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Abstract: In relational database systems the optimization of select-project-join queries is a combinatorial problem. The
use of exhaustive search methods is prohibitive because of the exponential increase of the search space. Ran-
domized searches are used to find near optimal plans in polynomial time. In this paper, we investigate the
large join query optimization (LJQO) problem by extending randomized algorithms and implementing a 2PO
algorithm as a query optimizer in a popular open-source DBMS. We compare our solution with an implemen-
tation of a genetic algorithm. Through a multidimensional test schema, we discuss pros and cons about the
behavior of these algorithms. Our results show that 2PO algorithm is fast to run and the costs of generated
plans are better in most cases when compared to those of the genetic algorithms.

1 INTRODUCTION

Over the last 40 years, database management systems
(DBMS) have experienced an enormous workload
shift from transaction processing at kilobyte-scale to
real-time data analysis at petabyte-scale. In the con-
text of data warehouse, columns data storage such
as in C-Store DBMS (Stonebraker et al., 2005), and
map-reduce implementations like Hadoop/Hive (Thu-
soo et al., 2009), are becoming increasingly common
both in commercial and academic area.

Storing data in columns in traditional DBMS is
an onerous task, which can not bring major bene-
fits (Abadi et al., 2008). In this storage architecture,
each attribute is stored in a separated relation (Bruno,
2009). Thus, even a simple query that involves a few
attributes demand several relational joins to compose
its result. Costs expended in performing a large num-
ber of joins cause a performance degradation of the
DBMS. In this context, the classic problem of join-
ordering optimization is highly relevant.

Computationally finding the optimal join order
that compose the execution plan is NP-hard (Ibaraki
and Kameda, 1984). Dynamic programming tech-
niques (Selinger et al., 1979), stay restricted to a small
number of relations, approximately ten. Above this
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limit, it is considered alarge join query optimization
(LJQO) problem. Thereby, an optimization technique
must consider a trade off between the generation of
an optimal plan and the query execution.

Randomized algorithms can, in average, get good
execution plans in polynomial time (Swami and
Gupta, 1988; Ioannidis and Kang, 1991; Bennett
et al., 1991; Louis and Zhang, 1998; Dong and Liang,
2007). However, an undesirable characteristic is the
considerable costs variation (e.g., instability) of gen-
erated plans for the same query (Bini et al., 2009).
Such instability is unacceptable in production appli-
cations, especially when the response time of a re-
quest is controlled. Furthermore, the insertion of a
degree of uncertainty in the estimated time for a re-
quested service or result can compromise the esti-
mated time of a whole chain of processes depending
on it. Thus, when we apply randomized algorithms to
query optimization, the stability of generated plans is
a decisive factor that must be considered.

In this paper, we address the LJQO problem
through our implementation of the 2PO (Two-Phase
Optimization) randomized algorithm. To evaluate the
quality of generated plans and the execution time
of the optimizers, we used a popular open-source
DBMS (Postgresql, 2010). We created a wide select-
projet-join queries range considering the joins graph
complexity, number of joins and cardinality of the
involved relations. In this context, we compare our
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solution with an implementation of the genetic algo-
rithms. The results demonstrate the feasibility of ap-
plying our optimizer in commercial DBMS. Consid-
ering the execution time of the optimizers, 2PO out-
performed genetic algorithm in all scenarios. 2PO op-
timizer also showed better quality of generated plans
(low computational cost) in the most of analyzed
queries.

This paper is organized as follows. Section 2 de-
scribes how the possible plans of a query can be or-
ganized considering important concepts of query op-
timization. Moreover, we present some randomized
algorithms implemented and analyzed in this study.
Section 3 describes the test methodology applied for
evaluating the query optimizers. Section 4 presents
the results obtained in our experiments. Finally, Sec-
tion 5 concludes and presents future work.

2 BACKGROUND AND RELATED
WORK

Query optimizer is the DBMS component that trans-
forms a query written in a declarative language, like
SQL, into a proceduralquery execution plan(QEP).
There may be several QEPs corresponding to a same
specified query. They are identical in result, but dis-
tinct in computational cost, like CPU time sharing,
primary memory usage and disc access (Ibaraki and
Kameda, 1984; Swami and Gupta, 1988). The set of
all QEP that exhibit the same result is calledsolution
spaceor search space. It is defined as the set of all
possiblebinary join trees(BJT). The query optimizer
task is to determine the QEP with lowest cost based
on a cost function or model.

A common way to express graphically which re-
lations mentioned in the query have join predicates
is using an undirected graph calledjoin graph. This
structure can determine the complexity of finding the
optimal join order. Nodes represent relations in a
query. Edges represent join predicates between their
respective relations. Regarding the possible forms of
a join graph, five types are found in the literature:
chain, star, cycle, grid andclique (Steinbrunn et al.,
1997; Vance and Maier, 1996; Shapiro et al., 2001;
Neumann, 2009).

Next, we describe the randomized and genetic
algorithms, that can be an alternative to exhaustive
searches when applied to LJQO problem.

2.1 Randomized Algorithms

The input of a randomized algorithm is another type
of graph that represents the complete search space of

a problem. Each node is asolutionor statewhich is
associated a cost defined by a specific cost function.
Each edge is a possiblemovedefined by transforma-
tion rules which allow that a state can be transformed
into another.

Several apporaches were presented (Steinbrunn
et al., 1997; Swami and Gupta, 1988; Ioannidis and
Kang, 1990) to address the LJQO problem. Thus,
in the Iterative Improvement (II) algorithm, QEPs
can be represented as nodes in an undirected graph.
Such nodes are inter-connected by edges which rep-
resent the transformations between these plans. The
objective is to perform several movements between
the graph nodes searching better solutions (execu-
tion plans) relative to its cost. II consists of several
local optimizations, started randomly from different
points of the search space, which are calledinitial
states(Ioannidis and Kang, 1991). From each ini-
tial state, the algorithm traverses randomly the search
space, always accepting moves if their costs are lower
than the actual. This local optimization process is re-
peated until no further improvement can be found or
a stopping condition is satisfied.

Another randomized algorithm applied to the
query optimization problem is the Simulated Anneal-
ing (SA) (Ioannidis and Wong, 1987; Swami and
Gupta, 1988). This solution was derived by analogy
from the process of annealing of solids. Inspired by
this physical process some terminologies, e.g.,tem-
perature, freezing condition, are used to orient the
optimization process. Unlike the II, which uses sev-
eral random initial states, the SA starts from a single
state. During the optimization process, SA performs
“ random walks” always accepts neighbors states with
lower costs. However, unlike the II, states with higher
costs can also be accepted to a certain probability.

Ioannidis and Kang (Ioannidis and Kang, 1990)
presented the 2PO (Two-Phase Optimization) algo-
rithm to address the LJQO problem by combining the
II and SA algorithms. In the first phase, the II is exe-
cuted for a small period of time performing some lo-
cal optimizations. This cover most of the search space
and quickly reaches a state with low cost (calledlo-
cal minimum). The best local minimum found by II
algorithm is used as a starting point for the SA, in the
second phase. Then, the solution space is searched
again for a state of even lower cost. Plans with lower
costs than local minimum introduced by the II can be
reached quickly through the SA.

2.2 Genetic Algorithms

Genetic Algorithms are search methods based on ge-
netic and natural selection process. An important cha-
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racteristic of this class of algorithm is that they do
not work with a single solution, but with a set of so-
lutions that is calledpopulation. These solutions are
represented bychromosomes. Each chromosome is
composed by genes that represent each part of the so-
lution.

In joins optimization, the chromosomes corre-
spond to the executions plans. Costs associated with
it, corresponds to your adaptation degree to the en-
vironment. As in the search space of II and SA, the
environment, corresponds to the set of possible solu-
tions.

A genetic algorithm starts generating the first pop-
ulation of individuals randomly, with a fixed num-
ber of chromosomes. Chromosomes are selected
(selection) from the population to becomeparents,
based on fitness (Owais et al., 2005)2. The re-
production process occurs between pairs of selected
chromosomes,through of the recombination between
themselves (crossover) which produces theoffspring.
Some fraction of the population can be randomly cho-
sen to have mutated a gene or a small set of them (mu-
tation). The new population becomes the new gen-
eration and the process repeats itself (Bennett et al.,
1991). Iterations are performed until improvements
in the quality of the population are observed, or the
demanded number of generations is reached or when
the demanded solution is found.

In order to develop and analyze our implemen-
tation of 2PO optimizer, we used a popular open-
source DBMS (Postgresql, 2010). This DBMS makes
use of a genetic algorithm approach to enumerate
possible BJTs. This algorithm called GEQO (Ge-
netic Query Optimization) was presented by Martin
S. Utesch (Postgresql, 2010) in 1997, as an alterna-
tive to the LJQO problem. More details about GEQO
can be obtained in (Bini et al., 2009).

3 TEST METHODOLOGY

In this section, we detail our methodology to evaluate
our implementation of the 2PO optimizer. First, we
describe how the database was generated. After, how
we developed the queries set for our experiments.

3.1 Database

The database schema and the query set are based on
the systematic and multidimensional model proposed

2Fitness - metrics to measure scheduler performance for
each chromosome and that calculates the values for each
one.

by Vance and Maier (Vance and Maier, 1996) et al.
and Shapiro (Shapiro et al., 2001)]. One of its ad-
vantages is the independence of several construction
parameters like number of relations and their cardi-
nalities.

However, some parameters originally used by
these authors were extended or reconfigured, in or-
der to observe the behavior of the algorithms ap-
plied to LJQO problem. These reconfigurations
were based on methodologies proposed by Swami
and Gupta (Swami and Gupta, 1988), Ioannidis and
Kang (Ioannidis and Kang, 1990) and Steinbrunn et
al. (Steinbrunn et al., 1997).

The database is populed synthetically in accor-
dance with the requirements of our experiments. Re-
lations are created with their cardinalities ranging
from 25 to 219 as log2(219/25) = 14 and mean =
212 (Vance and Maier, 1996).

All relations follow the same basic building lay-
out, composed by three numerical attributes: an at-
tributeprimary key(pk) and others two attributesfor-
eign key(fk1, fk2).

The tuples are inserted in the relations with values
based on their cardinality. For thepk attribute, values
are assigned sequentially from 1 to the relation cardi-
nality. For the others attributes,fk1andfk2, the values
are inserted at random, also following values from 1
to the relation cardinality, using an uniform distribu-
tion. Updates are never performed during the queries
submission.

3.2 Generated Queries

Two steps are required to generate the query set: the
selectionrelation sets and thecombinationof these
relations in form of SQL queries. These steps are used
for organization reasons and code reuse.

Selection. In the first step, 12 relation sets are se-
lected deterministically according to the combina-
tion of two parameters:Relations NumberandLO-
GRATIO (Vance and Maier, 1996; Shapiro et al.,
2001). The Relations NumberN, involved in the gen-
erated queries is respectively 10, 20, 50, and 100.
LOGRATIO µ, is given by the logarithmic differ-
ence between the relation with greatest cardinalityRN
and the relation with smallest cardinalityR1, namely,
log2(|Rn|/|R1|), represented by the values 6, 12 and
14. In each generated relation set, all selected rela-
tions are different, although their cardinality way be
the same. For all relation sets, the geometric average
of cardinalities was fixed at 212.

Combination. For each of the 12 selected sets, 40
queries are randomly generated, in order, 10 of them
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Figure 1: Optimization average time presented by 2PO and GA considering relations number and join graphs.
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Figure 2: Average and scaled cost variation presented by 2POand GA considering the relations number.

for each join graph type chosen (chain, cycle, gridand
clique) (Steinbrunn et al., 1997). Thus, the total num-
ber of generated queries is 480. Queries are generated
as follows: from a relation set (R1 to RN), selected in
the first step, each derived query follows arandom
arrangementof these relations (T1 to TN). From this
arrangement, relations are “accommodated” in their
SQL structures corresponding to each join graph.

4 EXPERIMENTS

This Section presents the comparison between our im-
plementation of the 2PO optimizers and an implemen-
tation of the genetic algorithm. Results are presented
using the scaled cost of plans, which is the ratio be-
tween its cost and the cost of the best plan found
for the same query, independent from the optimizer.
Since our test methodology is derived from a compar-
ison among optimizers, the total execution time of the
obtained plans was not computed. The plans obtained

with the genetic algorithm, in some cases, presented
extremely high costs. Thus, their executions were im-
possible, due to computational resources and time.

4.1 General Setup

Our experiments were conducted in a com-
puter equipped with an Intel Xeon Quad-Core -
2GHz/64bits processor, with 12MB of L2 cache
and 2GB/667MHz of RAM memory. As secondary
memory, we used two SATA disks with 250 GB
each, operating in RAID 0. The operating system
employed was GNU/Linux kernel 2.6.24 X86-64.

The DBMS applied in experiments was the Post-
greSQL 8.3. We used the plugin technique to compile
code parts separately and then incorporate them into
the DBMS as a library. Thus, we create theLJQO plu-
gin, which includes our implementation of the 2PO al-
gorithm. This plugin was equipped with a component
to count the algorithms execution time. No changes
in other DBMS components were required.
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There are several configurations and control param-
eters that must be considered in the 2PO implementa-
tion. These parameters are further detailed in (Ioanni-
dis and Kang, 1990).

We recall that PostgreSQL implements a genetic
algorithm called GEQO. The GEQO module, in its
default configuration, is designed to generate a nearly
constant amount of plans for queries over seven re-
lations. The 2PO in turn, tends to increase the opti-
mization effort, as the number of relations increases.
To eliminate this disadvantage, GEQO module was
reimplemented to generate an equal plans amount to
the 2PO optimizer. This configuration was performed
individually for each query, considering the number
of plans generated by 2PO in each case. In performed
experiments, our implementation of GEQO module is
called GA (Genetic Algorithm).

4.2 Performance Evaluation

The performance evaluation aims at verify the aver-
age time spent to optimize the queries. For this ex-
periment, we consider 300 optimizations. This total
is composed by 10 optimizations, for each one of 30
queries used, regardless of their LOGRATIO values.

Figure 1 presents the average time for optimiza-
tion grouped by the relations number of each query.
In queries with 10 relations (Figure 1(a)), the differ-
ence between the optimizers 2PO and GA was not sig-
nificant. Although the number of generated plans by
GA was approximately the same in relation to 2PO,
its total time of optimization was relatively higher for
queries chain, grid and cycle. In queries with 100 re-
lations (Figure 1(d)), and join graph like chain, cycle
and grid, the GA was almost 2 times worse than 2PO.
On the other hand, in clique queries, its optimization
time was very close from that presented by 2PO.

4.3 Costs of Generated Plans

Our final analysis considers the costs of generated
plans by GA and 2PO optimizers. Figure 2 presents
the average and scaled cost variation obtained by the
optimizers considering the relations amount and the
join graph of each query. In all graphs presented in
this figure, scaled costs are arranged in logarithmic
scale of base 10.

It is observed that both algorithms alternate in the
generation of the best average of scaled cost. In chain,
cycle and grid queries with relations greater or equal
to 20, 2PO showed plans with superior quality (lower
costs) in relation to presented by GA, as we can see
in Figure 2 (b), (c) and (d). In this case, it is also ob-
served that GA showed an accentuated degradation in

the quality of the plans according increased the num-
ber of relations. In two particular cases, chain and
cycle queries with 100 relations, respectively in Fig-
ure 2 (d), the quality of obtained plans by 2PO and
GA was significantly large.

In Figure 2(b) to Figure 2(d), we can verify that
the plans degradation obtained by the GA is strongly
correlated with the number of edges of each join
graph. It is noticed, the fewer is the number of edges,
the worse is the quality obtained plans by the GA.
Concerning the chain (N − 1 edges) and cycle (N
edges) queries, we can observe a slight improvement
in the quality. In grid queries (2N−3 edges), the im-
provement is more evident. Finally, clique queries
(N(N− 1)/2 edges) with the maximum edges quan-
tity, and obviously the join graph of greater connec-
tivity, presented the best scaled cost, being better than
those presented by 2PO.

Plans quality presented by 2PO was superior in al-
most all cases. However, two exceptions were identi-
fied. The first case refers to queries with 10 relations,
independent of join graphs. The second, was for all
clique queries, regardless the relations number.

5 CONCLUSIONS

Join optimization is part of query processing that rep-
resents a significant impact on relational DBMS ef-
ficiency. This paper presents this problem, with em-
phasis in LJQO.

We presented an implementation of a 2PO algo-
rithm and compared with an implementation of ge-
netic algorithm. Our solution proves to be more ro-
bust for most of the cases, mainly in queries with a
large number of relations and low connectivity of their
joins graphs. In this context, 2PO presented better
plans compared to GA, and still, had a feasible opti-
mization average time.

Our results were relevant in the actual context,
since there is a growing demand for DBMS able to an-
swer complex queries. Actually, such queries are re-
ally common in tools to generate management reports
(OLAP - Online Analytical Processing) or deductive
tools for Data Mining. Another potential source of
complex queries are columns oriented DBMS (Stone-
braker et al., 2005). In such applications, each at-
tribute stored in a traditional DBMS is converted into
an individual relation. Thus, queries read only the
attributes that are required. Thereby, it is evident,
the large number of joins required to compose the
query results that involving several attributes in the
SELECT clause.

There are still issues that need to be evaluated in
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detail, how the use of aggregates, sort method (OR-
DER BY), and recursive queries. Even so, it is ex-
pected that these results can serve as a basis for the
algorithms improvement and for developing new op-
timizations approaches.

Finally, 2PO algorithm is available as a plugin
called LJQO. This plugin can be obtained via Inter-
net3 by interested in making improvements or analy-
sis in our solution.
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