
HOW EFFECTIVE IS MODEL CHECKING IN PRACTICE?

TheAnh Do, A. C. M. Fong and Russel Pears
Auckland University of Technology, Auckland, New Zealand

Keywords: Formal methods, Static analysis, Model checking, Hardware verification, Software verification.

Abstract: Software and hardware systems are becoming increasingly large, complex, and can change rapidly.
Ensuring reliability of these systems can therefore be a problem. Traditional techniques such as testing and
simulation are completely infeasible to cope. Model checking offers an alternative, but its use is still limited.
We identify the disadvantages of model checking in practical usages and research directions to tackle these.
We clearly define the context for each disadvantage and concretely describe difficulties for which
verification users may face when applying the model checking technique to verifying certain systems. We
also provide a comprehensive picture of research works in this context and emphasize outcomes and
shortcomings of each work by means of others’. The paper would be therefore the useful user manual for
verification users in practical usages and the helpful guidance for doing research in model checking.

1 INTRODUCTION

Software and hardware systems are becoming
increasingly large, complex and often evolve
rapidly. Traditional techniques such as testing and
simulation (Myers, 1979) are inadequate because
exhaustively checking all possible execution paths
of such systems is practically infeasible. Also, these
techniques can only show the presence of bugs, but
not their absence. Verification technique using
theorem proving (Bledsoe and Loveland, 1984)
requires hand constructed axioms and proof rules. It
is thus difficult to use, and unscalable to practical
systems with large size and high complexity.

In contrast, model checking (Clarke et al., 1999)
is an automated verification technique that, given a
finite-state model of the system under consideration
and a property of interest, exhaustively explores all
states of the system to check whether this property
holds for (a given state in) that model. Hence if an
execution terminates correctly, the system may be
considered “bug-free”. Often, model checking only
takes a few minutes, which is much faster than
manually constructing axioms and proof rules that
can last days or months. Model checking has been
successfully applied to verify some practical systems
(Holzmann and Smith, 2000), (Clarke et al., 1993).
It has become a protocol design and validation tool
(Holzmann, 1990), and a verification toolkit (Ball et
al., 2004), (Fix, 2008) of many software and
hardware companies. Moreover, it is taught in

universities (Clarke, 2011), (Holzmann, 2011) and is
recognized by standards-developing organizations
(Eisner and Fisman, 2006).

However, successful application of model
checking is predicated on the availability of an
accurate model. It has been reported that the
constructed system model is judged to be correct,
but the real system itself still exposes severe bugs
(Havelund et al., 2000), (Havelund et al., 2001). The
task of manually modeling systems to obtain
checkable finite-state models can be difficult for
those that lack expertise in model checking. We
therefore believe that understanding the capability of
the model checking technique as well as its
disadvantages is necessary for verification users to
apply it correctly, effectively and efficiently.

In this paper, we aim to provide a comprehensive
picture about the applicability of model checking in
practice. We approach the technique in terms of its
disadvantages and identify obstacles of its practical
usages from the point of view of verification users.
We define clearly the context for each disadvantage
and describe difficulties for which verification users
may face when applying the technique to their
specific problems. We also provide an extensive
perspective of research works in this context and
emphasize outcomes and shortcomings of each
work. The paper would be therefore the useful user
manual for verification users in practical usage and
the helpful guidance for doing research in model
checking. In the former case, it could help

239Do T., Fong A. and Pears R..
HOW EFFECTIVE IS MODEL CHECKING IN PRACTICE?.
DOI: 10.5220/0003467402390244
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 239-244
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

verification users to realize “to what extent, the
technique model checking is applicable” and to
apply the technique sufficiently to their specific
problems. In the latter case, it could help researchers
capture the current progress of model checking
research as well as its future challenges.

The paper is organized as follows. Section 2
introduces basic concepts of model checking.
Section 3 highlights a number of disadvantages of
model checking. State space explosion, which is the
major disadvantage of modelling checking, is
separately described in Section 4 together with state-
of-the-art techniques to treat it for large complex
systems. Finally, we conclude the paper in Section 5.

2 MODEL CHECKING

Model checking originated from the need to verify
circuit designs and protocols for which checking all
of the possible interactions and subtle bugs in the
systems is extremely difficult (Clarke and Emerson,
1981), (Queille and Sifakis, 1982).

One prerequisite input to model checking is a
formal model, but not the actual system itself. Model
checking is hence an instance of model-based
verification techniques which carry out the
verification on a high-level description of the system
under consideration. As a result, any obtained result
is only as good as the system model. In addition, the
size of the formal model is required to be finite. The
other input is a formal property that represents the
behaviour of interest of the system.

During verification, it performs a search
algorithm to systematically (and exhaustively)
explore all system states to determine if the property
is violated or not. In the former case, a
counterexample is provided to indicate the
falsification of the property and is used for
debugging purposes. Otherwise, the property holds.

Model checking entails four main steps:
modelling systems, formalizing system
requirements, execution and analyzing the results.

2.1 Formal Model

A formal model is a high-level description of the
system under consideration which consists of
information about the system at a certain moment of
its behaviour and how the system can evolve from
one state to another. In other words, it describes how
the system behaves using the model description
language of a chosen model checking engine such as
the Process Meta Language (or PROMELA) in SPIN

(Holzmann, 2004) or the SMV language in SMV
(McMillan, 1993).

2.2 Property Specification

A property specification prescribes what the system
should and should not do. Property specifications are
expressed using temporal logics that allow the
specification of the relative order of events in the
behaviour of interest of the system. For example,
“Once a process has requested the token, it continues
to request the token until the token is received”. The
underlying nature of time in temporal logics can be
either linear i.e. LTL (Pnueli, 1977) or branching i.e.
CTL (Clarke and Emerson, 1981).

2.3 Model Checking Algorithm

In principle, the problem of model checking is given
a formal model M and a temporal formula f, find all
states s of M such that M, s╞ f. A model checking
engine often performs a search algorithm that
systematically explores all states of the formal
model and checks in each state whether the temporal
formula is true or not. In practice, depending on the
temporal logic supported (either LTL or CTL) as
well as specific techniques used to combat with high
computation complexities, the search algorithm can
be carried out in various fashions, e.g. automata-
based LTL model checking (Vardi and Wolper,
1986), CTL model checking (Clarke and Emerson,
1981), symbolic model checking (McMillan, 1993).

3 MODEL CHECKING:
DISADVANTAGES AND
RESEARCH DIRECTIONS

Model checking is increasingly gaining recognition
in hardware and software industry. Its applicability
is still a problem chiefly due to its intrinsic nature
and the complexity of real systems.

3.1 Model-based Verification

Model checking is a model-based verification
technique. This means to apply any model checking
engine, a formal model of the system under
consideration must first be constructed. However,
constructing manually the verification model for any
non-trivial systems is often a laborious task. Second,
the constructed model may not truly reflect the
behaviour of the real system. Third, there may be a

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

240

relatively far semantic distinction between
correctness at the formal model level and at the
actual system implementation (or source code) level.
Last, whenever a property is falsified, much effort is
required to find real bugs in the actual system.

To address these issues, early research works
tend to build translators to convert program text
literally into the input language of a model checking
engine. As the translation is done without
abstraction, restrictions must be imposed on the
input language to keep the verification problem
decidable (Havelund and Pressburger, 2000). Later
works leverage program slicing techniques together
with abstraction to extract a checkable finite-state
formal model for model checking (Hatcliff et al.,
2000), (Corbett et al., 2000). The work of Holzmann
(2001) offers a means to promote better formal
models, but still constructed manually. In fact, all of
these works rely heavily on the capability of existing
model checking engines e.g. SPIN (Holzmann,
2004), and lack important features such as dynamic
memory allocation that are not supported by those
engines. Besides, model checking engines which
conduct the verification on source code like Verisoft
(Godefroid, 1997) are restricted to only basic safety
properties and not scalable to large systems.

3.2 Coverage

Given a system model and a property of interest,
model checking is able to determine whether the
model satisfies the property or not. Provided all
specified properties have been checked successfully,
are we sure that the system model is indeed correct?
Unfortunately, model checking cannot answer this
question due to the following reasons. First, model
checking checks only stated properties; validity of
properties that are not checked cannot be judged.
Second, if complete model checking algorithms run
out of essential available resources, e.g. memory,
before completion, the validity of the property being
checked will remain unknown. This is the well
known state space explosion problem and will be
discussed in detail in Section 4. Last, incomplete
model checking algorithms (Biere et al., 2003) offer
sound and termination checking, but evidently the
unexercised state space may still harbour errors.
This problem is called Coverage on model checking
and has been studied together with the state
explosion phenomenon for decades.

3.3 Control-intensive Applications

One more disadvantage of model checking is that

the technique is less suited for verifying data-
intensive systems. In contrast, control-intensive
systems often expose features that are very natural
for applying model checking. First, these systems,
especially hardware systems, tend to be well-
structured and often have finite-state spaces. Second,
the separation of control flow and data flow in the
systems is relatively clear, abstraction techniques
can remove substantial parts of the data flow from
the systems and significantly reduce the state space.
Furthermore, efficient tools with effective
techniques have been implemented to check
properties on the abstracted systems.

3.4 Generalization Verification

In the design of reactive systems in both software
and hardware, systems are often described
schematically in terms of a parameter n, representing
the arbitrary number of components, or are
parameterized. For instance, the token-ring design of
a distributed mutual exclusion algorithm consists of
an unknown number of processes in which mutual
exclusion is guaranteed by means of a token that is
passed around the ring (Martin, 1985). This implicit
ring design represents an entire family of specific
ring design members in which each family member
associates with a concrete number of processes.
Automatically verifying the correctness of such
parameterized systems cannot be realized by model
checking, however. This is because the sequence of
(even finite-state) components is unknown or
infinite, and exhaustively searching the resulted
unbounded-state space is out of the reach of model
checking. This problem is called Generalization
Verification (Demri et al., 2006) and is proved in
general undecidable (Apt and Kozen, 1986).

3.5 Human Intervention

Another disadvantage is human intervention is
needed in all four stages of model checking. The
first stage of model checking is modelling systems
to obtain a checkable formal model. As discussed in
Section 3.1, this process is laborious and error-
prone. Methods that attempt to address the issues are
largely inadequate as their applicability and
scalability are questionable.

3.6 Decidability Issues

As Turing (1936) pointed out, computability of a
sound and complete algorithmic solution for any
sufficiently powerful programming model, even

HOW EFFECTIVE IS MODEL CHECKING IN PRACTICE?

241

under restrictions such as finite-state spaces, is
completely intractable. The problem of model
checking is a concrete instance to obviously
illustrate this undecidability problem. In Section 3.4,
we discussed this in the context of verifying
parameterized systems and here we focus on
software model checking.

In contrast to the pure model checking technique,
software model checking does the verification at the
source code level without requiring manually
constructing a formal model for the system under
consideration. Two basic principles of this technique
are (1) reasoning about a system at the source code
level and (2) finding a right abstraction level for the
system to carry out the verification.

Recent tools often leverage predicate abstraction
as well as decision procedures to verify the
correctness of practical systems. The former allows
the abstraction to be parameterized by and specific
to a program. The obtained abstract program is
represented by a Boolean program and can be
relegated to the later.

4 STATE-SPACE EXPLOSION

In practice, the number of states needed to model a
system accurately may be extremely large and easily
exceed the amount of available computer memory.
This is known as the state space explosion problem.
In sequential programs, verification models are
generated by means of unfolding a program graph
over program locations and variables. Let L and V
represent the sets of locations and variables of a
program graph, respectively. The number of states of
the unfolded verification model is

∏
∈

⋅
Vx

|domain(x)| |L|

The number of states thus grows exponentially
with the number of variables in the program graph.
Even simple program graphs with just a small
number of variables, this bound can be excessive.
For example, consider a program graph with 10
locations and a bit-type array variable of 100 bits,
the bound grows up to 10·2100. Furthermore, in case
the set of program locations or the data domain of
any program variable is infinite, the underlying
verification model yields an unbounded state space.
The model checking problem for such program
graphs is undecidable. This observation clearly
explains why model checking is mainly appropriate
to control-intensive applications but tremendously
hard to deal with data-intensive applications.

In concurrent programs, the state space of the
whole system is the Cartesian product of the local
state spaces of components. For example, consider a
parallel system P consisting of n components Pi (1 ≤
i ≤ n), the number of states of this system:

n321 P|||... P|||P|||PP =

is indicated as follows:

|S||S||S||S|S n321 ⋅⋅⋅⋅⋅=

Here Si represents the state space of component
Pi. The number of states of the verification model for
the complete system therefore grows exponentially
with the number of components. In addition, the
exponential increase in the local state space of each
component as discussed in sequential programs also
makes the model checking problem extremely hard
to exhaustively cover the combinatorial growth of
state space for the system. If the number of
components of the system is infinite, the model
checking problem becomes undecidable as discussed
in Section 3.4 – Generalization Verification.

In fact, using model checking to verify the
correctness of realistic systems is too complex (and
even impossible). For decades, the problem of state
space explosion has been the driving force behind
much of the research in model checking and the
development of new model checkers. We survey
some of these techniques.

4.1 Symbolic Model Checking

The first algorithms for CTL model checking
represent transition relations explicitly by adjacency
lists and hence just handle concurrent systems with
the fairly number of states (Clarke and Emerson,
1981), (Queille and Sifakis, 1982). In contrast,
symbolic model checking (McMillan, 1993) uses
Binary Decision Diagrams (Bryant, 1986) to
represent the sets of states and transition relations,
and then computes a fixed point of an operator for
the CTL formula relying on mu-calculus (Emerson,
1996). It can thus obtain a compact model for
proving correctness and handling the booming of
state space due to program variables and data types.
Symbolic model checking has been applied to
successfully verify many practical systems (Burch et
al., 1991), (Clarke et al., 1993). It however does not
work well when BDDs grow too large.

4.2 Partial Order Reduction

The aim of partial order reduction is to prune the
state space exploration of concurrent programs by

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

242

exploiting the independence of concurrently
executed events and also the redundancies in the
state space with respect to a given property being
checked (Valmari, 1990), (Godefroid, 1990), (Peled,
1994). Two events are independent of each other if
regardless of the ordering of their executions, the
result will be the same. The interleaving of
transitions of such independent events can be
therefore restricted to one representative when
constructing the state space for proving the property.
This effect becomes even more drastic on increasing
the number of concurrent processes – the state space
of the full transition system grows exponentially in
the number of processes whereas the reduced state
space consists of a single path that grows just linear.
Partial order reduction however has little effect
when systems consist of processes that are tightly
connected or few independent events exist.

4.3 Abstraction

Abstraction is one of the most successful techniques
reported so far. One approach is the cone of
influence reduction. It attempts to reduce the state
space of the state transition graph by focusing on
portions of the system description that preserve all
relevant information for the behaviours of interest as
identified by the specification (Balarin and
Sangiovanni-Vincentelli, 1993), (Kurshan, 1994).
Irrelevant portions for verifying the desired property
are then removed and the size of the corresponding
transition system model is reduced significantly.
Another approach is data abstraction. It involves
finding a mapping between the actual data values or
data structures in the system and a small set of
abstract data values (Clarke et al., 1992), (Bensalem
et al., 1992). For example, a stack class can be
mapped to an integer which holds the size
information of the stack. The size of the obtained
abstract model therefore becomes tractable. The
most predominant abstraction technique now is
predicate abstraction as discussed in Section 3.1.

5 CONCLUSIONS

Model checking has been demonstrated an effective
technique for proving correctness and ensuring
reliability of systems. Applicability of the technique
in industry is still restricted, nonetheless. This
uncloses a number of research directions for the
future. First, devise sufficient data structures and
algorithms to handle large search spaces. Second,
improve and integrate abstraction and compositional

reasoning techniques together with others to deal
with high complexity and large systems, especially
software systems. Third, develop mechanisms to
better reason systems in the presence of expressive
heap abstractions and concurrent interactions. Last
but not least, support reasoning modern
programming language features such as object-
orientation, dynamic dispatch, abstract data types,
higher-order control flow and continuations.

In this paper, we have provided a comprehensive
picture of the capability and the applicability of
model checking in practice. We approached the
technique in terms of its disadvantages and
highlighted obstacles of its practical application
from the point of view of verification users. We
clearly delineated the context for each disadvantage
and pointed out its difficulties when applied to
specific systems. We also provided a perspective of
research works in this context and emphasized
outcomes and shortcomings of each work. The paper
would be therefore useful for verification users in
practical usage and others doing research in model
checking.

REFERENCES

Myers, G. J., 1979. The Art of Software Testing. Wiley.
Bledsoe, W. W., Loveland, D. W. (eds.), 1984. Automated

Theorem Proving: After 25 Years. Contemporary
Mathematics, V29. American Mathematical Society.

Clarke, E. M., Grumberg, O., and Peled, A., 1999. Model
Checking. MIT Press.

Holzmann, G. J., Smith, M. H., 2000. Automating
Software Feature Verification. Bell Labs Technical
Journal.

Clarke, E. M., Grumberg, O., Hiraishi, H., Jha, S., Long,
D. E., McMillan, K. L., Ness, L. A., 1993. Verification
of the Futurebus+ Cache Coherence Protocol. CHDL.

Holzmann, G. J., 1990. Design and Validation of
Computer Protocols. Prentice-Hall,Inc., Upper Saddle
River, NJ.

Ball, T., Cook, B., Levin, V., Rajamani, S. K., 2004.
SLAM and Static Driver Verifier: Technology
Transfer of Formal Methods inside Microsoft. In IFM
'04: Integrated Formal Methods.

Fix, L., 2008. Fifteen Years of Formal Property
Verification in Intel. 25 Years of Model Checking.

Clarke, E. M., 2011. Introduction to Model Checking.
Carnegie Mellon University. Retrieved from:
http://www.cs.cmu.edu/~emc/15817-s11/reading.html.

Holzmann, G. J., 2011. Logic Model Checking. California
Institute of Technology. Retrieved from:
http://spinroot.com/spin/Doc/course/.

Eisner, C., Fisman, D., 2006. A Practical Introduction to
PSL (Series on Integrated Circuits and Systems).
Springer, New York.

HOW EFFECTIVE IS MODEL CHECKING IN PRACTICE?

243

Havelund, K., Lowry, M., Park, S., Pecheur, C., Penix, J.,
Visser, W., White, J., 2000. Formal Analysis of the
Remote Agent Before and After Flight. Proc. 5th
NASA Langley Formal Methods Workshop,
Williamsburg, VA.

Havelund, K., Lowry, M., Penix J., 2001. Formal Analysis
of a Space-Craft Controller Using SPIN. IEEE
Transactions on Software Engineering, v.27 n.8.

Clarke, E. M., Emerson, E. A., 1981. Design and
Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. Logic of Programs.
Springer-Verlag.

Queille, J. P., Sifakis, J., 1982. Specification and
Verification of Concurrent Systems in CESAR.
Proceedings of the 5th Colloquium on International
Symposium on Programming.

Holzmann, G. J., 2004. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley.

McMillan, K. L., 1993. Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic Publishers.

Pnueli, A., 1977. The Temporal Logic of Programs. In 18th
IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society Press.

Vardi, M. Y., Wolper, P., 1986. An Automata-Theoretic
Approach to Automatic Program Verification. In 1st
Annual Symposium on Logic in Computer Science
(LICS). IEEE Computer Society Press.

Havelund, K., Pressburger, T., 2000. Model Checking
JAVA Programs Using JAVA PathFinder. Int'l J.
Software Tools for Technology Transfer.

Hatcliff, J., Dwyer, M. B., Zheng, H., 2000. Slicing
Software for Model Construction. Higher-Order and
Symbolic Computation.

Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S.,
Pasareanu, C. S., Robby, Zheng, H., 2000. Bandera:
Extracting Finite-State Models from Java Source
Code. Proceedings of the 22nd International
Conference on Software Engineering.

Holzmann, G. J., 2001. From Code to Models. In
Proceedings of the 2nd International Conference on
Application of Concurrency to System Design.

Godefroid, P., 1997. VeriSoft: A Tool for the Automatic
Analysis of Concurrent Reactive Software.
Proceedings of the 9th International Conference on
Computer Aided Verification.

McMillan, K. L., 2003. Interpolation and Sat-Based Model
Checking. In CAV.

Henzinger, T. A., Jhala, R., Majumdar, R., Qadeer, S.,
2003. Thread-Modular Abstraction Refinement. CAV.

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., Zhu,
Y., 2003. Bounded Model Checking. Advances in
Computers, vol. 58. Academic Press.

Rajan, S. P., Tkachuk, O., Prasad, M. R., Ghosh, I., Goel,
N., Uehara, T., 2009. WEAVE: WEb Applications
Validation Environment. In ICSE.

Martin, A., 1985. The Design of a Self-Timed Circuit for
Distributed Mutual Exclusion. In Proceedings of the
1985 Chapel Hill Conference on VLSI, Computer
Science Press, Rockville, MD.

Demri, S., Laroussinie, F., Schnoebelen, Ph., 2006. A
Parametric Analysis of the State-Explosion Problem in
Model Checking. Journal of Computer and System
Sciences, v.72 n.4, p.547-575.

Apt, K. R., Kozen, D., 1986. Limits for the Automatic
Verification of Finite-State Concurrent Systems.
Information Processing Letters.

Kurshan, R. P., McMillan, K. L., 1995. A Structural
Induction Theorem for Processes. Information and
Computation.

Wolper, P., Lovinfosse, V., 1989. Verifying Properties of
Large Sets of Processes with Network Invariants. In
Automatic Verification Methods for Finite State
Systems.

Clarke, E. M., Grumberg, O., Jha, S., 1995. Verifying
Parametrized Networks Using Abstraction and
Regular Languages. In CONCUR'95.

Kesten, Y., Pnueli, A., 2000. Control and Data
Abstractions: The Cornerstones of Practical Formal
Verification. Software Tools for Technology Transfer.

Turing, A. M., 1936. On Computable Numbers, with an
Application to the Eintscheidungsproblem. In
Proceedings of the London Mathematical Society.

Qadeer, S., Rehof, J., 2005. Context-Bounded Model
Checking of Concurrent Software. TACAS.

Bryant, R., 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on
Computers.

Emerson, E. A., 1996. Model Checking and the Mu-
calculus. Descriptive Complexity and Finite Models.

Burch, J. R., Clarke, E. M., Long, D. E., 1991.
Representing Circuits More Efficiently in Symbolic
Model Checking. In Proceedings of the 28th
ACM/IEEE Design Automation Conference.

Valmari, A., 1990. A Stubborn Attack On State Explosion.
CAV.

Godefroid, P., 1990. Using Partial Orders to Improve
Automatic Verification Methods. CAV.

Peled, D., 1994. Combining Partial Order Reductions with
On-the-fly Model-Checking. CAV.

Balarin, F., Sangiovanni-Vincentelli, A. L., 1993. An
Iterative Approach to Language Containment. CAV.

Kurshan, R. P., 1994. Computer-Aided Verification of
Coordinating Processes: The Automata-Theoretic
Approach. Princeton University Press.

Clarke, E. M., Grumberg, O., Long, D. E., 1992. Model
Checking and Abstraction. POPL.

Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.,
1992. Property Preserving Simulations. CAV.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

244

