
AN ADAPTABLE BUSINESS COMPONENT BASED ON
PRE-DEFINED BUSINESS INTERFACES

Oscar M. Pereira, Rui L. Aguiar
Instituto de Telecomunicações, University of Aveiro, Aveiro, Portugal

Maribel Yasmina Santos
Algoritmi Research Center, University of Minho, Guimarães, Portugal

Keywords: Component-based software, Adaptability, Business tier, Databases, Impedance mismatch.

Abstract: Object-oriented and relational paradigms are simply too different to bridge seamlessly. Architectures of
database applications relying on three tiers need business tiers to bridge application tiers and database tiers.
Business tiers hide all the complexity to convert data between the other two tiers easing this way
programmers’ work. Business tiers are critical components of database applications not only for their role
but also for the effort spent on their development and their maintenance. In this paper we propose an
adaptable business component (ABC) able to manage SQL statements on behalf of other components. Other
components may create in run-time a pool of SQL statements of any complexity and delegate their
management to the ABC component. The only constraint is that the SQL statements schema must be in
conformance with one of the predefined schemas (interfaces) provided by the ABC component. The main
contribution of this paper is twofold: 1) the presentation of an adaptable business component and 2) to show
that the ABC source code may be automatically generated. The main outcome of this paper is the evidence
that the ABC component is an effective alternative approach to build business tiers to bridge object-oriented
and relational paradigms.

1 INTRODUCTION

Good programming practices advise the
development of database applications relying on a
multi-tier architecture. The three tier architecture is
the most widespread one comprising the application
tier, the database tier and the middle tier known as
the business tier. The business tier may provide a
clear separation (technological, business and
administrative/administration) between host
databases and client applications (CA). When
database tiers and application tiers rely on different
paradigms, as the relational and object-oriented,
respectively, business tiers are responsible for
relieving programmers of client applications from
several critical issues being impedance mismatch
(David, 1990) the most noticeable one. Impedance
mismatch is an outcome of the diverse foundation of
both paradigms raising a major hindrance for their
integration, being an open issue for more than 50

years (Cook and Ibrahim, 2006). Despite their
advantages, business tiers present some weaknesses
among them we emphasize their inertia to evolve in
consequence of maintenance needs. These needs
may have their origin in the need for new queries,
the need to update existent queries or changes in the
database schema. Inertia may reach increased
relevancy if SQL statements are wrapped into
classes with improved usability to ease their usage
by programmers of client applications. In this case,
maintenance activities will not only comprise lower-
level issues as writing or re-writing the SQL queries
but will also comprise the development or
maintenance of the involved wrappers to keep their
usability (examples: getter and setter methods).
Figure 1 shows a simple example of two interfaces
to wrap the SQL statement Select id, fName, lName,
grade from …. A study reported in (Keene, 2004)
shows that business tiers may consume up to 30%-
40% of the total effort of a project. The difficulties
to build and maintain business tier components may

92 M. Pereira O., L. Aguiar R. and Santos M..
AN ADAPTABLE BUSINESS COMPONENT BASED ON PRE-DEFINED BUSINESS INTERFACES.
DOI: 10.5220/0003462100920103
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 92-103
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

have a shelter on the Component-Based Software
Engineering (CBSE) (Heineman and Councill,
2001) subject. CBSE is widely recognized as a sub-
discipline of Software Engineering to build complex
systems. The main goals of CBSE are threefold: 1)
to provide guidelines for the development of
systems as assemblies of components; 2) to provide
guidelines for the development of components as
reusable artifacts and finally 3) to provide guidelines
for the maintenance of systems through the adaption
and replacement of their constituent components.
Using commercial off-the-shelf (COTS) software
components to build software systems may be seen
as a goal for many system architects. Unfortunately,
component reutilization may raise several
technological difficulties and, maybe not least
important, may easily gather voices against its
adoption. In reality, despite the relevancy of the
CBSE postulates, several issues are difficult to
tackle as the replacement and adaptation of
components. Component replacement has some
disadvantages conveying an impact on the overall
system. Some of the disadvantages are (Costa et al.,
2007): 1) the state of the replaced component may
be lost; 2) component or even system availability
may be affected; 3) performance decay during the
replacement process – additional power computation
is required. In order to avoid the replacement of
components, components must be able to adapt
dynamically at run-time, which is one of the crucial
aspects of CBSE (Bracciali et al., 2005). The
adaptation of components should comprise not only
the configuration process but mainly the
replacement of old services and also the definition
of new services in a seamlessly way.

Figure 1: Example of interfaces to wrap a business entity.

In this paper we are focused on a reusable
business tier component for database applications
where client applications are developed in the
object-oriented paradigm and the host database
relies on the relational paradigm. The component is
herein known as Adaptable Business Component
(ABC). ABC component pretends to achieve the
following three main goals: to comply with full
expressiveness of SQL, to provide an enhanced
usability from client applications point of view and
to provide supervised adaptability to SQL

statements deployed in run-time. Full SQL
expressiveness is achieved by using Call Level
Interfaces (CLI) (ISO, 2003) as a low-level API to
communicate with the host database. Call Level
Interfaces will be addressed with some detail in
Section 4. Usability is assured by the implemented
interfaces to communicate with client applications.
These interfaces are based on the schema of the SQL
statements and are also type-safe. This issue will be
addressed with more detail in Section 5. Supervised
adaptability is assured by the ability to dynamically,
in run-time, as a server component, receive
messages from “authorized” entities to accept new,
remove existent and update existent SQL statements
of any complexity and, on behalf of client
applications, manage their execution. The results of
their execution are accessible to client applications
through the aforementioned interfaces. This issue
will be addressed with more detail in Section 5 and
Section 6. Figure 2 presents a general view of the
interaction between ABC components and other
client entities. Authorized entities may create and
update a pool of SQL statements in run-time and
delegate their management to the ABC component.
Then client applications may ask the execution of
SQL statements through the interfaces provided by
the ABC components.

Figure 2: General view of CA and ABC interactions.

In this paper we are focused on defining a
strategy based on software product lines for business
tier components in the context of CBSE. Software
product lines address specific needs of a domain
analysis and are developed from a set of assets that
share the commonality of particular features
(Clements and Northrop, 2001). Some of the main
advantages of software product lines approach are:
reduced time-to-market (Hetrick et al., 2006),
reduced cost (Pohl et al., 2005) and improved
quality (Pohl et al., 2005, Hetrick et al., 2006).
Product-lines enable more effective component
reuse (Griss, 2000).

It is expected that the outcome of this paper will

AN ADAPTABLE BUSINESS COMPONENT BASED ON PRE-DEFINED BUSINESS INTERFACES

93

contribute to open a new approach to the
development of business tier components.

Throughout this paper all examples are based on
Java, SQL Server 2008 and JDBC for SQL Server
(sqljdbc4.jar). Code may not execute properly since
we only show the relevant parts for the points under
discussion.

The paper is structured as follows. Section 2
presents the motivation; Section 3 presents the
related work; Section 4 concisely presents the
JDBC; Section 5 presents ABC architecture; Section
6 presents ABC Life-Cycle and Section 7 present
the final conclusion and future work.

2 MOTIVATION

Database applications of some complexity may
comprise hundreds of SQL statements to deal with
business requirements. This leads to situations
where the development and maintenance processes
of business tiers are very tedious and exhaustive.
Programmers are pushed to write similar source
code for each SQL statement. Moreover, Select
statements with a long select-list also convey to a
repetitive source code around each element of the
select-list in order to read its value. There should
exist a methodology to relieve programmers from
these tedious, exhaustive and error-prone processes.

-- a simple query
Select p.id,p.fName,p.lName
 From pilot p

-- a more complex query
select p.id,p.fName,p.lName
 From pilot p,circuit c,classif f
 Where p.id=f.id and
 f.date=c.date and
 f.position between 1 and 3
 Group by p.id,p.fName,p.lName
 Having count(f.position)=
 (select count(*) from ...)
Union
Select ...
 ...

Order by ...

We may classify SQL statements in two orthogonal
groups: by complexity and by schema. Complexity
says if a SQL statement is simple or complex. The
schema characterizes each SQL statement in terms
of the schema of its parameters and the schema of
the returned relation (only for Select statements). An
SQL statement may be simple and have a simple or
a complex schema or an SQL statement may be
complex and have a simple or a complex schema.
Moreover, several SQL statements, simple or

complex, may share the same schema. The two
queries previously presented share a simple schema.
The first query is very simple and the second query
is not very simple. The code to execute the query
and to read the returned data is the same for both
queries. This evidence raises the following question:
if several SQL statements may share the same
schema why not make use of it to optimize the
source code editing process? The first question to be
put is: “Have we been spreading boilerplate code in
business tiers?”. Another relevant issue is the access
and manipulation of data/information/ knowledge
kept in databases. While the issue previously
discussed was essentially technological, the access
and manipulation of data/information/knowledge
concerns the soul of companies. Very often
data/information/knowled-ge is the most important
asset in companies conveying an unavoidable need
to completely control and protect it.

In this paper we present the ABC component
relying on an architecture aimed at coping with two
important features: 1) Re-use of source code to
manage different SQL statements, simple or
complex, defined after ABC deployment (the unique
constraint is the common schema they must rely on).
2) To follow the separation of concerns regarding
the use of ABC components by programmers of
client applications from all other issues related to the
development, configuration and administration
processes.

3 RELATED WORK

In (Schmoelzer et al., 2006) is presented a concept
for model-typed interfaces concept relying on
generic interface parameters. These parameters are
characterized as Model-defined Types whose
schema is defined by a Data Model. The authors
claim that by this way complex data structures
(based on Data Models) may be transferred between
components in a single method invocation avoiding
successive calls to accomplish the same task. This
methodology is very useful when two conditions
occur simultaneously: 1) the involved components
do not share the same working address space and 2)
the component playing the client role has full
control and knowledge about the amount of data
being transferred. In this work ABC components
share the same address space as client applications
and the access to the returned data (from Select
statements) is to be implemented in attribute by
attribute and row by row basis. This work could

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

94

profit from (Schmoelzer et al., 2006) if or when
ABC components and client application run in
different address spaces.

Data Transfer Objects (Flower, 2002) is a design
pattern used whenever an entity gathers a group of
attributes that must be accessed in a swift way.
Accessing those attributes one by one through a
remote interface raises several disadvantages such as
the increase of the network traffic, latency is
increased, performance is negatively affected,
demand on server and client processing is increased.
Data Transfer Objects are tailored to address these
situations. They are organized in serializable classes
gathering the related attributes and forming a
composite value. An entire instance of the serialized
object is transferred from the server to the client.
This approach is quite similar to the previous
conveying the same disadvantages.

O/RM tools (Hibernate (Bauer and King, 2007),
TopLink (2011), LINQ (Erik et al., 2006)) are
powerful tools to integrate object-oriented
applications with relational databases. Their
extended functionalities are mostly used to build
persistent business tiers relying on object to
relational mapping techniques. They may also
support native queries, proprietary SQL language,
language extensions and other relevant tools to ease
programmers’ work. Their scope is too wide and
deeply diverges from the scope of this work.
Anyway, if required, ABC components may be
developed with and above O/RM frameworks. Their
services have to be coordinated, integrated and
wrapped by the architecture herein presented.

4 JDBC

One of the key requirements of ABC component is
the ability to execute any SQL statement, very
simple ones and very complex ones. Before this
requirement, the option for a database driver (DB
Driver) is a key issue. The choice fell upon low-
level APIs being Call Level Interfaces an important
candidate. Call Level Interfaces are considered
important options whenever performance and SQL
expressiveness are considered key issues (Cook and
Ibrahim, 2006). Call Level Interfaces provide
mechanisms to encode Select, Insert, Update and
Delete SQL expressions inside strings, easily
incorporating the power and the full expressiveness
of SQL. JDBC (Microsystems, 2008) and ODBC
(Microsoft, 2010) are two of the most relevant Call
Level Interfaces. We will explore JDBC as

representative of Call Level Interfaces. JDBC has
two main interfaces to manage the execution of SQL
statements: the Statement interface (Microsystems,
2010b) and the ResultSet interface (Microsystems,
2010a). The Statement interface is used to execute
SQL statements and to return the possible results
they produce (only for Select statements). The
returned results are managed by the ResultSet
interface. Loosely speaking, ResultSet interface
provides two orthogonal functionalies: scrollability
and updatability. Scrollability defines the ability to
scroll over the retuned relation from the database.
There are two possibilities: forward-only – in this
case cursors may only move forward one row at a
time; scrollable – in this case cursors may move in
any direction and jump several rows at a time.
Updatability defines the capacity to change the in-
memory data managed by the ResultSet interface
and therefore the content of the host database. There
are two possibilities: read-only – the content of the
ResultSet is read-only and, no changes are allowed;
updatable – changes may be performed over the in-
memory data (insert new rows, update current rows
and delete rows). These functionalities are defined at
instantiation time of the parent Statement (or
PreparedStatement) entity and will be incorporated
and made available in the ABC architecture.

5 ABC ARCHITECTURE

The main goal of this paper is to present a
component, known as ABC component, with the
ability to manage and execute a pool of SQL
statements on behalf of client applications. The pool
of SQL statements is dynamically updated in
runtime by an external authorized entity. From client
applications (CA) point of view ABC components
always play the role of server components. From
host database point of view ABC components
always play the role of client components. Figure 3
presents a possible deployment of database
applications relying on ABC components. The
communication between client applications and
ABC components are always through predefined
interfaces. The static architecture of ABC
components comprises three main blocks: Business
Manager (BM), Business Entities (BE) and the
Database Driver (DB Driver), as shown in Figure 4.
The DB Driver is the block responsible for
providing the required services to manage the
communication with a local or remote database
management system (DBMS).

AN ADAPTABLE BUSINESS COMPONENT BASED ON PRE-DEFINED BUSINESS INTERFACES

95

Figure 3: Possible deployment for database applications.

Figure 4: ABC main blocks.

The services include, but not exclusively, the
management of connections to the database and the
execution of SQL statements. Business Entities are
responsible for the definition of contracts between
ABC components and client applications. Each
contract is specified by one interface. Business
Manager is responsible for the management of the
local pool of SQL statements. Business Manager
also manages a local pool of active connections with
the database in order to improve the overall system
performance. This functionality demands the
interaction between the Business Manager block and
the DB Driver block. The connection pool is out of
the scope so it will not be addressed in this paper.

5.1 DB Driver

DB Driver is responsible for providing internal
services to ABC components in order to ease their
communication with the host DBMS. The choice for
the specific DB Driver depends on several issues as
the host DBMS and the host programming language
of the client application. In this paper the
programming language is Java and the host DBMS
is SQL Server 2008 and, therefore, we will use
sqljdbc4.jar, which is an implementation of JDBC
for SQL Server. In this paper we will present ABC
components architecture coping with the following
functionalities of ResultSet: forward-only and read-
only, forward-only and updatable, scrollable and
read-only and, finally, scrollable and updatable.

5.2 Business Entities

Business Entities (BE) are software artifacts respon-

sible for the implementation of contracts (services)
between ABC components and client applications.
Each Business Entity implements one contract
which is specified by an interface known as
Business Interface (BI). ABC components may
comprise one or more Business Entities. Figure 5
presents a concise class diagram for Business
Entities and Business Interfaces. The correspondent
dynamic artifacts are the

Figure 5: BE and BI.

Business Workers (BW). Business Workers are
active entities, in other words, are running instances
of Business Entities. A Business Worker accepts one
SQL statement whose execution context is in
accordance to the Business Interface implemented
by its source Business Entity. Thus, Business
Entities address the key issue of reuse of
computation (Elizondo and Lau, 2010). Figure 6
presents the basic relation between Business Entities
and Business Workers.

Figure 6: Relationship between BE and BW.

SQL statements are defined through the setSQL to
allow its definition and updating processes to be
carried out after Business Workers instantiation.
These processes are managed by Business Manager
in a transparent way for client applications.

5.2.1 Business Interfaces

A Business Interface is a contract that a Business
Entity is committed to implement. Business
Interfaces define how client applications and
Business Entities may communicate. The schema of
a Business Interface is directly dependent on the
queries to be processed and, in case of Select
statements, on the functionalities to be made

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

96

available (scrollability and updatability). There are
three types of Business Interfaces: 1) Alter Business
Interface (A-BI) – for Insert, Update and Delete
SQL statements; 2) Select Active Business Interface
(SA-BI) – for Select SQL statements that create
updatable ResultSets and 3) Select Passive Business
Interface (SP-BI) – for Select SQL statements that
create read-only ResultSets. Select Active Business
Interfaces and Select Passive Business Interfaces
implement one of the two scrollability facets:
forward-only or scrollable.

Before delving into the Business Interfaces
details, let’s consider a single table with the
following schema:

Table(SqlDT1 att_1,
 SqlDT2 att_2,
 ...,
 SqlDTn att_n)

where SqlDTn is the SQL data type of the attribute
att_n. The correspondent data type of SqlDTn in the
host programming language is represented by DTn.
This table will be used as the basis for the Business
Interfaces specification. Each Business Interface
may be considered as aggregations of sub-interfaces.
Therefore, we will begin the description of Business
Interfaces by their elementary sub-interfaces.

The sub-interface IExecute, presented in Figure
7, is shared by all Business Interfaces. It comprises
only one method. This method is invoked by client
applications to trigger the execution of the
associated SQL statement.

Figure 7: Sub-interface IExecute.

The method may be invoked as often as necessary to
re-execute the SQL statement. The argument args
comprises all the arguments to be used in conditions
inside the SQL statement and also as the values to
be inserted or updated on tables of the host database.
As an example, the following SQL statement:

Update Table
 Set (att_1=@v_1,
 att_n=@v_2)
 Where (att_2=@v_3);

leads to the following signature:

void execute(DT1 v_1,
 DTn v_2,
 Dt2 v_3)

The sub-interface IGet gathers all necessary
methods to read all attributes of one row from the
ResultSet in-memory data.

Select *
 From Table

For the SQL statement the correspondent IGet
interface is presented in Figure 8. The method
signatures are based on the schema of the Select
statement and are also type-safe.

Figure 8: Sub-interface IGet.

These features improve ABC component
usability when compared with the standard JDBC
API. Users of ABC components are before
signatures type-safe and schema oriented easing this
way both the understanding of their meaning and the
associated data-type.

The sub-interface ISet gathers all necessary
methods to update/insert data in the ResultSet in-
memory. This is only possible if the ResultSet is
updatable. For the statement the correspondent ISet
interface is presented in Figure 9. The signatures of
setter methods are based on the schema of the Select
statement and are also type-safe as with the IGet
interface. The remaining methods are used to
implement the protocols to update and to insert
rows.

Select *
 From Table

Figure 9: Sub-interface ISet.

The sub-interface IFowardOnly comprises all
methods associated to the scrolling policy of
forward-only ResultSets. Figure 10 only presents the
main method which allows the cursor to move one
row forward.

AN ADAPTABLE BUSINESS COMPONENT BASED ON PRE-DEFINED BUSINESS INTERFACES

97

Figure 10: Sub-interface IForward-only.

The sub-interface IScrollable gathers all methods
associated to the scrolling policy of scrollable
ResultSets. Figure 11 only presents three of the main
methods.

Figure 11: Sub-interface IScrollable.

All the sub-interfaces of Business Interfaces
have been individually presented. Now let’s present
the schema for each Business Interface type. Figure
12, Figure 13 and Figure 14 present the Business
Interfaces for A-BI, SP-BI and SA-BI, respectively.

A-BI, shown in Figure 12, only comprises the
interface IExecute.

Figure 12: A-BI interface.

SP-BI, shown in Figure 13, comprises three
interfaces: IExecute, IGet and, depending on the
instantiation of the parent Statement interface,
IForwardOnly or IScrollable.

Figure 13: SP-BI interface.

SA-BI, shown in Figure 14, comprises four
interfaces: IExecute, IGet, ISet and, depending on
the instantiation of the parent Statement interface,
IFoward or IScrollable.

Figure 14: SA-BI interface.

5.2.2 Business Workers

Business Entities are classes and Business Workers
are running instances of those classes. From each
Business Entity it is possible to create as many
Business Workers as necessary. Each Business
Worker is identified by its type (parent Business
Entity) and the SQL statement to be executed. Each
SQL statement is uniquely identified by a token.
There cannot be two tokens with the same value in
the same ABC component instance. Business
Workers instantiated from the same Business Entity
are called sibling Business Workers. Business
Workers running the same SQL statement are called
true sibling Business Workers and Business
Workers running different SQL statements are
called false sibling Business Workers. Examples of
two SQL statements managed by the same Business
Entity and, therefore, running on false sibling
Business Workers could be:

Select *
 From Table
 Where att_1=@v_1

Select t1.*
 From Table t1, Table t2
 Where t1.att_1=@v_1 and
 t1.att_2=t2.att_2 and
 t2.att_3=1

Despite some restrictions, each Business Entity
may support an unlimited set of SQL statements.
SQL statements may be as simple or as complex as
necessary. The restrictions are only centered on the
implemented Business Interface. Particularly the
interface IExecute, execute(args), may eventually
convey a significant weakness on the Business
Entity adaptability. This weakness is felt at the level
of the SQL statements where and having clauses.
Anyway, if required, this weakness may be avoided
by using the following signature void execute().
From now on, the SQL statement parameters, if
required, must be set by the client application as
shown in the following example:

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

98

Select *
 From User
 Where Grade>10 and Grade<16 and
 Substring(FName,1,1) like ‘A’

This strategy may improve Business Entities’
flexibility but forbids the use of parameterized
queries as pre-parsed queries (prepared statements in
JDBC) provoking this way decrease in performance.
Another important drawback of this approach is the
decrease of ABC usability: IExecute may no longer
be used to help programmers on setting up the
parameters of SQL statements.

5.3 Business Manager

The Business Manager is the entry point of all ABC
components. ABC’s administrators and
programmers of client applications access ABC
components functionalities through their entry static
methods. Business Manager has a static method for
each Business Entity to create a singleton instance
of its factory class, as shown in Figure 15. Business
Entities factories implement two interfaces, see
Figure 16: one is only at administrator’s disposal to
update the pool of SQL statements and is known as
IAdm. The other interface is at common
programmers’ disposal to create Business Workers
and is known as IUser. Each SQL statement to be
used by Business Workers is uniquely identified by
a token defined by administrators in the add method.
The class diagrams for the interfaces is shown in
Figure 17.

Figure 15: Business Manager.

Figure 16: Business Entity Factory.

Figure 17: Interfaces of Business Entities Factories.

The next blocks of code depicts examples of
source code to create SQL statements in the pool
and source code to create a Business Worker.

// add SQL statement
IAdm a=Manager.factory_BE_a();
a.add(tk_a1,sql_a1);
a.add(tk_a2,sql_a2);
// create Business Worker
IUser u=Manager.factory_BE_a();
BI_ai a=u.createBusinessWorker(tk_a1);

6 ABC LIFE CYCLE

ABC components comprise two types of software
sources: outsource (software from other suppliers)
and insource (software developed to ABC
components). Table 1 presents the main sub-systems
by software source used in our examples. The
catalog of ABC components is defined within the
context of idealized component life cycle (Kung-
Kiu and Zheng, 2007). The life cycle is based on the
development for reuse and development with re-use
processes in accordance to CBSE principles and
considers three phases: design, deployment and
runtime.

Table 1: ABC sub-systems/source.

Source Sub-system
outsource DB driver

insource

Manager
Business Entities
Business Interfaces

6.1 Design Phase

The design phase is focused on the development of
ABC components. Developers of ABC components
may follow three distinct approaches: global
approach, the activity approach or the entity
approach. The entity approach is based on the
development of ABC components with only one
business entity. The activity approach is based on
the development of ABC components by each
activity such as accounting, clients, suppliers,
warehouse, data warehouse and OLAP. The global
approach is based on the development of a single
ABC component for all activities.

It is also possible to follow any combination of
the three approaches. The decision is up to the
system administrator. Independently of the chosen
approach, each ABC component may deal with
several actors where each one plays a specific role
conditioned by the queries he may execute.

AN ADAPTABLE BUSINESS COMPONENT BASED ON PRE-DEFINED BUSINESS INTERFACES

99

Figure 18: Widget to create S-BI.

Different instances of the same ABC component
may run different sets of SQL statements for each
Business Entity this way promoting its reuse by
different actors. Moreover, every software
subsystem (SS), such as warehouse management,
gathers several activities such as clients, suppliers
and orders this way promoting the component
reutilization. There is a wide range of possibilities
for component reuse: by activity, by actor or any
other combination. Business Interfaces cannot be
modified, added or removed after the design phase.

They materialize the contract between each
individual ABC component and client
applications. Client applications trust ABC
components to manage SQL statements since each
SQL statement is in conformance with one of the
implemented Business Interfaces. Any change in
the contract after the design phase of ABC
components compels the re-opening of the design
phase. After the design phase SQL statements may
be created as needed (this is the degree of freedom
they have) but each SQL statement must be in
conformance with one of the available Business
Interfaces (this is the restriction they must obey).

The insource code for each ABC component
may be generated by a tool as the one shown in
Figure 18. Only the GUI used to create Select

Business Interfaces is shown. We may see 3
Business Interfaces in the pool (BI_Course,
BI_Subject, BI_Degree) and a new one is being
edited (BI_Student) and ready to be inserted in the
pool. This Business Interface supports, for
example, the following SQL statement:

Select id,firstName,lastName,
 crsId,grade
 From Student
 Where id=@id

Figure 19 shows a partial view of the
correspondent BI_Student.

Figure 19: Partial view of BI_Student.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

100

The next code concisely shows the Java source
code for the methods gId() and sId(int v).

ResultSet rs=...
...
public int gId() {
 return rs.getInt(1);
}
public void sId(int v)
{
 rs.updateInt(1,v);
}

Alternatively, the insource source may be derived
from a general model herein known as the
Business Component Model (BCM). In order to
automatically generate the insource code the
Busuiness Component Model requires the
following information:
 For each Business Entity: 1) Its type: alter,
select passive or select active; 2) the Business
Interface schema; 3) the scrollability policy.
 The source code programming language.
 The host database management system.
 The DB Driver to be used

These two approaches, a tool or the BCM, relieves
programmers from writing any source code and
therefore to avoid the deployment of ABC
components with undesirable errors.

The final stage of the design stage is attained
when ABC components are compiled and packed
as components ready to be deployed.

As summary, the design phase embodies the
process of development for reuse and is mostly
focused on the definition of Business Interfaces to
be implemented by reusable ABC components.
The concrete SQL statements to be deployed in
each instance of an ABC component are not
defined in the design phase but in a later phase.

6.2 Deployment Phase

In the deployment phase, developers use ABC bi-
nary components to develop each subsystem of
their database applications. Developers may play
the role of an administrator developer or the role of
a common developer. The former role is used to
write source code to update the pool of SQL
statements. The latter role is used to write source
code for subsystems. Database applications may
incorporate one or more subsystems, each
subsystem may incorporate one or more activities
and each activity may support one or more actors.
System administrators may define the strategy for
the ABC components reutilization in the
deployment phase. Common developers may not

know anything about the SQL statements to be
made available in each ABC component. All they
need to know is the location of the required SQL
statement in terms of ABC component instance
and Business Entity.

As summary, the deployment phase embodies
the process of development with reuse.

6.3 Runtime Phase

In this phase all components are running. Figure
20 concisely presents a possible running phase of
two subsystems, SS_a and SS_b. Figure 20 a)
shows two instances of SS_a (SS_a1, SS_a2).
Both share the same business components, ABC_y
and ABC_w. If SS_a1 and SS_a2 correspond to
two different actors, the SQL statements available
to each one may be different. Figure 20 b) shows
one instance of SS_b (SS_b1). It embodies two
shared ABC components with ABC_a (probably
with its own sets of SQL statements) and also the
ABC_z component.

Remind that the SQL statements are created
and updated in run-time through the IAdm
interface which is not shown. The administrator
role may or may not be protected by some security
policy such as authentication and/or authorization
to grant access to the configuration process. This
topic is out of scope of this work.

6.4 Seamless Operation

SQL statements updating process is executed in a
seamless way. This means that the process to
insert, update or delete SQL statements from the
pool of ABC components may be executed without
any restrictions. Actually, ABC components
assume a passive attitude. They do not provide any
service to inform client applications from any
relevant or critical occurrences.

These occurrences should be coordinated
between client applications and the component that
plays the administrator role.

Inserting new SQL statements does not raise
any critical question. Subsystems are not allowed
to use what still do not exist. The identification
token should only be available after inserting the
SQL statement into the pool. Updating and
removing SQL statements that are being used by
one or more Business Workers are the critical
situations. When a SQL statement is being used
and it is updated or removed, Business Workers
keep their states unchanged.

AN ADAPTABLE BUSINESS COMPONENT BASED ON PRE-DEFINED BUSINESS INTERFACES

101

Figure 20: Client application and ABC components deployment.

This assures that client applications may continue
their work. Business Workers’ state will only be
updated when the client application re-invokes the
execute method. Then, Business Workers will re-
execute the most recent SQL statement. The
execute() method should not be invoked if the SQL
statement has been removed from the pool. To
prevent any undesirable situation, it is advisable
that client applications become aware of the
actions taken by the administrator in order to
proceed with the most convenient measures.
Business Manager does not interfere or change the
state of any Business Worker. The states of
Business Workers are always under sub-systems’
control. Therefore, each application should define
its own protocol between administrator and
application components.

7 CONCLUSIONS

In this paper we have presented an adaptable
business component to bridge object-oriented
applications and relational databases. ABC
components are in line with the context of CBSE
supporting the process of development for reuse
and development with reuse. The reutilization
intensity is determined by the chosen approach for
the development of ABC components (global,
activity, entity or mixed) and also by the intensity
of reuse of computation. The ABC component
main architecture relies on Business Entities
created before the deployment of ABC
components. Business Entities define the contracts,
based on Business Interfaces, between ABC
components and client applications. Each Business
Entity is able to manage any set of SQL statements
that conform to its associated Business Interface.
Moreover, SQL statements may be deployed to
each running instance of ABC component in an

unbalanced way. This means that the same
Business Entity may have different sets of SQL
statements in two different running instances of the
same ABC component. The SQL statements
update process is accomplished in run-time, in any
moment and as often as necessary.

All Business Interfaces were designed to
improve, from programmers’ point of view, the
usability of ABC components. The signatures of
their methods are type-safe and syntactically based
on the schema of their SQL statements.

The development of ABC components is
completely decoupled from the development of
client applications. Moreover, the process of
definition and deployment of SQL statements on
each running instance of ABC components may be
completely controlled by authorized entities. These
two issues allow the separation of concerns
through the definition of two main actors:
administrators and common programmers.

Despite its complexity, source code of ABC
components may be automatically generated by a
tool or through a Model Driven Engineering
process relieving programmers from the manual
development and maintenance processes.

As an outcome of this work, it is expected that
this work may open new approaches to the
development of business components for database
applications. Future work may be divided in two
stages: short term and long term.
Short term: 1) Assess and compare ABC
performance with a solution based on a standard
JDBC. 2) Evolve Business Interfaces in order to
support a client-server architecture
Long term: 1) Create a Wide Business Entity able
to manage any SQL statement. Its Wide Business
Interface supports all known Business Interfaces
and, in run-time, by analyzing the metadata
returned by queries and by reflection uses the
correct interface to communicate with the client

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

102

application. 2) Assess and compare the Wide
Business Entity performance with the standard
Business Entities.

REFERENCES

2011. Oracle TopLink [Online]. Oracle. Available:
http://www.oracle.com/technetwork/middleware/top
link/overview/index.html [Accessed 2011 Feb].

Bauer, C. & King, G. 2007. Java Persistence with
Hibernate, Manning.

Bracciali, A., Brogi, A. & Canal, C. 2005. A formal
approach to component adaptation. Journal of
Systems and Software, 74, 45-54.

Clements, P. & Northrop, L. 2001. Software Product
Lines: Practices and Patterns, Addison-Wesley.

Cook, W. & Ibrahim, A. 2006. Integrating programming
languages and databases: what is the problem?
Available: http://www.odbms.org/experts.aspx#
article10 [Accessed 2006].

Costa, C., Pérez, J. & Carsí, J. 2007. Dynamic
Adaptation of Aspect-Oriented Components. In:
Schmidt, H., Crnkovic, I., Heineman, G. & Stafford,
J. (eds.) Component-Based Software Engineering.
Springer Berlin / Heidelberg.

David, M. 1990. Representing database programs as
objects. Advances in Database Programming
Languages. N.Y.: ACM.

Elizondo, P. V. & Lau, K.-K. 2010. A catalogue of
component connectors to support development with
reuse. Journal of Systems and Software, 83, 1165-
1178.

Erik, M., Brian, B. & Gavin, B. 2006. LINQ: reconciling
object, relations and XML in the .NET framework.
In: ACM SIGMOD International Conference on
Management of Data, Chicago,IL,USA. ACM, 706-
706.

Flower, M. 2002. Patterns of Enterprise Application
Architecture, Addison-Wesley.

Griss, M. L. 2000. Implementing product-line features
by composing aspects. Proceedings of the first
conference on Software product lines : experience
and research directions. Denver, Colorado, United
States: Kluwer Academic Publishers.

Heineman, G. T. & Councill, W. T. 2001. Component-
Based Software Engineering:Putting the Pieces
Together, Addison-Wesley.

Hetrick, W. A., Krueger, C. W. & Moore, J. G. 2006.
Incremental return on incremental investment:
Engenio's transition to software product line
practice. Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming
systems, languages, and applications. Portland,
Oregon, USA: ACM.

ISO 2003. ISO/IEC 9075-3:2003. In: STANDARDS, I.
(ed.). ISO.

Keene, C. 2004. Data Services for Next-Generation
SOAs. WebServices Journal [Online], 4. Available:
http://soa.sys-con.com/read/47283.htm [Accessed
2011 Jan].

Kung-Kiu, L. & Zheng, W. 2007. Software Component
Models. Software Engineering, IEEE Transactions
on, 33, 709-724.

Microsoft. 2010. Microsoft Open Database Connectivity
[Online]. Microsoft. Available: http://msdn.micro
soft.com/en-us/library/ms710252(VS.85).aspx [Acce
ssed 2010 Mar 18].

Microsystems, S. 2008. JDBC Overview [Online]. Sun
Microsystems. Available: http://java.sun.com/pro
ducts/jdbc/overview.html [Accessed 2010 Feb 27].

Microsystems, S. 2010a. Interface ResultSet [Online].
Sun Microsystems. Available: http://java.sun.com/
javase/6/docs/api/java/sql/ResultSet.html [Accessed
2010 Jul].

Microsystems, S. 2010b. Interface Statement [Online].
Sun Microsystems. Available: http://java.sun.com/
javase/6/docs/api/java/sql/Statement.html [Accessed
2010 Jul 2010].

Pohl, K., Bockle, G. & Linden, F. J. V. D. 2005.
Software Product Line Engineering, Springer.

Schmoelzer, G., Teiniker, E., Kreiner, C. & Thonhauser,
M. 2006. Model-typed Component Interfaces. In:
Software Engineering and Advanced Applications,
2006. SEAA '06. 32nd EUROMICRO Conference
on, Aug. 29 2006-Sept. 1 2006. 54-63.

AN ADAPTABLE BUSINESS COMPONENT BASED ON PRE-DEFINED BUSINESS INTERFACES

103

