
SMARTPHONE SECURITY EVALUATION
The Malware Attack Case

Alexios Mylonas, Stelios Dritsas, Bill Tsoumas and Dimitris Gritzalis
Information Security and Critical Infrastrucutre Protection Research Laboratory
Department of Informatics, Athens University of Economics & Business (AUEB)

76 Patission Ave., GR-10434, Athens, Greece

Keywords: Smartphone, Security, Malware, Attack, Evaluation criteria.

Abstract: The adoption of smartphones, devices transforming from simple communication devices to ‘smart’ and
multipurpose devices, is constantly increasing. Amongst the main reasons are their small size, their en-
hanced functionality and their ability to host many useful and attractive applications. However, this vast use
of mobile platforms makes them an attractive target for conducting privacy and security attacks. This scena-
rio increases the risk introduced by these attacks for personal mobile devices, given that the use of smart-
phones as business tools may extend the perimeter of an organization’s IT infrastructure. Furthermore,
smartphone platforms provide application developers with rich capabilities, which can be used to compro-
mise the security and privacy of the device holder and her environment (private and/or organizational). This
paper examines the feasibility of malware development in smartphone platforms by average programmers
that have access to the official tools and programming libraries provided by smartphone platforms. Towards
this direction in this paper we initially propose specific evaluation criteria assessing the security level of the
well-known smartphone platforms (i.e. Android, BlackBerry, Apple iOS, Symbian, Windows Mobile), in
terms of the development of malware. In the sequel, we provide a comparative analysis, based on a proof of
concept study, in which the implementation and distribution of a location tracking malware is attempted.
Our study has proven that, under circumstances, all smartphone platforms could be used by average develo-
pers as privacy attack vectors, harvesting data from the device without the users knowledge and consent.

1 INTRODUCTION

Smartphones are some of the devices that enhance
Weiser’s vision of ubiquitous computing (Weiser,
1991). Their small size, mobility, connectivity capa-
bilities, and multi-purpose use are some of the rea-
sons for their vast pervasiveness (Gartner, 2010).

Malicious software, or malware (Andleman,
1990; Cohen, 1989; Kephart & White, 1991) has
also appeared in smartphone platforms (Hypponen,
2006), but initially their occurrences and severity
were limited. Nonetheless, recent reports show that
the risk of malicious application execution on smart-
phones is severe and contingent (McAfee, 2010;
CISCO, 2011). Moreover, the use of smartphones
extends the infrastructure perimeter of an organiza-
tion, thus amplifying the impact and the risk of po-
tential execution of malicious applications (Sindhu
et al., 2010).

Apart from the increasing smartphone sales

(Gartner, 2010), the annual downloads for applicati-
ons developed for smartphones and distributed from
official application repositories are also bound to
increase by 117% in 2011 (Gartner, 2011). In additi-
on, popular web applications (Gmail, YouTube, etc.)
and social networks (Facebook, Twitter, etc.), are
being accessed on mobile devices through native ap-
plications, instead of their usual web browser inter-
face. In this context, smartphones contain a vast
amount of the user’s data, thus posing a serious pri-
vacy threat vector (PAMPAS, 2011; ENISA, 2011;
GSMA, 2011). These data are augmented with
smartphone sensor data (i.e. GPS) and data created
by daily use (personal or business) making the
device a great source of data related with the
smartphone owner. This data source is invaluable to
attackers trying to harvest them to increase their
revenues (e.g., with blackmail, phishing,
surveillance attacks). Hence, attackers try to infect
smartphones with malware applications, harvesting

25Mylonas A., Dritsas S., Tsoumas B. and Gritzalis D..
SMARTPHONE SECURITY EVALUATION - The Malware Attack Case.
DOI: 10.5220/0003446800250036
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 25-36
ISBN: 978-989-8425-71-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

smartphone data without the user’s knowledge and
consent. It should be noted that the everyday use of
smartphones by non-technical and non-security
savvy people increases the likelihood of using
smartphones as a security and privacy attack vector.

The security model of smartphone platforms has,
under these circumstances, two contradicting goals.
On the one hand, it must provide mechanisms to
protect the users from attacks and on the other hand,
it must attract third party developers, since the popu-
larity of a platform depends on the attractiveness of
its applications. The former goal is approached by
each smartphone platform under a non unified and
standardised approach that its effectiveness is con-
troversial (Sophos, 2011). For the latter smartphone
platforms provide developers with development
friendly environments that include extensive docu-
mentation, programming libraries, and emulators.
However, this development friendliness may also be
used to write applications that can compromise the
security and privacy of smartphone users more
easily.

This paper examines the feasibility of malware
development on smartphones by average program-
mers that have access to the official tools and
programming libraries provided by smartphone plat-
forms. This is mainly achieved through a proof of
concept study that aims on evaluating the ease of
malware development against users of smartphone
devices. Thus, issues like state of the art attacks that
might be performed by sophisticated attackers
(Seriot, 2010; Lineberry et al., 2010) and the relation
between malware attacks on smartphones and desk-
top computing devices are out of the scope of this
paper.

This paper contributes towards this direction by
(a) proposing a set of evaluation criteria, assessing
the development of malware, and (b) providing a
comparative case study analysis where the imple-
mentation and distribution of proof of concept loca-
tion tracking malware is implemented in the current
smartphone platforms.

The paper is organized as follows. Section 2 pro-
vides background information about current smart-
phone operating systems. In section 3 the comparati-
ve criteria are introduced, while in section 4 our pri-
vacy attack implementation scenarios are presented.
Finally, the paper concludes in section 5.

2 SMARTPHONE PLATFORMS

In this section we discuss the security models and
development environments of the surveyed smart-

phone platforms: (a). Android OS, (b). BlackBerry
OS, (c). Symbian OS, (d). Apple iOS, and (e). Win-
dows Mobile 6 OS. Our analysis focuses on applica-
tion installation and execution. Security mechanisms
that are used for the physical protection of the device
(data encryption, anti-theft solutions, etc.) are out of
the scope of this paper.

2.1 Android OS

The Android OS is a Linux based open source ope-
rating system developed and maintained by Google.
Android was designed to be executed on portable
devices, such as smartphones and tablets. It provides
a free and publicly available Software Development
Kit (SDK) that consists of tools, documentation and
emulators necessary for the development of new ap-
plications in Java. According to Gartner (Gartner,
2010), the Android platform increased its worldwide
smartphone sales from 3.5% in the Q3 of 2009 to
25.5% in the Q3 of 2010.

A core element of the Android security model
(Google, 2011c) is the manifest file. The manifest fi-
le is bundled into the Android installation package
file (.apk file), along with the applications bytecode
and other related resources. The file follows the
XML structure and provides all the necessary infor-
mation to the Android platform for the execution of
the application. Security-wise the manifest file is
crucial for the system, since a developer defines in it
the permissions of each application. These permis-
sions control: (a) the way the application interacts
with the system via access to system API, and (b)
the way the system and the other applications intera-
ct with the given application’s components. By de-
fault, every application runs in a sandboxed environ-
ment without any permission to perform an action
that can impact the operating system itself, the other
applications and the user.

Every application requests authorization for its
permissions at installation time, which is based on
the user’s approval. No further checks are made du-
ring the applications’ execution. Hence, if the user
decides to grant permission to the application, then
the protected system resources are available to the
application, otherwise the access to the resources is
blocked

The installation package file of every Android
application has to be digitally signed by its develo-
per. Android’s security model then maps the signa-
ture of the developer with a unique ID of the appli-
cation package and enforces signature level permis-
sion authorization (Google, 2011c). However, in the
Android security model it is not obligatory that the
developer’s certificate is signed by a trusted

SECRYPT 2011 - International Conference on Security and Cryptography

26

certificate authority. Thus, the applications are
usually digitally signed with self-signed certificates,
providing only poor source origin and integrity
protection. This preserves the anonymity of a
potential attacker, since the certificate is not verified
by a Trusted Third Party (TTP).

A developer distributes her application either in
the official Android application repository maintain-
ed by Google, the Android Market , or outside the
repository. Google does not enforce any restriction
in the installation of applications originating outside
its repository. On the other hand, Google developed
technologies to remove applications (Google, 2011a)
from the devices and the Android Market in case
they pose a threat to the Android platform. The ap-
plications in the Android Market are provided to end
users without being tested for malicious behaviour.
Hence, a developer must only provide her Google
account and pay a small fee for the distribution of
any application in the Android application reposito-
ry. It is evident that this procedure is not able to stop
malware from being distributed via the Android
Market and being installed οn devices.

According to (Google, 2011b), version 2.2 is the
dominant Android version, currently deployed in the
majority of the Android devices (51.8%). Older ver-
sions of the OS are still being in use: 35,2% of the
devices run version 2.1, while version 1.6 runs on
7.9% of the devices. The adoption of the latest ver-
sion of the OS (version 2.3) is still low, since it is
deployed only in the 0.4% of the Android devices.

2.2 BlackBerry OS

The BlackBerry OS is an operating system maintain-
ned by Research In Motion Inc. (RIM). The current
version of the OS is version 6. The OS is executed
on BlackBerry smartphones and tablet devices crea-
ted by RIM. According to Gartner (2010), RIM’s de-
vice worldwide market share dropped to 14.8% in
the Q3 of 2010 from 20.7% in the Q3 of 2009.

Documentation about the OS details is not provi-
ded by RIM. However, the company provides,
through the BlackBerry SDK, the related documen-
tation, tools, API and emulators, which are neces-
sary for application development.

The platform security model (RIM, 2011b) en-
forces restrictions to third party applications trying
to access protected APIs of the OS, by demanding
the signing of the application with a cryptographic
key provided by RIM (RIM, 2011a). A developer
needs to pay a small amount in order to acquire a va-
lid RIM signing key pair. However, this process on-
ly provides poor source origin and code integrity and
does not offer any assurance about the validity and/

or the security level of the third party application.
The official application repository for BlackBer-

ry smartphones is the App World (RIM, 2011b). Un-
official repositories of applications, such as Crack-
berry (Smartphone Experts, 2011), also exist.

Application distribution in the official repository
requires registration for a vendor account. Develo-
pers incur a registration cost of $200 for the afore-
mentioned account creation, allowing them to sub-
mit 10 applications. For additional submissions an
administration fee is required. It should be noted that
before the application publication in the repository,
its code is not examined by BlackBerry for malici-
ous behaviour and, in addition, BlackBerry does not
operate a remote application removal mechanism.

Finally, the platform provides the following opti-
ons for the installation of applications in the device
(a). via the BlackBerry App World, (b). Over the Air
(OTA), (c). via the device’s browser, and (d). via
RIM desktop synchronization software.

2.3 Symbian OS

Symbian OS is an operating system maintained by
Nokia. Symbian’s current version is Symbian^3. The
platform had a major worldwide market share dec-
rease in Q3 of 2010 falling to 36.6% from 44.6% in
the Q3 of 2009 (Gartner, 2010).

Symbian is executed in smartphones and provi-
des multiple free and publicly available SDKs. The
SDK includes the tools, documentation and emula-
tors that are necessary for the development of new
applications, written in C++.

The cornerstone in Symbian’s security model is
the use of capabilities (Nokia, 2011a) for defining
restrictions to sensitive platform APIs. These capabi-
lities are grouped in the following categories: (a).
basic, (b). extended, (c). manufacturer. The first ca-
tegory includes basic functionality (e.g. access to the
network, access to location data, etc.), where the u-
ser is prompted for its authorization during installa-
tion. The second capability category controls the use
of sensitive API that is only granted through the Sy-
mbian Signed process (Nokia, 2011c). The last capa-
bility category controls application access to the mo-
st sensitive API in the platform (i.e. All-Files, DRM,
TCB). These capabilities are only granted by a Devi-
ce Manufacturer (e.g. Nokia, Sony Ericsson, etc). As
indicated by Nokia (2011a) the basic capability cate-
gory contains sufficient functionality for application
development. In this context, our proof of concept
study uses capabilities.

For each application installation, signing the ap-
plication’s package file (.sis file) is required by the
Symbian security model. Signing ensures that the

SMARTPHONE SECURITY EVALUATION - The Malware Attack Case

27

application is not using API apart from the one cor-
responding to the applications signing level (Nokia,
2011a). If the application uses only basic capabili-
ties the developer can self sign it (Nokia, 2011b).
Self-signing has the advantages to be performed in
the developer’s computer, and it is not necessary to
map the application installation package file with a
device IMEI. This results in no restriction during
multiple device installations, but the smartphone u-
ser will be prompted with security warnings at insta-
llation time, since the signing key is not trusted. To
eliminate the warnings and access sensitive capabili-
ties the developer submits her application to Sym-
bian Signed along with the list of device IMEIs. Ho-
wever, guidelines for bypassing Symbian’s secu-rety
model are available (Symbian Freak, 2011), allow-
ing the execution of unsigned applications, but the
modified version of the OS is out of scope of this
paper.

The applications are not required to reside in an
application repository in order to be installed to
Symbian devices. Nonetheless, Nokia maintains an
official application repository, the OVI store.

2.4 iOS

iOS is a proprietary operating system maintained by
Apple. iOS is only executed in Apple smartphones
and tablets (i.e. iPhones, iPADs) and its current ver-
sion is 4.2.1. According to Gartner (2010), Apple’s
worldwide smartphone market share dropped slight-
ly to 16.7% in the Q3 of 2010 from 17.1% in the Q3
of 2009.

Apple provides, after registration to the compa-
ny’s Dev Center (Apple, 2011a), documentation, to-
ols and the necessary API for application develop-
ment in Objective C. It should be noted that the tool-
set provided by Apple is only compatible with Mac
OS X operating system.

The official repository of iOS applications is the
App Store. The distribution of applications in the re-
pository costs $99 per year (Apple, 2011b). None-
theless, the iOS protection code can be altered and
bypassed (jailbroken) and the user is able to install
applications that are not officially signed by Apple
from an unofficial repository, such as Cydia Store,
Installus, etc. Installation of applications in modified
versions of the OS is out of the scope of this paper.

The security model of the iOS only permits the
installation of applications that have been signed by
Apple (Apple, 2011a). Before being signed, an ap-
plication is tested for its functionality consistency
and for malicious behaviour. However, the testing
process and criteria applied by Apple are not public-
ly available.

Applications are installed on the device with: (a).
the use of an application installed on the device that
connects to Apple’s App Store, or (b). the use of
cross-platform synchronization desktop software
provided by Apple (iTunes). Once the application is
installed to the device the user neither controls nor is
prompted when an application accesses some OS’
sensitive resources. An in depth analysis of all the
data that are available to an application in version 3
of iOS is provided in (Seriot, 2010).

2.5 Windows Mobile

Windows Mobile is a smartphone OS developed and
maintained by Microsoft. The OS’s worldwide
smartphone market share decreased from 7.9% in
the Q3 of 2009 to 2.8% in the Q3 of 2010 (Gartner,
2010). The latest version of the OS is Windows Pho-
ne 7. However, until the writing of this paper Micro-
soft has not made available basic API functionality,
such as sockets for internet connectivity (Microsoft,
2010 d). Therefore, in this section we present the se-
curity model of Windows Mobile 6, since its deve-
lopment API is available.

The security model of Windows Mobile (Micro-
soft, 2010c) depends on the enabled policy of the de-
vice. This policy is responsible for controlling which
applications are allowed to be executed on the devi-
ce, what functionality of the OS is accessible to the
application, how desktop applications interact with
the smartphone, and how the user or application ac-
cess specific device settings. The enabled policy on
a Windows Mobile smartphone is either one-tier ac-
cess or two-tier access (Microsoft, 2010c).

A device with one-tier access policy enabled, on-
ly controls if one application runs on the device or
not, without inspecting if the application is using
sensitive API. This decision depends on whether the
application’s installation package file (.cab file) is
correctly signed with a certificate that exists in the
device’s certificate store. If the application is signed
with a known certificate, then the application runs in
privileged mode, with the ability to call any API, ac-
cess and modify anything in the device’s file system
and registry. Otherwise, if the application is unsign-
ed or signed with a certificate that is not known, fur-
ther policy checks take place for the decision of ap-
plication execution. In this case, security policies
settings define whether the user is prompted to give
her consent for the application to run. It must be cla-
rified that if the user permits the execution, then the
application will run in privileged mode. This means
that an unknown and unsigned application maintains
full access to the device.

SECRYPT 2011 - International Conference on Security and Cryptography

28

On the other hand, a device with two-tier access
policy enabled, apart from controlling application e-
xecution, it also checks runtime permissions by con-
trolling the APIs that the application uses. Access to
protected API is determined by the application’s di-
gital signature. More specifically, if the application
is signed with a known certificate (i.e. a certificate
present in the device’s certificate store), then the ap-
plication is executed without further checks, granted
the permissions defined by the certificate class. In
the case that the certificate belongs to the Privileged
Execution Trust Authorities certificate store, the ap-
plication is executed with privileged permissions.
Otherwise, the application is executed in normal mo-
de. When the application is unsigned or signed with
an unknown certificate, then further checks are re-
quired to determine if the application is allowed to
run in normal mode. It is worth noting that the func-
tionality provided by normal privileges is enough for
most third-party developed applications.

According to (Microsoft, 2010c; Microsoft, 2010
a) the default security configuration of Windows
Mobile, provides weak security protection as: (a). it
allows the execution of unsigned applications or sin-
ged ones with an unknown certificate, (b). in case
(a). the user is prompted to authorize the execution
of the application. Hence, in both access tiers of the
default security configurations, unsigned and un-
known code is executed with the user’s approval
either in normal mode (two-tier access) or privileged
mode (one-tier access). Furthermore, although one-
tier access does not provide strong security, it is the
default access tier in some devices (Microsoft,
2010c). Nonetheless, it should be noted that the se-
curity model permits Mobile Operators to make
post-production changes to security settings configu-
rations of the device.

The security model of Windows Mobile includes
security mechanisms enabling a Mobile Operator to
revoke (i.e. remove) applications running on smart-
phones (Microsoft, 2010c). The revocation may con-
cern either (a). a class of applications signed with
the same certificate, where the corresponding certifi-
cate is being revoked, or (b). a specific application
binary, where the hash of the binary is being trans-
ferred to the device with transfer mechanisms des-
cribed in (Microsoft, 2010c).

For application implementation in Windows Mo-
bile 6, Microsoft freely provides the required deve-
lopment toolkit (i.e. SDK, emulator, documentation,
etc.). The supported implementation languages (e.g.
C#, Visual C++) are compatible with the Compact
.NET Framework.

For the acquisition of certificates that are known

to the devices, the developer opts from the paid ser-
vices provided by Microsoft (Microsoft, 2011b).

3 COMPARATIVE EVALUATION
OF SMARTPHONE
PLATFORMS

This section provides a comparative evaluation of
the smartphone platforms in terms of malware deve-
lopment and distribution. Our analysis examines the
feasibility of attacks implemented by average appli-
cation developers. More specifically, the presented
evaluation is based on: (a). the definition of qualita-
tive evaluation criteria, and (b). a proof of concept
malware implementation study, in which the deve-
lopment of a location tracking application is examin-
ed. At this point it should be stressed that any sop-
histicated attack conducted by experienced attackers,
as well as, publicly available malicious code used by
script kiddies are not examined in this paper. Fur-
thermore, a comparison with malware development
in desktop computing is not examined in this paper
either.

3.1 Evaluation Criteria

The comparative evaluation of smartphones is per-
formed by defining and using a set of evaluation cri-
teria, which are elaborated in this section. The pro-
posed criteria concern the development platform and
the developer. From the proposed evaluation criteria
the former are objective, relying solely on characte-
ristics of the smartphone platform. The latter are
subjective, giving details about the attack develop-
ment effort and as a result depend on the developer’s
skills and background. The latter, however, are gi-
ven as an indication on the effort needed to conduct
such attacks via smartphone applications.

Our overall approach focuses primarily to the ob-
jective criteria (development platform), while at the
same time takes into account the subjective criteria
(regarding the developer side). It must be noted that
this list of criteria is not exhaustive. Table 1 summa-
rizes the proposed evaluation criteria.

3.1.1 Development Platform Criteria

In this section we describe and analyse the
introduced development platform evaluation criteria
 in relation with their possible data type.

Development Tools Availability {Yes, Partial,
No}: This criterion refers to the availability of deve-

SMARTPHONE SECURITY EVALUATION - The Malware Attack Case

29

lopment tools needed for application development.
The public and free nature of these tools makes the
development of malware easier and cost effective.
The reason for this is that the presence of a free e-
mulator reduces the development cost of the attac-
ker, since a purchase of a device is not necessary. In
addition, the SDK contains all the tools (e.g. debug-
gers, compilers, etc.), which are necessary for the
implementation of the malicious application.

Development Friendliness {Yes, No}: This
Boolean criterion assesses the “developer” friendli-
ness of the programming language supported by the
smartphone platform. The adoption of a well known
and widely used programming language (e.g. Java)
is preferred during any application deployment.

Installation Vectors {Multiple, Restricted}:
This criterion assesses the available installation
options for an application on the smartphone device.
These installation options include the use of
removable media, through the WEB, email, etc.

Application Portability {Yes, No}: This criteri-
on refers to the ability of the malicious application to
be executed in different versions of the target smart-
phone OS. The more compatible an application with
different versions of the OS is, the greater the attack
target population becomes.

Application Testing {Yes, No}: This criterion
refers to the possible application testing procedures,
which could be used from official vendors (e.g. Ap-
ple) in order to determine applications’ potential ma-
licious activity. The tests take place before the appli-
cation is available in the official vendor application
repository.

Application Removal {Yes, No}: This Boolean
criterion refers to the existence of a remote applica-
tion removal mechanism. The automated removal of
an application from the repository and the smart-
phone devices is triggered when enough evidence is
discovered that the application acts in a maliciously
way.

Unofficial Repositories {Yes, No}: This Boo-
lean criterion refers to the existence of application
sources outside the official application repository. In
the case that the official repository adopts applica-
tion testing procedures, one option for a potential
attacker is to place the application in alternative
sources. This is a common action when the security
model of the smartphone permits the installation of
applications from sources other than the official
repository.

Distribution Cost {Yes, No}: This criterion
assesses whether the cost of application distribution
into the official application repository deters a

potential attacker.
API Restrictions {Yes, No}: This criterion re-

fers to the restrictions imposed by smartphones’ OS,
in terms of how they control the use of protected
APIs.

Application Signing {Yes, No}: This criterion is
used for assessing the restrictions imposed by smart-
phones’ OS, concerning the signing of the applicati-
ons, before they are installed on a device.

3.1.2 Developer Criteria

This set of criteria includes the Developer’s Back-
ground and the Development Time. In specific:

Developer’s Background {Education Level},
refers to the developer’s knowledge in information
security as well as to her programming skills. We as-
sume that the amount of knowledge a developer
possesses in information security and her program-
ming skills, determine the sophistication of the at-
tacks she is able to implement.

Development Time {Number}, which is used
for determining the effort needed to conduct a
malware attack.

Apparently, the abovementioned criteria are gi-
ven as an indication for the time and skills needed
for the development of an attack by an average-skil-
led programmer. The evaluation criteria are summa-
rized in Table 1.

Table 1: Proposed Evaluation Criteria.

Evaluation Criteria Type
Development Tools
Availability String {Yes, Partial, No}

Development Friendliness Boolean

Installation Vectors String {Multiple,
Restricted}

Application Portability Boolean
Application Testing Boolean
Application Removal Boolean
Unofficial Repositories Boolean
Distribution Cost Boolean
API Restrictions Boolean
Application Signing Boolean
Developer’s Background Education Level
Development Time Number

4 IMPLEMENTATION OF A
MALWARE ATTACK

In this section the implementation of a malware
attack is presented, as a proof of concept study. The

SECRYPT 2011 - International Conference on Security and Cryptography

30

criteria defined in the previous section are applied to
evaluate the robustness and the security properties of
the smartphones platforms under examination.

Our study examines the implementation feasibili-
ty of a simple attack scenario (see Figure 1).

Figure 1: Case study attack scenario.

The attack scenario refers to a location tracking
malicious application. The application collects the
smartphone’s user GPS coordinates (i.e. her exact
position) and sends them to the attacker. It is assu-
med that the malicious functionality is included in a
free GPS navigation application. The application
apart from getting the user’s location and presenting
it using Google Maps, it also sends the location data
to the attacker server. The described malware, in
most cases, is executed without creating any suspi-
cion to a naive smartphone user. The reason for this
is that the application’s requests (i.e. access to devi-
ce location and Internet access to connect to the In-
ternet) are consistent with the application’s expected
functionality.

We have implemented our development case
study in our lab using two computers running a Win-
dows XP and a Mac OS Leopard operating system.
In the Windows machine we installed the emulators
and the SDKs of all the smartphone platforms, apart
from Apple’s iOS that was only compatible with
Mac OS X.

For the malware implementation we selected two
computer science students (one undergraduate and
one post-graduate student, respectively) with basic
information security background and moderate
programming skills. Before the case study imple-
mentation the students had successfully completed
information security related courses that are consis-
tent with the Common Body of Knowledge describ-
ed in (Theoharidou et al., 2008). The undergraduate
student had completed a course on Information
Security Management and the postgraduate had
completed the courses Information Security Mana-
gement, Information System Auditing, Network Se-
curity, and Cryptography. Both students were more
familiar with the Java programming language, since

this was the language used in implementations du-
ring undergraduate and postgraduate projects. The
post-graduate student would only be involved in the
proof of concept attack implementation in a smart-
phone platform only if the undergraduate was unable
to implement it.

In the following paragraphs we analyse the re-
sults regarding the development and use of this mali-
cious application to the smartphone platforms des-
cribed in Section 2 to check their security model
robustness to our attack scenario. The platforms that
we have examined are: Android OS, BlackBerry OS,
Symbian OS, Apple’s iOS and Windows Mobile 6
OS. The results of the case study are presented in the
sequel.

4.1 Android OS Case Study

Our attack implementation was successfully develo-
ped on the Android platform in one day. The official
development toolkit (i.e. SDK and emulator) was
used for the implementation purposes. The reasons
why our attack implementation was efficient are: a).
the adoption by the platform of a widely used prog-
ramming language (i.e. Java), and b). the effective
documentation of its API. In addition, the same
source code successfully compiled and executed in
versions 2.1 and 2.2 of the Android platform; hence
the application is considered portable within the An-
droid platform at the time of the writing.

Regarding application distribution there are ma-
ny options for the attacker. The reason for this is that
the Android platform does not impose any restriction
neither on the source of application (i.e. originating
from an unofficial repository) nor on the installation
vector (e.g. removable media, WWW, etc.). A small
registration fee is required for the placement of
applications in the official repository, but it is consi-
dered inadequate to impede an attacker. Furthermo-
re, even if the official repository is selected for the
distribution, application testing for malicious beha-
viour is not taking place. Hence, it is likely that mal-
ware such as one described in this case study is cur-
rently present and downloaded by naive users from
the repository.

As we have already mentioned the security
model of the Android platform imposes some appli-
cation restrictions concerning the application signing
and API control. We argue that these restrictions
provide only partial security protection. For the for-
mer, API control restrictions are authorized by the
naive user only during the application installation.
No further checks about application permissions
take place after the installation. Hence, it is likely

SMARTPHONE SECURITY EVALUATION - The Malware Attack Case

31

that the malicious application would be granted the
requested permissions (i.e. access to location data
and the Internet), especially in our case, where the
permissions fully match the expected application’s
functionality. For the latter, the imposed signature
can be self-signed by the developer and as a result
the application’s source origin is not verified. This
situation, combined with the fact that an attacker
may find valid credit cards numbers in the under-
ground market, could be used to commence elite
spoofing attacks. These attack scenarios are out of
the scope of this paper. Finally, Google’s remote re-
moval mechanism is the only efficient post installati-
on protection mechanism against our case study
scenario.

From the above analysis we infer that the likeli-
hood of conducting such an attack on the Android
platform is very high. In this context, Table 2 sum-
marizes the results of our case study based on the
criteria we have defined in section 4.1.

Table 2: Android OS Analysis and Results.

Evaluation Criteria Android OS
Development Tools Availability
Development Friendliness
Installation Vectors multiple
Application Portability
Application Testing
Application Removal
Unofficial Repositories
Distribution Cost
API Restrictions
Application Signing
Developer’s Background B.Sc.
Development Time 0.5day

4.2 BlackBerry OS Case study

Regarding our attack analysis on BlackBerry plat-
form, the results were again successful. The attack
was conducted by the B.Sc. student. RIM’s official
development toolkit (i.e. SDK and emulator) was us-
ed for attack implementation. The attack implemen-
tation was not demanding and its duration was one
day. The reasons for the effectiveness of the attack
implementation are the adoption by the platform of a
widely used programming language (i.e. Java), and
the effective documentation of its API. Furthermore,
the same source code successfully compiled and
executed in versions 5/6 of the BlackBerry platform,
therefore the application is considered portable.

Τhe security model of the BlackBerry does not
impose any restrictions regarding the origin of the
application. Nevertheless, the application package

file (.cod) must be signed to access restricted and
sensitive platform APIs. For the signing process the
developer incurs a small key acquisition fee. As
there is no strong authentication in the key acquisi-
tion process, the signing of the application provides
only integrity protection and poor source origin.

The cost for the cryptographic keys is considered
inadequate to deter an attacker. On the other hand,
the cost for the publication is expected to impede an
attacker from publishing the application in the
RIM’s official repository, especially if she is in pos-
session of limited economic resources; the attacker
still has the option to submit an application to an
unofficial repository.

The security model of the RIM’s platform does
not employ any application testing before accepting
the submission of an application. Furthermore, there
is no application removal system automatically
removing applications with malicious behaviour.
Hence, if the malware application is submitted in the
official repository, then it is very likely to be down-
loaded and installed in BlackBerry devices.

Conclusively, the development of the malware
attack examined in this scenario is feasible and it de-
mands little development effort. The only impedi-
ment is the cost of submitting the application to the
official repository. Table 3, depicts the results of the
case study regarding Blackberry OS.

Table 3: BlackBerry OS Analysis and Results.

Evaluation Criteria BlackBerry OS
Development Tools Availability
Development Friendliness
Installation Vectors multiple
Application Portability
Application Testing
Application Removal
Unofficial Repositories
Distribution Cost
API Restrictions
Application Signing
Developer’s Background B.Sc.
Development Time 1 day

4.3 Symbian OS Case study

Symbian OS provides basic functionality sufficient
for application development providing the developer
the option to self sign her application. Nevertheless,
some compatibility issues exist, since the location
capability -which controls access to API determin-
ing the location of the device - does not reside in the
basic capability category in some Symbian OS
versions (Nokia, 2011a).

SECRYPT 2011 - International Conference on Security and Cryptography

32

For the deployment of the malware attack scena-
rio only the basic capability category was used. Self-
signed applications create a security warning at in-
stallation time that the user has to accept. Even so,
the user would likely accept the installation of the
application bypassing and ignoring the security war-
nings. Apart for signing the application, the security
model of the platform does not restrict the applica-
tion’s distribution and as a result the attacker has
many distribution options (e.g. through an attacker-
controlled application repository). Hence, the attac-
ker has the option to avoid distribution cost and the
Symbian Signed application testing. In addition,
Symbian will only be able to revoke the self-signed
certificate used in this case study, if Symbian beco-
mes aware of the malware binary existence.

The attack implementation was not successfully
completed in the Symbian platform. Even though the
implementation was performed with the officially
recommended development toolkits, the case study
developers were unable to compile their code. In ad-
dition, even the sample applications provided by
Symbian could not be compiled. The installation of
the development toolkit was fully automated and the
developers did not participate in its configuration.
Hence, the possibility of toolkit misconfiguration is
eliminated.

Table 4: Symbian OS Analysis and Results.

Evaluation Criteria Symbian OS
Development Tools Availability
Development Friendliness
Installation Vectors Multiple
Application Portability
Application Testing
Application Removal
Unofficial Repositories
Distribution Cost
API Restrictions
Application Signing
Developer’s Background M.Sc.
Development Time N/A

Furthermore, the developers faced other develop-
ment obstacles during our case study, namely inade-
quate structure in the platform’s API documentation
(e.g. encountered “file not found” links), and the fact
that they were not familiar with the platform’s prog-
ramming language. However, the obstacles reported
in this subsection are of a minor importance to an
experienced attacker; a case which is out of scope in
this paper. Hence, the above obstacles are likely to
deter unmotivated attackers from developing malwa-
re attacks. The results of the case study on Symbian
platform are presented in Table 4.

4.4 iOS Case study

The implementation of our simple location tracking
attack was successfully completed on Apple’s iOS.
The implementation lasted seven 7 days and was tes-
ted on emulators running iOS 3 (version 3.1.2) and
iOS 4 (version 4.1). The implementation duration
was expected a priori to last more than in the other
platforms due to no prior experience with Objective
C. However, the toolset provided by Apple (i.e.
SDK, documentation and emulator) minimized this
lack of experience. In Table 5 the relevant criteria
was assigned the value partial, since the provided
toolkit is available only to Mac OS X users.

The installation of applications to devices run-
ning the iOS system is only possible via Apple’s
App Store. Hence, unofficial application repositories
are not available for devices running the official ver-
sion of iOS. As a result, a malware author must sub-
mit the application to the official repository. The

submission of an application to the App Store requi-
res a non free registration to Apple’s development
program. Prior to the inclusion of an application in
the official repository it must be examined and sign-
ed by Apple. Nonetheless, the process of application
testing (e.g. static binary code analysis, dynamic
binary code analysis) is not available. The applica-
tion testing criteria are also not available, apart from
the rejection of not official Apple’s API usage. This
security mechanism may be circumvented by a sop-
histicated attacker using encrypted payloads and lo-
gic bombs on the binaries.

Table 5: iOS Analysis and Results.

Evaluation Criteria Apple’s iOS
Development Tools Availability partial
Development Friendliness
Installation Vectors restricted
Application Portability
Application Testing
Application Removal
Unofficial Repositories
Distribution Cost
API Restrictions
Application Signing
Developer’s Background M.Sc.
Development Time 7days

The user has no control on the application’s ac-
tions after the installation of an application in the
device. In addition, the user is not informed when
the application uploads data to a remote server. In
our case study, the user would only be prompted to
permit access to location data. But, as the applicati-

SMARTPHONE SECURITY EVALUATION - The Malware Attack Case

33

on is providing location based services the user is
expected to confirm access to location data.
Afterwards, the data would be transferred to the
attacker’s remote server, without the user noticing it.

Apple has developed security mechanisms allow-
ing the remote deletion of malicious applications
from its devices and their removal from the applica-
tion repository. This is a significant post installation
security mechanism in case Apple or the user beca-
me suspicious of the malware software. The results
of the case study in iOS platform are depicted in
Table 5.

4.5 Windows Mobile 6 Case Study

The implementation of our location tracking applica-
tion on a Windows Mobile device was successfully
completed by the student in 2 days. The program-
ming language was C#. The reasons of the effective-
ness of the attack implementation are the adoption
by the platform of programming language, namely
C# that resembles the programming rationale of Java
and the effective documentation of its API.

The proof of concept malware software was im-
plemented for the versions of Windows Mobile 6.1
and 6.5 using the SDK provided by Microsoft. The
installation package of the application was not sign-
ed. During the implementation the default configura-
tion of the security model was preserved, in essence
that: (a). unsigned applications would be allowed to
run, (b). the user would be prompted to authorize the
application execution, and (c). if the application had
been authorized by the user it would have full access
to the smartphone’s OS system services.

The security model of Windows Mobile does not
impose restrictions on the installation vector of ap-
plications. Moreover, applications are able to be ins-
talled on the devices even if they are downloaded
from a source outside Microsoft’s official repository.
Hence, the attacker does not have application distri-
bution costs. Furthermore, the application is not
being tested for malicious behaviour, since it is not
distributed by Microsoft distribution services. None-
theless, the application removal mechanism, applied
by Microsoft, may be used for the automated
removal of the implemented malware application.

To sum up, the feasibility of our malware attack
in Windows Mobile depends on the device configu-
rations regarding the security model, the user autho-
rization at installation time and the automated appli-
cation removal security mechanism. Table 6
summarizes the results, w.r.t. Windows Mobile plat-
forms.

Table 6: Windows Mobile OS Analysis and Results.

Evaluation Criteria Windows Mobile
Development Tools Availability
Development Friendliness
Installation Vectors multiple
Application Portability
Application Testing
Application Removal
Unofficial Repositories
Distribution Cost
API Restrictions
Application Signing
Developer’s Background B.Sc.
Development Time 2days

4.6 Case Study Overview

The security model of a smartphone operating sys-
tem has two contradicting goals. On the one hand, it
must provide users with security assurance concer-
ning the execution of third-party applications on
their devices. On the other hand, it must provide the
developers with a secure system where on the one
hand, consumers are willing to install new applicati-
ons and on the other, it is easy and efficient to im-
plement new applications.

The proof of concept exercise demonstrated that,
under certain circumstances, the security model of
all available smartphone platforms would not coun-
ter a location tracking attack. Moreover, it showed
that it is possible to easily implement the attack on
all smartphone platforms, except from Symbian and
iOS.

The reasons of the implementation failure on
Symbian were not security related. They were rela-
ted with the developer’s programming skills and
Symbian’s unstructured API documentation.

The implementation in all other platforms was
efficiently and effectively completed by average
programmers and tested on the officially provided
emulators. Nonetheless, by using the API document-
tation most of the attacks were implemented by the
undergraduate student. This is a serious indication of
how malicious software can evolve in smartphones.

Application testing for malicious behaviour
cannot be avoided only on Apple’s iOS. Furthermo-
re, iOS was the only platform having strict instal-
lation requirements.

Among the examined platforms only Windows
Mobile allowed, under some security model configu-
rations, the execution of unsigned applications. Yet,
the digital signature process gives different security
assurance to the smartphone holder on the examined
platforms. The user was found, on the one hand, not
having any control on the API running in the device,

SECRYPT 2011 - International Conference on Security and Cryptography

34

Table 7: Malware scenario implementation overview.

Evaluation Criteria Android BlackBerry Symbian iOS Windows
Mobile

SDK & simulator availability partial
Development Friendliness
Installation Vectors multiple multiple multiple restricted multiple
Application Portability
Application Testing
Application Removal
Unofficial Repositories
Distribution Cost
API Restrictions
Application Signing
Developer’s Background B.Sc. B.Sc. M.Sc. M.Sc. B.Sc.
Development Time 0.5day 1 day N/A 7days 2days

on some platforms. On the other hand, the user is
fully responsible for authorizing application executi-
on on other platforms. The latter is identified as a
major weakness in the security model of some
smartphones platforms, since the user’s security
knowledge and awareness is often insufficient.

Only in two smartphone platforms an attacker
could not avoid distribution costs and only four of
them contained remote application removal mecha-
nisms. Table 7 summarizes our findings.

According to the case study findings, a non pro-
ficient attacker would not choose to use the iOS as a
privacy and security attack vector, since it is the
platform having the most defensive mechanism in
place (i.e. application testing, controlled application
installation vectors and remote application removal)
and being difficult in application development. An
attacker is expected to use one of rest platforms,
where, in this case study, Android and Windows
Mobile were found to provide the least protection
against our attack scenario.

5 CONCLUSIONS

Smartphone devices are multi-purpose portable devi-
ces enclosing a vast amount of third party applica-
tions that augment the device’s functionality. The
existing smartphone security models facilitate mec-
hanisms and processes controlling the installation
and execution of third party applications. Even so,
the sufficiency of the adopted security mechanisms
seems to be controversial. Their ability to protect the
devices from being a privacy attack vector from de-
velopers, such as undergraduate and postgraduate
computer science students, is proven to be unclear.

Our paper (a). proposes evaluation criteria
assessing the development of smartphone malware,
and (b). provides a comparative case study analysis
where the implementation and distribution of proof
of concept location tracking malware is attempted in
the current smartphone platforms.

Our proof of concept study has proven that under
circumstances all smartphone platforms would not
stop average developers from using them as privacy
attack vectors, harvesting data from the device
without the user’s knowledge and consent. It also
showed the easiness of malware application deve-
lopment by average programmers that have access to
the official tools and programming libraries
provided by smartphone platforms.

A silver bullet solution against similar attack
scenarios is not available. Some of the solutions that
can be used to avoid a potential malware outbreak in
smartphones are: (a) user awareness, i.e. informing
user about security and privacy risks in smartphone
platforms, and (b) providing secure application
distribution in smartphone platforms.

In this context our further work will focus on
providing a secure application distribution scheme
for smartphone applications. Moreover, we plan to
extend the evaluation criteria and attribute weights
to them. We also plan to repeat the case study with
more developers to acquire more generalizable
results.

ACKNOWLEDGEMENTS

This work has been partially funded by the European
Union (European Social Fund) and Greek national
funds through the Operational Program Education

SMARTPHONE SECURITY EVALUATION - The Malware Attack Case

35

and Lifelong Learning of the National Strategic
Reference Framework - Research Funding Program:
HE-RACLEITUS II - Investing in Knowledge
Society.

REFERENCES

Adleman, L. (1990). An Abstract Theory of Computer
Viruses. In S. Goldwasser, Advances in Cryptology —
CRYPTO’ 88 (pp. 354-374). Berlin: Springer/
Heidelberg.

Apple. (2011a). iOS Dev Center. Retrieved February 18,
2011, from http://developer.apple.com/devcenter/ios/

Apple. (2011b). iOS Developer Program. Retrieved
February 18, 2011, from http://developer.apple.com/
programs/ios/

CISCO. (2011). Cisco 2010 Annual Security Report.
Retrieved February 18, 2011, from http://
www.cisco.com/en/US/prod/vpndevc/annual_security
_report.html

Cohen, F. (1989). Computational aspects of computer vi-
ruses. Computers & Security, 8(4), 325-344.

Gartner. (2010). Gartner Press Releases. Retrieved
February 18, 2011, from http://www.gartner.com/it/
page.jsp?id=1466313

Gartner. (2011). Gartner Press Releases. Retrieved
February 18, 2011, from http://www.gartner.com/it/
page.jsp?id=1529214

Google. (2011a). Exercising Our Remote Application
Removal Feature. Retrieved February 18, 2011, from
http://android-developers.blogspot.com/ 2010/06/
exercising-our-remote-application.html

Google. (2011b). Platform Versions. Retrieved February
18, 2011, from http://developer.android.com/
resources/ dashboard/platform-versions.html

Google. (2011c). Security and Permissions. Retrieved
February 18, 2011, from http://developer.android.com/
guide/topics/security/ security.html

GSMA. (2011). Mobile Privacy. Retrieved February 18,
2011, from http://www.gsmworld.com/our-work/
public-policy/ mobile_privacy.htm

Hogben, G., Dekker, M. (2011). Smartphone security:
Information security risks, opportunities and recom-
mendations for users. Retrieved from:

http://www.enisa. europa.eu/act/it/oar/ smartphones-
information-security-risks-opportunities-and-
recommendations-for-users/at_download/fullReport

Hypponen, M. (2006). Malware goes mobile. Scientific
American, 295(5), 70-77.

Kephart, J., White, S. (1991) Directed graph epidemiologi-
cal models of computer viruses. 1991 IEEE Symposi-
um on Research in Security and Privacy, 343-359.

Lineberry, A., Richardson, D., Wyatt, T. (2010). These
aren’t the permissions you ‘re looking for. Retrieved
from https://www.defcon.org/images/defcon-18/dc-18-
presentations/Lineberry/DEFCON-18-Lineberry-Not-
The-Permissions-You-Are-Looking-For.pdf

McAfee. (2010). 2011 Threats predictions. Retrieved from

http://www.mcafee.com/us/resources/reports/rp-threat-
predictions-2011.pdf

Microsoft. (2010a). Security Policy Settings. Retrieved
February 18, 2011, from http://msdn.microsoft.com
/en-us/library/bb416355.aspx

Microsoft. (2010b). Windows Mobile Code Signing.
Retrieved February 18, 2011, from
http://msdn.microsoft.com/en-us/windowsmobile/
dd569132.aspx

Microsoft. (2010c). Windows Mobile Device Security
Model. Retrieved February 18, 2011, from http://
msdn.microsoft.com/en-us/library/ bb416353.aspx

Microsoft. (2010d). Windows Phone 7 Series Developer
General FAQ. Retrieved February 18, 2011, from
http://social.msdn.microsoft.com/Forums/en/windows
phone7series/thread/2892a6f0-ab26-48d6-b63c-
e38f62eda3b3

Nokia. (2011a). Capabilities. Retrieved February 18,
2011, from http://wiki.forum.nokia.com/index.php/
Capabilities

Nokia. (2011b). Developer certificate. Retrieved February
18, 2011, from http://wiki.forum.nokia.com/index.php/
Developer_certificate

Nokia. (2011c). Symbian Signed. Retrieved February 18,
2011, from https://www.symbiansigned.com/app/page

PAMPAS. (2011). Pioneering Advanced Mobile Privacy
and Security. Retrieved February 18, 2011, from
http://www.pampas.eu.org/

RIM. (2011d). Java Code Signing Keys. Retrieved
February 18, 2011, from http://us.blackberry.com/
developers/javaappdev/codekeys.jsp

RIM. (2011e). Security Overview. Retrieved February 18,
2011, from http://docs.blackberry.com/en/developers/
deliverables/21091/Security_overview_1304155_11.jsp

Seriot, N. (2010). iPhone Privacy. Retrieved from http://
seriot.ch/resources/talks_papers/iPhonePrivacy.pdf

Sindhu, U., Balaouras, S., Hayes, N., Coit, L. (2010). The
Security of B2B: Enabling An Unbounded Enterprise.
Retrieved February 18, 2011, from

http://www.forrester.com/rb/Research/security_of_b2b_en
abling_unbounded_enterprise/q/id/56670/t/2

Smartphone Experts (2011). CrackBerry.com – The #1
Site for BlackBerry Users & Abusers. Retrieved
February 18, 2011, from http://crackberry.com/

Sophos (2011). Pirated Mac App Store apps pose major
risk. Retrieved February 18, 2011, from
http://nakedsecurity.sophos.com/2011/01/07/app-store -
developers-leave-purchased-apps-vulnerable-to-piracy/

Symbian Freak. (2011). S60 3rd ed. FP1 Hacked!
Retrieved February 18, 2011, from http://www.
symbian- freak.com/news/008/03/s60_3rd_ed_has_
been_hacked.htm

Theoharidou, M., Xidara, D., Gritzalis, D. (2008). A Com-
mon Body of Knowledge for Information Security and
Critical Information and Communication Infrastructu-
re Protection. International Journal of Critical Infra-
structure Protection, 1(1), 81-96.

Weiser, M. (1991). The computer for the 21st century.
Scientific American, 265 (3), 94-104.

SECRYPT 2011 - International Conference on Security and Cryptography

36

