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Abstract:  This research investigates a method for hazard identification of modern drinking water treatment 
technologies. Bayesian networks are applied to quantify risk assessment. Bayesian networks represent an 
important formalism for representation of, and inference with, uncertain knowledge in artificial intelligence.  
A physicochemical ultra filtration (UF) membrane train is expressed as a Bayesian network. They can be 
used in quantifying understanding of the hazards at the operational level of treatment plant that impact the 
risk of infection from pathogens. Once such a Bayesian network is established, the risk assessment can be 
performed automatically using algorithms developed in artificial intelligence which facilitates risk 
assessment of complex water treatment domains. 

1 INTRODUCTION 

Bayesian Networks, developed from the field of 
artificial intelligence (AI), provide a powerful 
knowledge representation formalism that deals with 
uncertainty explicitly in a principled manner (Pearl, 
1988). Over the last three decades, Bayesian 
networks have been widely applied to many tasks 
for reasoning under uncertainty (Jensen and Nielsen, 
2007; Darwiche, 2009).  

Effective operation of a water treatment system 
must be able to handle uncertainty.  Consider, for 
example, an ultra filtration (UF) membrane train.  
Water of varying pre-treated quality enters a 
treatment facility and may produce varying qualities 
of treated water. Failures of key pieces of 
mechanical equipment or process may also influence 
the quality of the treated water.   In this work, we 
investigate application of Bayesian networks to risk 
assessment in complex water treatment domains. 

2 BACKGROUND 

2.1 Bayesian Networks 

A Bayesian network consists of a directed acyclic 
graph (DAG) and an associated joint probability 
distribution (jpd). The nodes in the graph are 
labelled by the set of random variables, N = {X1, 
……Xn).  These random variables represent 
alternative states. Each variable can be Boolean (two 
possible values) or take one of more than two 
possible values (Zhu et. al., 1998). For example, a 
variable can denote the intensity of suspended solids 
at a water treatment plant with possible values (low, 
normal, or high). The links in the DAG specify the 
causal relations among the random variables.  Any 
node Xi in a Bayesian network is independent of any 
non-descendent variable conditioned on its parent 
nodes.  That is, the parents of Xi shield the variable 
from the influence of all variables in the graph 
except those downward from Xi along the cause 
direction. For example, suppose Xi is the parent of 
Xj and Xk is the child of Xj: a direct path Xi → Xj → 
Xk.    If there is no other path from Xi to Xk , then Xi  
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and Xk are conditionally independent given Xj.   
The uncertain causal strength between a variable 

Xi and its parents π(Xi) is quantified by a conditional 
probability table P(Xi| π(Xi)). The dependence and 
independence relations represented by the DAG 
allow the joint probability distribution (jpd) over N 
to be specified through conditional probability tables 
of associated with nodes of the network.  That is, the 
jpd P(N) can then be written as: 

∏
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Normally, the specification of a jpd requires the 
specification of parameters in an order exponential 
to the total number of variables. The major benefit 
of using a Bayesian network representation is that 
the jpd over a very large set of variables can be 
compactly specified by a much smaller number of 
variables, due to the above decomposition. 

Once a model of an application domain, such as 
a water treatment plant, is constructed in the form of 
a Bayesian network.  The Bayesian network can be 
used to infer the value of some unobservable 
variables given the observation of some other 
variables, including prediction and explanation,  two 
basic tasks in monitoring and control (Sanguesa et 
al., 2000). In this paper, we show that a 
physicochemical ultrafiltration (UF) membrane train 
can be expressed as Bayesian networks for 
identifying faults and reducing the risk on potable 
water delivery. 

2.2 Cryptosporidium and Treatment 
Options 

In recent studies, waterborne outbreaks occurred 
under conditions where water quality complies with 
the standards on E. Coli and coliforms but water 
treatment failed to eliminate high concentrations of a 
persistent pathogen such as Cryptosporidium,  
(Richardson et al., 1991).  Protozoan parasites of the 
genera Cryptosporidium and Giardia are important 
causes of disease and morbidity in humans and of 
losses in livestock production.  Reducing the risk of 
infection of cryptosporidium, and keeping the water 
safe is one of the goals for the millennium (WHO, 
2009). Ultrafiltration (UF) membrane train system, 
as an alternative to conventional water treatment for 
drinking water, has developed very fast due to their 
ability for the removal of microbial pathogens, 
especially Cryptosporidium and Giardia (Brehant et 
al., 2010). The Ultrafiltrtion membrane  system can 
effectively block pathogens, virus, bacteria and is a 

competitive option to produce high quality potable 
water (Chelme-Ayala et al., 2009).   

Membrane processes are new technologies. We 
have limited information about this new system. 
Given the complexity of water treatment plant 
operations, a long time period is needed to observe 
and reveal the characteristic of the system. 
Beauchamp et al. (2010) apply fault tree analysis to 
a physicochemical ultrafiltration membrane train, 
with the objective of developing a systematic 
approach for organizing and improving our 
understanding of hazards at the treatment plant 
operational level that affect the risk of infection 
from the pathogen Cryptosporidium parvum. The 
approach was successful in identifying many 
technical and operational hazards. However, 
quantification of probabilities of fault events is 
incomplete.   Such quantification can help to 
prioritize interventions at the operational levels.  In 
this paper, we study the potential of applying 
Bayesian networks to identify faults in the 
membrane train system. We show that the 
physicochemical or mechanical component of the 
UF treatment train can be expressed as a Bayesian 
network.  Once the Bayesian network is established, 
the risk assessment can be performed automatically 
using the Bayesian network model. 

3 THE FAULT TREE APPROACH 

Figure 1 shows a simple fault tree. Pre-distribution 
contamination is the top event (root event).  Source 
water contamination and treatment failure are  
intermediate events. They are shown as boxes. 
Circles, labelled source contamination, pathway 
contamination, filtration failure and disinfection 
failure represent basic events (leaf events).  

 
Figure 1: A simple fault tree. 
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A fault tree is constructed to calculate the 
probability of the top event. The structure of the 
fault tree and the logic gates provide information on 
how to perform the calculation. For an OR-gate with 
n input events, if we know the probabilities Pi (i=1, 
2, ..., n) of input events, the probability Pr of the 
output event is computed as 

Pr = 1- )1(
1
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For an AND-gate with n input events, the 
probability Pr of the output event is computed as 

Pr = ∏
=

n

i
iP
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By combining Equations (2) and (3) according to 
the fault tree topology, the probability of the root 
event can be computed.  

A fault tree may be considered detailed enough 
when it corresponds to system analyzed with small 
number of leaf variables and those variables can be 
estimated.  However, it is quite likely that in a 
complex system, in order to calculate the multiple 
root events, many possible leaf events might have to 
be analyzed. Creation of multiple diagrams may 
cause inconsistency and duplicated effort in both 
specification and analysis. With leaf events isolated 
in different diagram, it is not a simple matter to 
consider their interactions. Therefore, combining 
fault trees for multiple leaf events into one coherent 
single interaction of multiple leaf events into one 
coherent fashion as show in Figure 2 and Table 1.  
The computation of root event probabilities, 
however, will be handled in exactly the same 
manner if the Bayesian network representation is 
constructed. In this research, we show that Bayesian 
network will offset the short comes from fault tree.  

3.1 Fault Tree to an Ultrafiltration 
Membrane 

The process of a UF membrane train water treatment 
plant consists of two major steps. The first step, pre-
treatment, includes screening, coagulation, static 
mixing and mechanical flocculation. The objective 
of pre-treatment is to condition the water for optimal 
UF operation.  Step2. Pre-treatment submerged UF 
hollow fibre membrane trains, and chlorination.  

Membrane filtration is a physical removal 
process. Particles, pathogens and flocs are removed 
by size. Fibre walls are made of a supporting 
structure, which constitutes most of the thickness of 

the fibre, and the active layer, a skin that rejects 
particles and pathogens. UF membranes are an 
absolute barrier to protozoan (oo)cysts and bacteria, 
their absolute pore size of 0.1 µm being smaller than 
the size of contaminants, which are greater than 3 
µm for (oo)cysts and approximately 1µm for 
bacteria. Membrane integrity testing (USEPA, 2005) 
and monitoring are therefore critical for ensuring 
that the membrane system is functioning as required.  

Figure 2 and Table 1 represent a fault tree for UF 
membrane train diagnosis. A water treatment plant 
operation is a complex task where many factors 
must be taken into account. The fault tree takes one 
top event, high concentration of cryptosporidium 
parvum in permeate. 14 intermediate events such as 
the membrane skin is damaged and does not remove 
pathogens and 19 basic events, such as membranes 
are fouled.  

 
Figure 2: Fault tree for UF membrane train diagnosis 
(Modified from Beauchamp et. al., 2007). 

In various works (Sanguesa, et. al., 2000, 
Beauchamp et al. 2010; Zhu et., al., 1998), the 
limitations of fault tree systems for monitoring, 
control, and diagnosis applications are analyzed. 
Fault trees only allow propagation of information 
from leaf events towards the root event, but no 
facility to explain observation of root event in terms 
of most likely leaf events.   Furthermore, each fault 
tree typically can accommodate only one root event.  
Multiple root events typically require multiple fault 
trees, even though their leaf events  may overlap.  
Such duplication of leaf events may lead to 
inconsistency as well duplication of resources (time, 
space, and computation).  
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Table 1: The definition of fault tree in Figure 2. 

Abbreviation Definition  
AITIMS Air is trapped in the membrane system  

APP Abrasive particles (silt, clay, silica, ) are 
present 

APRAM Abrasive particles rub against 
membrane 

AUIPBIO A unit is put back in operation 
AWHO A water hammer occurs 

BCABMS Bio-chemical agent breaches membrane 
skin 

CIL Coupling is loose 
CIPCAS Changes in transmembrane pressure 

causes an air shock 
COPBW Components of the processes breaks in 

the water 
CSDBMS Chemical solution dose breaches 

membrane skin 
FBCMF Foreign body cuts membrane fibers 
HCOCP High concentration of Cryptosporidium 

parvum detected in the permeate 
IAPRUL Internal air pressure reaches an 

unbearable level during an integrity test 
MAF Membranes are fouled 
MB Membrane bursts 
MC Membrane collapses 

MISMID Membrane suffer manufactured or 
installation defect 

MMIS Membrane modules are improperly 
stored 

MSD(FRP) Membrane skin is damaged (fail to 
remove pathogens) 

MSOU Membrane skin is worn out 
MVSLC Movement/vibration of the stem loosens 

coupling 
ODIMT Objects are dropped in the membrane 

tank 
OETFPS Objects enter the tank from pump 

station 
OGTPAS Objects go through pumps and screens 

PITL Permeability is too low 
PSBMS Particles/solids breach membrane skin 
SDIB Screening device is breached 
SIWO Seal is worn out 
SOCF Seal or Coupling fails 

SSMFD Seal Suffers from manufactured or 
installation defect 

TPRUL Transmembrane pressure reaches an 
unbearable level 

VCR Valve closes rapidly 
WBNF(SC) Water bypass membrane filtration 

(short-circuit) 
WVITH Water viscosity is too high 

One of the most important tasks for the application 
of UF membrane systems is to monitor membrane 
integrity during operation, detects and repairs the 
defects because small defects could result in 

significant reduction of pathogen removal efficiency 
and consequently reduce UF membrane 
performance. A secure and sound decision support 
technique is the key to detect faulty membranes and 
repair it immediately.   

3.2 Bayesian Networks to a UF 
Membrane 

The major portion of the fault tree analysis is the 
computation of probabilities for end events. It can be 
readily expressed as a Bayesian network. The events 
make the nodes in the network. The events that 
cause a branching event are the direct parents of the 
resultant event. The same set of probabilities that 
used to specify a fault tree can be used to specify the 
conditional probability distribution at each node of a 
network. Once a fault tree is expressed as a Bayesian 
network, the computation of end event can be 
performed using expert system shells for 
probabilistic reasoning in Bayesian networks. This 
allows accurate and speedy analysis of a UF water 
treatment system. 

Figure 3 represents a UF membrane train water 
treatment system as a Bayesian network. Our 
illustration is aided with WebWeavr IV (Xiang, 
2007) expert system shell. We use the variable 
names defined in Table 1 to label the nodes in the 
Bayesian network. We assume the probabilities of 
the leaves are given or can be observed, for example, 
water viscosity is too high, membranes are fouled, 
etc., and other variables probability can be computed 
by the shell when the Bayesian network is specified.  
The probability of the top event, high concentrations 
of cryptosporidium parvum (HCOCP) detected in 
the permeate will be computed efficiently.   If we 
observed the HCOCP, we also can detect and trace 
which variable caused the HCOCP. 

 
Figure 3: Bayesian network for UF membrane train 
diagnosis. 
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The advantage of Bayesian networks over fault 
trees can be understood in relation to the limitations 
of fault trees mentioned earlier.   For instance, with a 
Bayesian network, not only the probability of root 
fault can be computed based on probabilities of leaf 
events, but also when the root fault is observed, the 
most likely causing leaf events can be computed.   A 
Bayesian network can also simultaneously include 
multiple variables each of which corresponds to the 
root event of a fault tree.  Each of the contributing 
leaf events need to be represented exactly once, 
which eliminates inconsistency and duplication of 
resources.  The probabilities of all root events thus 
represented can be computed in one round of 
inference propagation by working with a single 
coherent model. 

To summarize, using a Bayesian network 
representation, the following can be achieved: 
• Multiple fault trees can be consistently and 

economically encoded into a single Bayesian 
network,  

• The probability of any non-leaf faulty tree 
event can be computed using such a Bayesian 
network,   This function quantifies risk in the 
same way as fault trees. 

• The probability of any non-leaf faulty tree 
event given some leaf events have occurred 
can be computed.   When the probability 
obtained is 1, it signifies that these leaf events 
definitely cause the non-leaf event.  This 
function can be used in a what-if analysis to 
predict high-level faults given occurrence of 
some low-level faults. 

• The probability of any leaf event given that 
some non-leaf events have occurred can be 
computed.  This function can be used to 
facilitate investigation of causes when a high-
level fault has occurred. 

4 CONCLUSIONS 

In this paper, we have described how to represent a 
fault tree through a UF membrane train as a 
Bayesian network. We demonstrate the Bayesian 
network can overcome the shortcomings of a fault 
tree. Bayesian network can perform more efficiently 
when there are multiple leaf events. The analysis 
performed in a risk assessment using a Bayesian 
network is a forward inference, i.e., probabilities for 
the leaves events are given, the probabilities for top 
events are to be computed. The Bayesian network 
can also be used as backward inference. If we 
observed top event, we can diagnose which 

operation is the most likely cause. If high 
concentrations of Cryptosporidium parvum are 
detected in the permeate, we can find possible 
causes rapidly to reduce the adverse consequence.  
Bayesian network also allows the interaction 
between any variables in the Bayesian network and 
update the information which provides the dynamic 
behaviour of the system. The probabilistic approach 
enables uncertainty analysis and calculations of 
probability of exceeding defined performance targets 
and acceptable levels of risk. It makes Bayesian 
network an important method in decision support.  
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