-
eliminate the materialization we try to find the coin- jsin operations then the possible replacements of the
cidences betweeyrvalues ofr (xy) and (yz) andwe  zrguments andsare included in a Table 2. If an op-
perform the labelling of the syntax tree in a way de- eration p, is either antijoin or set difference the the

scribed above. The "parent” edges of the nadgg),  possible replacements are included in a Table 3. The
s(y2), and®(yz) obtain the labels:, ys, andy. A replacements of the argumemtsind's over a com-
left "child” edge of the root node obtained alalyel-  on set of attributes C x can be found after the la-

indicated by a location in the first row and the sec- pglling of both paths from the leaf nodes representing
ond column in Table 1. Moreover, the same edge 0b- e arguments ands towards the root node Gt la-
tained a Iabel—)_/S indicated_by a location in th_e first  peled with p. The replacements of the arguments
row and the third column in Table 1. The final la- | angs are located at the intersection of a row la-
belling of the syntax tree is given in Figure 3. The peled with a label of left "child” edge and a column
interpretations of the labels are the following. A label |3peled with a label of "right” child edge of the root
W attached to a "child” edge of join operation at root node. For instance, consider a subtree of the argu-
node of the tree indicate that gHvalues o_f anargu-  mentssandr such that an operationy is in the root
ment&(y2) are processed by the operation. A label node of the subtree. If a left "child” edge of the root
yr— attached to a "child” edge of the same operation ode is labeled with-z, and a right "child” edge of
indicates that only a subsetyf/alues of an argument  he root node is labeled withy+ then Table 2 indi-
r(xy) and no othey-values are processed by the oper- cates that it is possible to replace the contents of an
ation. A label-ys attached to the same edge indicates arguments with an expressios ~,r. A sample
that none of-values ins(y, z) is included in the result  j,sification of the replacements included in the Ta-
of r(xy) ~y s(y2). The above interpretation of the la- pje 2 at the intersection of a row labeled wittg,
belsy;— andy; in a context of join operation over a  anq a column labeled witls+ is the following. Let

set of attributey means thay-values not includedin T pe a syntax tree of a relational algebra expression
the arguments(xy) and&: (yz) have noimpactonthe g ) v, ) built of the operations of join, semi-
result of join operation. It means thaixy) can be re-  jgin, antijoin, and set difference, and such that root

placed withr (xy) i y& (yz) andd (y2) can be replaced  ode of the tree is labeled with eithe or x x and
with & (yz) x yr (xy) without changing the result of the
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Table 2: The replacements of arguments in integration and right "child” edges are labeled with« and

plans. Zsx respectively, see a location in the right lower
[0 Xx| 2 | Z— | ~Z [z | corner of Table 2.
Z n/a | rx;s r~zs S oI (2) An operation at the root node syntax tree of on-
S oI SX oI line processing plan is either a join operation or
Z— rx,S | rxzSs r~;S SK f semijoin operation, a materialization is the fist ar-
SK A | SK S Syl gument of the operation and right "child” edge is
—z Syl | S~y f | either s~,r | S~yr labeled withzgx. This is because all reduction in
Fx,S|r~ys| oOrr~y;s the last column of 2 are applicable to the second
Z* rx S| xS r~;s none argument of the operation which is obtained from
the processing of modification and not material-
ization.

Table 3: The replacements of arguments in integration )
plans. (3) An operation at the root node of a syntax tree of

online processing plan is either an antijoin opera-

~x — Zs Zs— —Zs Zg : . ; T
[ | | | [ 2 ] tion or difference operation, materialization is the
Z n/a SIX Zf SX Zf SX oI . .t
p— SK T SK T S o SK T second argument of the operation and left "child
—Z | either s~zT | S~,T | ether s~;1 | S~y r edge of the node is labeled wigw. This is be-
orr~s orr~s cause all replacements in the last row of Table
Zp* r~zS r~zS none none 3 are applicable to the first argument of the op-

eration which is obtained from the processing of

its left "child” edge is labeled with-z and its right modification and not materialization.

"child” edge is labeled withzsx, z C x.  Then, for
any values of the arguments,...,ry, s an expres-

sione(r,ry,...,r,s) = e(r,ri,...,r,(S~zr)). Ala- 6 SUMMARY, CONCLUSIONS,
bel —z attached to a left "child” edge of join of op- AND FUTURE WORK
erationxy or x x means that none afvalues of an
argument is include in an argument of join or semi-
join. Then, these-values can be removed from an
argumens because they will never participate in join
or semijoin operation. On the other hand we cannot
replace an argumemtbecause labets+ means that
some newz-values can be added to the original set of
z-values ins.

Let en(r1,...,rn) be an expression that defines a
materializationm in an integration plan for the in-
crementds of an argumens. Elimination of mate-
rialization m from integration plan fods is possible
when some of the arguments...r, can be replaced
with the subexpressions involviryg such that syntax
tree ofe/,(r1,...,rn,ds) does not contain a subexpres-
sion that does not involva®. In the other words, we
try to replace some of the arguments in an expression
that defines a materialization such that entire expres-
sion can be recomputed with an arguménand no
subexpression exists that does not invdlye

An interesting problem is whether any material-
ization can be removed using the replacements de-
scribed above. The analysis of the Tables 2 and 3 and
the structural properties of relational implementations
of integration plans reveal three cases when material-
izations cannot be removed through the replacements

This work addresses a problem of static optimization
of data integration plans in the global information sys-
tems. The users’ requests submitted at a central site
are decomposed into the individual requests and si-
multaneously submitted for processing at the remote
sites. We show how data integration plans for the in-
crements of the individual arguments can be derived
from a data integration expression and we propose a
number of static optimization techniques for data in-
tegration plans implemented as relational algebra ex-
pressions.

A technique of immediate processing of data
packets as they are received from the remote sites al-
lows for better utilization of data processing resources
available at a central site. The continuous processing
of small portions of data transmitted from the remote
sites eliminates idle time when a data integration sys-
tem has to wait for the transmission of an entire argu-
ment. Decomposition of data integration expression
into the individual plans allows for more precise op-
timization of data integration and it also allows for
better scheduling of data processing on multiproces-
sor systems. Identification of coincidences between
the arguments of data integration expression leads to
‘elimination of materializations from data integration
(1) An operation at the root node syntax tree of online plans and reduction of the processing load when ma-

processing plan is a join operation and its both left terializations are frequently change.
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