
VARIANT LOGIC META-DATA MANAGEMENT FOR MODEL
DRIVEN APPLICATIONS

Allows Unlimited End User Configuration and Customisation of All Meta-data EIS
Application Features

Jon Davis and Elizabeth Chang
Curtin University of Technology, Curtin Business School, Bentley, 6102, Australia

Keywords: Meta-data, Meta-model, Variant, customisation, Logic, EIS, Lifecycle, Version control, Version
management.

Abstract: The scope for end users to influence the design and functionality of off the shelf Enterprise Information
system (EIS) applications is usually minimal, requiring pursuing expensive vendor supported
customisations. Our ongoing development of temporal meta-data EIS applications seeks to overcome these
issues, through modelling rather than coding, and with the meta-data model supporting the capability for
end users to define their own application logic meta-data, to supplement or replace the originating vendor’s
pre-defined application logic, as what we term Variant Logic. Variant Logic can be applied to any object
defined in a meta-data EIS application, and can be defined by any authorised user, without the need for
additional coding, and is available for immediate execution by the framework runtime engine. Variant Logic
is also preserved during automated meta-data application updates.

1 INTRODUCTION

Almost every application that is in practical use is
the result of hard coded program logic that has been
compiled and deployed for use as part of a
developer’s release schedule with minimal scope for
end users to influence the design and functionality of
the application without expensive customisations.

Our ongoing development of a temporal meta-
data framework for EIS applications seeks to
overcome these issues, as an example of the model
driven engineering paradigm. A meta-data EIS
application is defined and stored as a model, without
the need for additional coding, for direct execution
by an associated runtime engine.

A specific objective of the framework is to also
provide the capability for end users to define and
create their own application logic, to supplement or
replace a vendor’s pre-defined application logic, as
what we term Variant Logic, to become an alternate
variation of the application logic.

Variant Logic can be applied to any object
defined in a meta-data EIS application whether;
visual objects, logical processing objects, or as data
structures. Variant Logic can be defined by any

authorised user and can be executed by any user as
an alternative to the original application logic, and
without the need for additional coding as per the
design objectives of the meta-data EIS application.
The logic changes will also be available for
immediate execution by the framework runtime
engine, and are preserved during automated meta-
data application updates that may be provided by the
originating vendor or developer.

This paper reviews related works, examines the
application to a meta-data based application model,
and provides examples where the Variant Logic can
be used effectively in real enterprises.

2 RELATED WORKS

The following related issues have guided this
research.

2.1 Object Polymorphism

The polymorphism aspect of object oriented
programming has provided a helpful simplification

395
Davis J. and Chang E..
VARIANT LOGIC META-DATA MANAGEMENT FOR MODEL DRIVEN APPLICATIONS - Allows Unlimited End User Configuration and Customisation of
All Meta-data EIS Application Features.
DOI: 10.5220/0003467303950400
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 395-400
ISBN: 978-989-8425-56-0
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

to logic localisation and streamlined coding
practices (Dettmer, 1995).

An analogy in the meta-data EIS application are
multiple instances of the same meta-data object each
defined with different features as instances of
Variant Logic.

2.2 OMG, MDA and Reusable Objects

The aim of the Object Management Group (OMG)
with their Model Driven Architecture (MDA)
initiative is to “separate business and application
logic from underlying platform technology” (OMG,
2010).

UML is a widely adopted standard for software
development but is a semi-formal language which
lacks the precisely defined constructs to fully define
application logic (Mostafa, 2007).

Complementary strategies aim for more
plug’n’play style solutions where components are
constructed to an accessible interface standard which
allows the component objects to more readily
interact with minimal recoding (Talevski, 2003).

In (Yan, 2009) support for multiple simultaneous
versions of an application would be provided by a
hybrid interim data schema evolution that satisfies
both the current and proposed application
functionality as a stepping stone to the final version
and schema.

The temporal meta-data framework for EIS
applications allows multiple duplicate objects to
exist with separate logical definitions that can be
selected for execution.

2.3 User Configuration

While varying in complexity (Rajkovic, 2010), the
generally available configurable content for end
users tends to be limited to simplistic features, with
application customisation being required for more
advanced features. (Hagen, 1994) identified the need
for focussing on more configurable software to
benefit users and developers as a joint initiative of
software development to merge configuration and
customisation aspects.

Any feature of the meta-data EIS application can
be optionally configured by authorised users.

2.4 User Customisation

Whilst customisations may have a suitable overall
business case for an organisation to take this option,
it is often expensive and time consuming. (Dittrich,
2009).

Customisations to EIS systems require
developers fluent in the development languages and
in the detailed structure of the application logic and
structure and depending on the scale can become
significant software engineering exercises. (Hui,
2003) provides a model to optimise capturing the
requirements for customisations.

All features of the meta-data EIS application can
be defined as customised by authorised end users,
aiming at the knowledgeable business user rather
than the technical expert.

2.5 Model Driven Engineering

Alternatives to the common process of hard coded
application logic are provided by ongoing Model
Driven Engineering (MDE) which is a generic term
for software development that involves the creation
of an abstract model and how it is transformed to a
working implementation (Schmidt, 2006).

A significant proportion of the works to date
have involved modelling which contributes more
directly to streamlining code generation, processes
that are directly aimed for and dependent on highly
technical programmers such as (Ortiz, 2010) who
specifies alternate aspects and (Cicchetti, 2007) who
identify model insertion points for code insertion.
(Fabra, 2008) base their works on the UML 2
specification to seek to reduce coding and transform
models of business processes into executable forms.

(Zhu, 2009) takes a strong model generation
approach that modifies individual application
instances for each user.

In (France, 2007) they argue for future MDE
research to focus on runtime models, where these
executing models can also be used to modify the
models in a controlled manner. Such a direction
provides not only more manageable change control,
but also necessarily shifts the target of the change
agent closer to the knowledgeable business end user,
rather than relying solely on the technical
programmer, a similar goal of our temporal meta-
model framework for EIS applications (Davis,
2004).

3 VARIANT LOGIC META-DATA
MANAGEMENT

Our ongoing development of a temporal meta-data
framework for EIS applications seeks to remove the
need for hard coding by technical developers (other
than in the creation of the runtime engine and meta-

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

396

data editors), and transform the responsibility of
defining application logic to business analysts,
knowledge engineers and even business end users.

Once the meta-data EIS application logic has
been defined as the meta-data and stored as a model,
without the need for additional coding, the model is
used for direct execution by the runtime engine.

The model also supports a specific objective of
the framework which is to provide the capability for
end users to define and create their own application
logic, to supplement or replace a vendor’s pre-
defined application logic, as what we term Variant
Logic, to become a variation of the application logic
for their own specific purpose.

Variant Logic can be defined for each of the
three common layers of EIS application design:
• Database: The definitions for data storage,

management and workflow in the meta-data EIS
are defined in meta-data, hence the authorised
user is also able to define additional data entities
and attributes that can be associated with the
existing defined meta-data EIS application data.

• User Interface: The meta-data definitions for
user interfaces can also be modified and defined
with additional application features to operate
with, enhance or optionally replace existing
application functionality (Davis, 2005). At the
personal user level (single or permitted group
access) changes can be made to the application
meta-data that have not been flagged as core or
mandatory by the meta-data EIS application’s
higher level designers. Within this scope logic
definers can, within their authorisation limits;

o Remove (not delete) non-mandatory
features,

o Relocate any features between user
interface locations,

o Modify non-mandatory features,
o Define new features to support new or

existing data stores.
• Logical Processing: Data manipulation,

workflow and processing features are provided
by logical functions that are defined for
processing data, similar to many of the
functions in say Microsoft Excel. The functions
in the meta-data EIS application are used:

o As individual or compound functions,
o To provide individual processing,
o As inline or to be a user-defined

function that can be used throughout
the meta-data EIS application,

o To modify the display, value of or
storage of data,

o To perform an evaluation to be used

for logical workflow execution.
Variant Logic can be defined by any authorised

user and can be executed by any user as an
alternative to the standard application logic, subject
to the defined security authorisations. The logic
changes will also be available for immediate
execution by the framework runtime engine.

All Variant Logic is also preserved during
automated meta-data application updates that may
be provided by the originating vendor or developer.
Any logical conflicts that may arise during the
update can be precisely identified to minimise any
re-definition changes that may be required to the
user meta-data customisations to avoid wholesale re-
engineering efforts.

3.1 Authorisation Framework

In our meta-data EIS application model there are
various levels of hierarchical authorisation that can
be defined as depicted in Figure 1.

Figure 1: Class diagram of the Logic Definer Access
component of the meta-data EIS application model.

These functional authorisation processes are
governed by the following principles:
• All original meta-data is created by the

identified core logic definer and represents the
highest level of authorisation for that meta-data

S10_Logic_Definer_
Authorisation_Level

...

S11_Logic_Definer_Role

G02_Index_GUID_Reference_for
_all_Meta_Data_Objects

S02_Application_Security_
Role

...

E25_Logic_Variant
...

S12_Permitted_Variant_
Access

...

S13_Permitted_Variant
_to_Meta_Data_Aspect
...

E22_User_in_a_Role
...

E24_Timed_Access
...

VARIANT LOGIC META-DATA MANAGEMENT FOR MODEL DRIVEN APPLICATIONS - Allows Unlimited End
User Configuration and Customisation of All Meta-data EIS Application Features

397

EIS application.
• Additional logic owners can be defined as

(usually) lower level authorisations.
• Meta-data created by one logic definer cannot

be modified by a different logic definer, to
ensure application semantic integrity.

• Any logic definer can define new meta-data,
reference and invoke meta-data owned by other
logic definers (where authorised), and modify
undefined meta-data attributes of meta-data that
was created by other logic definers where this
functionality has not been restricted by the
creating logic definer.

• Meta-data defined by a higher level logic
definer always over-rides any other identical
meta-data definition created by a lower-level
logic definer – this may also occur during an
automated meta-data application update.

This dynamic and distributed editing feature of
the meta-data EIS is drastically different from the
traditional development lifecycle, further extending
the provision of genuine real-time and distributed
rapid application development capability, and
greatly reducing the incidence of locked down or
closed EIS application eco-systems that may be
restricted to vendor only modification.

The Logic Definer Access (see Figure 1) uses the
following classes to model the definition of the
change access:
• Logic Definer Authorisation Level: is a simple

hierarchy list of authorisation levels where a
higher level of authorisation always has a higher
priority and authorisation over all lower levels.

• Logic Definer Role: are the individual groups
or roles that can be assigned to designate an
identified group of functional logic definers.

• Logic Variant: is a designated identifier to
group all of the logic changes together into a
practical set as an instance of Variant Logic.

• Permitted Variant Access: identifies the meta-
data objects that the Logic Definer Role has
access to change as Variant Logic.

• Permitted Variant to Meta Data Aspect:
identifies which aspects of the meta-data for
that object can be changed as Variant Logic for
that Logic Definer Role. Meta-Data Aspects are
the internal groups of meta-data for each object
and the effect of the change ranges from minor
through to major aspects. Examples of meta-
data aspect changes are: text, colours, help,
sizes, position, alignment, access, type,
function, assignment, validation.

• Index GUID Reference for all Meta-Data
Objects: is a combined global register of the

identifier for all instances of the defined meta-
data objects (visual and non-visual).

• Application Security Role: is the list of the
available application roles.

• User in a Role: is the list where Users are
assigned to Application Security Roles and/or
Logic Definer Roles.

• Timed Access: is used to define periods of
allowed or denied access.

Some aspects of meta-data objects can be
defined to be restricted from permitting any Variant
Access, which would be applied to semantically
critical application logic components.

3.2 Defined Variant Logic

All of the meta-data that defines the application
logic is stored in the meta-data model, original and
Variant Logic.

The key aspect that differentiates the meta-data
is the identified and assigned Variant Logic for each
set of additional meta-data (see Figure 2), as the
Variant Logic identifies a specific group of meta-
data for a specific defined purpose by its Logic
Definer.

Figure 2: Class diagram of the generic assigned Logic
Variant for all objects of the meta-data EIS application
model.

3.3 Selection and Execution

As Variant Logic is defined, the new objects become
part of the overall application pool of objects and
thus are subject to the same security access
mechanisms in order to provide access to the objects
and how the runtime engine will manage the
ongoing access to the objects.

Figure 3 provides an extract of the design for the
Variant Logic Access model. It allows for assigning
access to; users, roles or on an application wide
basis.

X01_Example_General_
Meta_Data_Entity

...

E25_Logic_Variant

...

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

398

Figure 3: Class diagram of the Variant Logic Access
component of the meta-data EIS application model.

The Variant Logic Access uses the following
entities to model the definition of the alternate logic
access:
• User Use Logic Variant: assigns individual

users to access the designated Logic Variant as
their new default for those objects.

• Security Role Use Logic Variant: assigns all
users from the Security Role to access the
designated Logic Variant as their new default
for those objects.

• Security User Account: is the list of Users that
are defined in the application runtime execution
environment.

At runtime, the execution engine identifies
available Variant Logic options for a user and
selects the defined Logic Variant for execution.

3.4 Practical Examples of Variant
Logic in Meta-Data Applications

To illustrate some of the operational benefits of how
users can adjust a meta-data EIS application to more
closely suit their local processes are, in increasing
complexity:
• Application Example: modify the initial

starting Canvas (analogous to a UI screen or
form) of an application.

• Canvas Example: reorder the positioning and
change the sizing of various Freeform Panels
(logical grouping of UI object) on the screen.

• Navigation Panel Example: update the
common Navigation Panel (analogous to menus
or toolbars) with any new objects as new GUI
Reports (analogous to custom reports) and
Canvases.

• Freeform Panel Example: alter the names of
several objects to more relevant local terms as
well as changed the supporting text and help

files. Remove data columns that are not relevant
to local conditions from all Freeform Panels and
from the View Tables (analogous to updateable
database views).

• Freeform Panel Example: modify freeform
entry objects GUI Object (analogous to any UI
object) to become a GUI Selection (analogous
to any selector such as Drop Down Box etc).

• Freeform Panel Example: add new View
Columns (analogous to data table columns) to
record unique information requirements, update
validation functions to help minimise the
occurrence of data entry mis-keying.

• Function Example: define new data columns
an calculation functions to integrate new and
existing data.

• Workflow Example: define new workflows or
insert new workflow stages into existing
workflows.

• Module Example: define a new application
module including; new data objects, all UI
screens, reports and workflows.

By extending the above simplistic examples with
more complexity, including adding entirely new
functionality, the accessibility, power and
immediacy of Variant Logic becomes a key
capability of the meta-data EIS application,
particularly with the empowerment of a much wider
base of new Logic Definers, including
knowledgeable end users.

4 CONCLUSIONS

The Variant Logic capability in combination with
meta-data EIS applications provides a framework
that can allow any level of application customisation
to be securely and flexibly applied to an existing
meta-data EIS application.

While our separate analyses have shown that
meta-data EIS applications can have proportionally
significantly lower lifecycle costs compared to
traditionally developed EIS applications (circa
15%), we believe that the Variant Logic capability
alone will provide additional order of magnitude
tangible efficiency savings due to:

• Providing an open standard of application
definition (for meta-data EIS application
models) that minimises the level of vendor
dependence and increases the availability of
competitive additional application logic
definers.

E25_Logic_Variant

...

E20_Security_User_Account

...

E27_User_use_Logic_Variant

S02_Application_Security_Role

...

E26_Security_Role_use_
Logic_Variant

VARIANT LOGIC META-DATA MANAGEMENT FOR MODEL DRIVEN APPLICATIONS - Allows Unlimited End
User Configuration and Customisation of All Meta-data EIS Application Features

399

• Allowing organisation business analysts and
knowledgeable and power end users to
directly and securely define or modify the
application logic to suit local business
functions, has virtually unlimited potential
to offer increased efficiency due to rapid
concept turnaround into concrete solutions,
and reducing the high cost of using
dependent vendor resources.

• When combined with the ability to merge
multiple meta-data EIS applications, and
their common functions progressively
mapped to a single structure facilitating
rapid data and application integration,
without coding. (Davis, 2005)

• All Variant Logic is also preserved during
automated meta-data application updates
that may be provided by the originating
vendor or developer. Any logical conflicts
that may arise during the update can be
precisely identified to minimise any re-
definition changes that may be required to
the user meta-data customisations to avoid
wholesale re-engineering efforts.

REFERENCES

Dettmer, R., 1995. A Class Act – the Rise of Object-
Oriented Technology. In IEE Review, Nov 1995, Vol
42, Iss 6, pp253-.

OMG, 2010. OMG Model Driven Architecture. In
http://www.omg.org/mda/, 2010.

Mostafa, A., Ismall, M., El-Bolok, H., Saad, E., 2007.
Toward a Formalisation of UML2.0 Metamodel using
Z Specifications. In Proceedings of 8th International
Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed
Computing. Jul-Aug 2007. Vol 1. Pp694-.

Yan, J., Zhang, B., 2009. Support Multi-Version
Applications in SaaS via Progressive Schema
Evolution. In Proceedings of the IEEE 25th
International Conference on Data Engineering, Mar-
Apr 2009, pp1717-.

Talevski, A., Chang, E., Dillon, T.S., 2003. Meta model
Driven Framework for the Integration and Extension
of Application Components. In Proceedings of 9th
International Workshop on Object-Oriented Real-
Time Dependable Systems.

Rajkovic, P., Jankovic, D., Stankovic, T., Tosic, V., 2010.
Software Tools for rapid Development and
Customisation of Medical Information Systems. In
Proceedings of 12th IEEE International Conference on
e-Health Networking Applications and Services, Jul
2010, pp119-.

Hagen, C., Brouwers, G., 1994. Reducing Software Life-
Cycle Costs by Developing Configurable Software. In

Proceedings of the Aerospace and Electronics
Conference, 1994, pp1182-.

Dittrich, Y., Vaucouleur, S., Giff, S., 2009. ERP
Customisation as Software Engineering: Knowledge
Sharing and Cooperation. In IEEE Software, Nov/Dec
2009, Vol 26, Iss 6, pp41-.

Hui, B., Liaskos, S., Mylopoulos, J., 2003. Requirements
Analysis for Customisable Software: a Goals-Skills-
Preferences Framework. In Proceedings of the 11th
IEEE International Requirements Engineering
Conference, Sept 2003, pp117-.

Schmidt, D., 2006. Introduction Model-Driven
Engineering. In IEEE Computer Science, Feb 2006,
Vol 39, No.2, pp25-31.

Ortiz, G., De Prado, A., 2010. Improving device-aware
Web services and their mobile clients through an
aspect-oriented, model-driven approach. In
Information and Software Technology, Oct 2010, Vol
52, Iss 10, pp1080-1093.

Cicchetti, A., Di Ruscio, D., Di Salle, A., 2007. Software
customization in model driven development of web
applications. In Proceedings of the 2007 ACM
symposium on Applied computing, ACM, New York,
NY, USA, pp1025-1030.

Fabra, J., Pena, J., Ruiz-Cortez, A., Ezpeleta, J., 2008.
Enabling the Evolution of Service-Oriented Solutions
Using an UML2 Profile and a Reference Petri Nets
Execution Platform. In Proceedings of the 3rd
International Conference on Internet and Web
Applications and Services, June 2008, pp198-.

Zhu, X., Wang, S., 2009. Software customization in model
driven development of web applications. In
Proceedings of International Conference on
Management and Service Science, pp.1-4, 20-22 Sept.
2009.

France, R., Rumpe, B., 2007. Model-driven Development
of Complex Software: A Research Roadmap. In
Future of Software Engineering (FOSE 2007). IEEE.

Davis, J., Tierney, A., Chang, E., 2004. Meta-data
framework for EIS specification, In 6th International
Conference on Enterprise Information Systems, Porto,
Portugal, April 2004.

Davis, J., Tierney, A., Chang, E., 2005. A User Adaptable
User Interface Model to Support Ubiquitous User
Access to EIS Style Applications. In Proceedings of
the 28th International Conference on Computer
Software and Applications, Edinburgh, Scotland, July
2005.

Davis, J., Tierney, A., Chang, E., 2005. Merging
Application Models in a MDA Based Runtime
Environment for Enterprise Information Systems. In
Proceedings of the 3rd International IEEE Conference
on Industrial Infomatics, Perth, Australia, August
2005.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

400

