
CORRECT MATCHING OF COMPONENTS
WITH EXTRA-FUNCTIONAL PROPERTIES

A Framework Applicable to a Variety of Component Models

Kamil Ježek and Přemek Brada
Department of Computer Science and Engineering, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Czech Republic

Keywords: Software components, Extra-functional properties, Compatibility, Inter-component binding, Framework.

Abstract: A lot of current approaches attempt to enrich software systems with extra-functional properties. These attempts
become remarkably important with the gradual adoption of component-based programming. Typically, extra-
functional properties need to be taken into account in the phase of component binding and therefore included
in the process of verifying component compatibility. Although a lot of research has been done, practical
usage of extra-functional properties is still rather scarce. The main problem could be in a slow adaptability of
specialized research models to rapidly changing industrial needs. We have designed a solution to this issue in
the form of a modular framework which provides a formally sound yet practical means to declare, assign and
evaluate extra-functional properties in the context of component-based applications. One of its strengths is
applicability to a variety of industrial as well as research component models. This paper describes the models
and algorithms of the framework and introduces a prototype implementation proving the concept.

1 INTRODUCTION

With today’s need for software systems, techniques
which help improve their production are becoming
more important. Both industry and the research com-
munity therefore invest considerable effort into im-
proving such approaches as component programming
or service oriented architecture. Despite noticeable
benefits which they bring, new issues keep to arise.
One of the important ones is enriching components or
services with extra-functional properties (EFPs).

For instance, (1) qualitative properties such as
speed, response time, memory consumption or (2)
user requirements such as marketability, price, regu-
lar updates, technical support or (3) behavior proper-
ties such as synchronisation, concurrent access, dead-
lock free computation should be taken into account
once particular components are selected to compose a
final software. Hence, EFPs provide developers with
strong means to assess the applicability and compati-
bility of components with the task and architecture at
hand.

There have been several attempts at providing EFP
support for software systems. They start from de-
scribing EFPs (Chung et al., 1999; ISO/IEC, 2001)
through they applicability to other systems to the de-

velopment of complex systems embedding as their
part either EFPs (Muskens et al., 2005; Bondarev
et al., 2006) or quality of service specifications (Yan
and Piao, 2009; Garcı́a et al., 2007). Although these
research frameworks have already shown directions
leading to the successful implementation of EFPs,
their practical applications are still rare and industrial
component frameworks with no EFP support such as
Spring or OSGi are widely used.

In this paper we present a different approach to
this problem. Rather than creating a complex com-
ponent model which natively supports EFPs, we pro-
pose an independent framework which enables to en-
rich existing industrial systems with EFPs through a
set of extension points. The rationale is that even a
basic EFPs support is beneficial for industrial com-
ponent frameworks. In addition, evolution of these
frameworks is then not limited to the adaptation of
EFPs.

1.1 Structure of the Paper

We first introduce the proposed extra-functional
framework with its modules in Section 2. A brief in-
troduction of the concept is followed by formalisa-
tions of each part of the framework in Section 3. It

155Ježek K. and Brada P..
CORRECT MATCHING OF COMPONENTS WITH EXTRA-FUNCTIONAL PROPERTIES - A Framework Applicable to a Variety of Component Models.
DOI: 10.5220/0003468401550166
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 155-166
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

includes an algorithm of EFP evaluation and match-
ing. In Section 4 we provide some details on a pro-
totype implementation validating the introduced con-
cept and Section 5 presents examples of the appli-
cability of the approach to selected industrial frame-
works.

2 EXTRA-FUNCTIONAL
FRAMEWORK MODULES

The proposed framework aims to cover the typical
user roles and activities in component-based develop-
ment. A domain expert or architect first designs the
extra-functional properties to be used across a range
of components and applications, then a developer
states the concrete properties of his components and
their values. Finally, when the component software
is being composed, an application assembler needs to
verify the compatibility of components which should
form the application. The framework proposed here
consequently allows to declare EFPs, store their defi-
nitions and values in a repository, assign them to par-
ticular components and evaluate their compatibility.

The conceptual structure of the framework con-
sists of four modules as depicted in Figure 1. The
Repository stores EFP definitions and is accessed by
other modules to obtain, create or modify the proper-
ties. The EFP Assignment part uses the Repository
so it can attach the declared EFPs to each component.
Once components are enriched by EFPs the Evalua-
tor takes care of comparing attached EFPs when ver-
ifying component compatibility during their binding
process. While the Assignment works with separate
components, the Evaluator covers a set of components
which compose a final component application.

All these modules are tied together by EFP Types
which defines the structure (type and values) of indi-
vidual extra-functional properties (Ježek, 2010a).

What we aim at is a loosely coupled framework
which may be easily extended and applied to a wide
set of component models. The only assumption is that
the targeted component models recognize required
and provided counterpart elements used when creat-
ing inter-component bindings (Szyperski et al., 2002).

In the following subsections we respectively de-
scribe the details of the EFP Types, the Reposi-
tory, how the Assignment module achieves compo-
nent framework linking, and EFP evaluation.

2.1 Extra-functional Properties Types

The interchange of extra-functional properties be-
tween the modules of the framework requires a shared

Figure 1: Framework Overview.

understanding of EFP data. This is realized by the
module called EFP Types which is the implementa-
tion of the model of extra-functional properties pre-
sented in (Ježek, 2010a) and formalized in (Jezek
et al., 2010). It defines individual EFPs, their struc-
ture and relations to a system of registries (Jezek et al.,
2010; Ježek, 2010b).

Getting some inspiration in NoFun (Franch,
1998), we distinguish between simple and derived
extra-functional properties. The semantics is that a
derived property is based on a set of other (simple or
derived) properties and its value is assigned according
to a logical formula expressing the conditions when
the combinations of values of other properties is valid.

The form of the properties allows also to define
deloyment contracts (Lau and Ukis, 2006), which ex-
press relations between components and a runtime en-
vironment.

We formally define a collection of extra-
functional properties as a set

E = fe j e = (n;Ed ;g;T;META)g (1)

where

n is the name of a property,

T 2 Ttypes = Tc[Ts is the type of a property,

Ts is a set of simple (primitive) types. Ts =
freal; integer;boolean;enum;set;ratio;stringg,

Tc = f(T1; � � � ;TN) j N > 1;Ti 2 Ttypesg is a set of
complex types containing non primitive values,

g : T � T ! Z; Z = integer [f“n=d”g is a func-
tion which compares two instances x;y 2 T of the
property with type T , stating which of the two val-
ues is better. The meaning of the return values is:
negative integer: x is worse than y, 0: x is equal
to y, positive integer: x is better than y, “n=d”:
not-defined.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

156

The function may not be explicitly defined for
each type T and then the following implicit rules
hold: (i) real, integer, ratio use mappings -1: x <
y, 0: x = y, +1: x > y, (ii) string uses mappings 0:
x literally equal to y else “n=d”, (iii) boolean uses
mappings 0: x = y else “n=d”, (iv) set, enum and
complex use previous rules for each element and
the result is “n=d” unless each evaluation results
in the same value. When an explicit rule does not
exist and comparison can not be determined by
the implicit rule, the value “n=d” is returned.

Ed � E;e =2 Ed is an optional set containing other
properties composing this EFP,

META is a record containing any additional informa-
tion meaningful in the domain. Its elements are
described by an extensible model which currently
contains the items unit;names, where

unit : String is a measuring unit of the property,
names is an ordered enumeration containing ev-

ery name for the values of this property allowed
to be used in local registries from Section 2.2.

For instance, two simple properties are defined as
follows:

(time_to_process, no-gamma, integer,
META {unit:‘‘ms’’,

names: {low, average, high}}
)
(data_transferred, no-gamma, integer,

META {unit:‘‘MB’’,
names: {low, average, high}}

)

A derived property definition then looks like this:

(performance,
{time_to_process, data_transferred},
no-gamma,
enum {sufficient, insufficient}, META {}

)

2.2 Universal EFP Repository

A stand-alone repository provides one commonly ac-
cessible place to store the EFPs. The reason for
this centralization is that in component development,
the components are typically developed and used by
world-wide organizations. If two vendors attach an
EFP with the same name to their components, the
same understanding of its structure and semantics is
needed (Ježek, 2010b). This is the role of the repos-
itory and therefore other modules load data from this
common repository.

Since a given component or service can be run
in different environments, an EFPs mechanism must

take this heterogeneity into account. We therefore use
a layered design of the repository (Jezek et al., 2010).

The upper layer called Global Registry (GR) is a
storage of EFP definitions. It collects definitions of
EFP types from Section 2.1 and thus ensures all its
EFPs are valid and meaningful in a particular domain
(e.g. education, healthcare, automotive). Let us fur-
thermore highlight that Global Registry does not con-
tain concrete values of EFPs because they may differ
widely among runtime and application environments.

Formally, the Global Registry is a triple

GR = (id;name;E) (2)

where:

id : Integer is the registry’s unique identifier,

name : String is a human readable name of this GR,

E is a set of extra-functional properties (Section 2.1).

The lower layer of the repository is called Local
Registry (LR). It stores EFP values pertinent to a par-
ticular computational environment, i.e. each environ-
ment has its own Local Registry with concrete values
of the properties defined in the Global Registry.

Local Registry is formally defined as

LR = (id;GR;name; idparent ;S;D) (3)

where:

id : Integer is the registry’s unique identifier,

GR is the Global Registry this LR is linked to,

name : String is a human readable repository name,

idparent : Integer is the (optional) identifier of a parent
LR, which allows to build LRs in tree hierachies.
The semantic is that a value from a parent is in-
herited unless this LR overrides the value.

S = f(e;value name;v) j e 2 E ^ value name 2
String^ v 2 VLRg is a set defining context depen-
dent values for simple properties,

D = f(e;value name;v;r) j e 2 E ^ value name 2
String^ r 2 R^ v 2VLRg is a set of derived prop-
erty definitions, where each derived property e is
governed by a logical rule r for which

VLR = fvigi2I set holds all values for the given
EFP assigned in this LR or its parents. I is the
set indexing values assigned in LR or its par-
ents,

v is an assigned value,
e is a property from GR,
value name is an assigned name of the value

which must be selected from the list of avail-
able names given in the META :: names part of
the definition of the property in GR.

CORRECT MATCHING OF COMPONENTS WITH EXTRA-FUNCTIONAL PROPERTIES - A Framework Applicable
to a Variety of Component Models

157

r 2 R = E�LF�VLR is a set of derivation rules.
E is a set of EFPs, LF is a set of logical expres-
sions LF = f f (x) j f : String! Booleang. A
value v is assigned to the EFP when the evalua-
tion of f is true.

One advantage of using a Local Registry is that it
holds context-dependent values with assigned names.
The names remain the same while concrete values dif-
fer, and a developer using the Local Registry mech-
anism may think of the semantics of the EFP value
as denoted by the name rather than about a concrete
number.

For example, a Local Registry for smartphones
with GPRS-only connection may contain the follow-
ing value definitions:

time_to_process: low = 10, high=5000, ...
data_transferred: low = 1, high=100, ...

whereas a LR for wifi-connected tablets could define

time_to_process: low = 1, high=1000, ...
data_transferred: low = 10, high=500, ...

Another advantage of this solution is that conti-
nuous intervals of values can be partitioned into a
disjunctive set of named intervals, values or subsets.
Hence all values in one partition may be treated as
equivalent in the EFP evaluation process. For exam-
ple, memory consumption in an interval f1;+¥gGB
may be considered as too high for resource con-
strained devices. It does not matter whether the real
value is 1GB, 1:2GB or 5GB – they all belong to one
named group.

2.3 Applicability of EFPs to Variety of
Component Models

The assignment of EFPs to components actually con-
sists of two phases of EFPs manipulation. In the first
phase a developer attaches EFPs to components, load-
ing the properties from the repository. In the second
phase the Assignment module provides the previously
attached EFPs to other systems (see Figure 2). The
form of transfered data are so called EFP Assignment
Types.

When designing the module, special care has been
taken not to depend on a concrete component model.
The EFP Assignment module solves the indepen-
dence using two separate sub-modules.

The EFP Mirror sub-module shown in Figure 2
represents the independent part of the EFP Assign-
ment module. In the phase of attaching EFPs to a
component, a developer loads EFPs from the remote
EFP repository and applies them to the component
(e.g. attaches a time to process property to a service

Figure 2: EFP Assignment Module.

interface). Since it would be impractical to call the
EFP repository every time the data are needed later
on, the EFP Assignment module stores complete in-
formation about the attached EFPs together with the
component.

The benefit of this approach is that it creates a gen-
eral mechanism usable for all supported component
models. The detailed structure of EFP data is hidden
from (or at least irrelevant to) the “plain” component
framework and this sub-module provides an interface
transparently accessing EFPs in a component model
independent format. A small drawback is that consid-
erable amount of extra information may potentially
need to be stored together with the component in case
the EFPs are many or deeply structured.

The Data Storage Sub-module from Figure 2 pro-
vides an extension point where implementations for
supported component models are plugged.

This sub-module brings the desired flexibility and
applicability for different component models in a
form of lightweight plug-ins. Obviously, components
look differently in different component models. For
that reason each implementation of this sub-module
decides (1) where and how to store EFP data, (2) how
to link the data with concrete features of the compo-
nent.

In Section 4 we describe an implementation of this
framework for the CoSi component model (Brada,
2008) together with technical details on the modules.

2.4 EFP Evaluation and Binding

The most innovative part of the framework is the
Evaluator. Its main purpose is to load a set of compo-
nents and verify their compatibility in terms of extra-
functional properties.

The module first obtains EFPs of components call-
ing the EFP Assignment module for each component.
The received data are then composed to a graph repre-
senting components and their bindings, which serves
the evaluator to find problems in component compati-
bility. Shortly, binding problems have forms of miss-
ing edges in the graph while EFP incompatibilities

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

158

show as mismatches on respective edges. Sections 3.1
and 3.2 provide more details.

Unlike other modules the Evaluator is not cus-
tomizable because it works on a generic model of
EFPs and component application architecture. The
variability of features and forms in component models
is addressed by the EFP Assignment module.

2.5 EFP Assignment Types

Since the evaluator aims at generality, data coming
in must cover a wide spectrum of component models.
For that reason EFP Assignment Types is a generic
representation of EFPs attached to components. It ag-
gregates EFP Types and the information about assign-
ments of EFP values to components. The correspond-
ing sub-module in the framework is able to serve this
data to its other parts; in particular, the Evaluator re-
ceives data from the Assignment module via EFP As-
signment Types.

The model used by EFP Assignment Types is for-
mally defined as a set AT =F�E�V where F is a set
of all generic representations of component features:

F = f f j f = (name; type;role;mandatory;µ)g (4)

with the following meaning of the tuple elements:

name : String is the name of the feature.

role 2 f“required“;“provided“g expressing if the
feature is put on the required or the provided side
of a component respectively.

mandatory : Boolean determines whether this fea-
ture must be bound to another feature in the
matching proccess.

type is the meta-type of the feature including a
name (for instance “interface”, “package”, “com-
ponent”), parameters (for instance inputs and out-
puts of methods). Very often, the type is extended
with a version of the feature where version =
(s1:::sN);N > 1 and s is a tuple expressing a part
of a full feature version information. Typical form
of the version is a triplet concerning major, minor
and micro change in interfaces together with a re-
lease note. E.g. a version may read 1:0:1:RC1.

µ is a matching function on F .

Implementing a default behavior, the µ function
matches two features only if following rules hold:

� Names are equal for both features,

� a provided feature matches only with a required
one or vice versa,

� mandatory required feature must have a provided
counterpart,

� features are compatible in terms of their types
(e.g. parameters of interfaces are of the same
types). A required feature must be a sub-type of
the provided feature. If the type compatibility is
explicitly expressed as versions, then a version on
the provided side is equal or greater than a version
on the required side or vice versa.
However a more sophisticated matching µ func-

tion can be provided. For example, compatibility on
interfaces using subtype relation (Bauml and Brada,
2009) would reach more accurate results. Since in-
stances of the features come from the EFP Assign-
ment module, the extension is straightforward: the re-
implementation of a component-specific sub-module
in the assignment module provides different µ func-
tion while the algorithm of the evaluator remains un-
changed.

Continuing with the definition of EFP Assign-
ment, E is a set of extra-functional properties from
Section 2.1 and V is a set of values (Ježek, 2010a)
assigned to the properties which has three forms:

V =Vdirect [VLR[Vf ormula (5)

v 2 Vdirect is a directly assigned value typically in-
dependent on a context of usage. In other words,
these values remain constants independently on a
runtime environment.

v 2 VLR is a value valid for a particular context of
usage as defined by a local EFP repository (LR)
typically holding values dependent on a context
of usage and varying among contexts. A compo-
nent can thus contain multiple values of a given
property for different contexts. Evaluating com-
ponents, one must select which context a result
should be computed for and the evaluator then
uses only values valid for the selected context.

v 2 Vf ormula is a mathematical formula, declared di-
rectly at the component, determining a value of an
EFP from other EFPs. This kind of value allows
to compute EFPs on the provided side of compo-
nents based on those on the required side. In other
words, it determines how an output of a compo-
nent is influenced by its inputs.
For instance, a component may declare its speed-
up by the Amdahl’s law 1

(1�P)+ P
S

. P expresses

the amount of a code which may be parallelized
and for a particular component it is constant (e.g.
30%). S is a number of processors depending
on a runtime environment. Hence the component
claims its speed-up based on the input parameter
from the runtime.
Following example concludes thos section. It

shows the EFP from Section 2.1 attached two a fea-
ture using several different values:

CORRECT MATCHING OF COMPONENTS WITH EXTRA-FUNCTIONAL PROPERTIES - A Framework Applicable
to a Variety of Component Models

159

(# feature
("DataAccess", "interface", "provided", true,
"matched-by-name"),
EFP

(time_to_process, ...),
values

(LR.1::low, LR.2::average, direct::20,
math::(2 * DataAccess::data_transferred))

)

Let us note that matched-by-name denotes a
function which matches two features with the same
names. LR.1 and LR.2 are two local registries
identified by their IDs, direct is a direct value
– 20ms in this example, math defines a math for-
mula. There must be also assignment for the EFP
data_transferred which we omit here for space
constraints. Typical cases have only a one type of a
value (LR, direct or math-formula one) defined in as-
signment. It is only a purpose of this example to show
all possibilities.

3 EFP EVALUATOR
ALGORITHMS AND
FORMALIZATIONS

The following sections detail the process of the evalu-
ation using more formal means. Formal definitions of
data used by the evaluator and the algorithm verifying
compatibility of components are also introduced.

3.1 Structure of EFPs Graph

Once the EFP Evaluator obtains a set of EFP Assign-
ment Types, it can compose a graph representing the
application structure annotated with properties.

The graph which is created by the EFP Evaluator
is an oriented graph

�!
G = (V;E) where V is a set of

vertexes and E is a set of edges, with specialized types
of vertexes and edges:

V (
�!
G) =Vcomponent(

�!
G)[Vf eature(

�!
G)[Ve f p(

�!
G)

E(
�!
G) = Ebelong(

�!
G)[Ematch(

�!
G) (6)

The following rules hold for each vertex v:

v 2 Vcomponent(
�!
G) if v represents a component. It

is a root meta-vertex which purpose is to simply
aggregate all features of a component,

v 2 Vf eature(
�!
G) if the vertex represents a feature. It

expresses one type of feature depending on con-
crete implementation for a particular component
model. It may express e.g. “interface”, “service”
or whole “component”,

v 2 Ve f p(
�!
G) if the vertex represents an EFP. These

vertexes are connected with Vf eature(
�!
G) vertexes

to express EFPs on concrete features of a compo-
nent.
Furthermore, the following rules hold for each

edge e:

e 2 Ebelong(
�!
G) :8>>>>>>>>>>><>>>>>>>>>>>:

(vx;vy) j vx 2Vcomponent(
�!
G)^ vy 2Vf eature(

�!
G)

: required feature,
(vx;vy) j vx 2Vf eature(

�!
G)^ vy 2Vcomponent(

�!
G)

: provided feature,
(vx;vy) j vx 2Vf eature(

�!
G)^ vy 2Ve f p(

�!
G)

: required EFP,
(vx;vy) j vx 2Ve f p(

�!
G)^ vy 2Vf eature(

�!
G)

: provided EFP.
This kind of edge expresses how components, fea-
tures and EFPs are connected.

e 2 Ematch(
�!
G) :8>><>>:

(vx;vy) j vx 2Vf eature(
�!
G)^ vy 2Vf eature(

�!
G)

: binding features,
(vx;vy) j vx 2Ve f p(

�!
G)^ vy 2Ve f p(

�!
G)

: matching EFPs.
While features are bound by the mentioned func-
tion µ, EFPs are matched via their names and their
relation to a feature. It means that one EFP may
be attached to multiple features, but only once to
the same feature.

Using this model, the Evaluator generates the graph
in several steps. It first creates component vertexes
(Vcomponent(

�!
G)) from a set of components a user de-

sires to evaluate. Secondly, the EFP Assignment
Types are added for each component and vertexes for
features (Vf eature(

�!
G)) and EFPs (Ve f p(

�!
G)) are cre-

ated. Furthermore, the vertexes are connected us-
ing the “belong” edges (Ebelong(

�!
G)) to express which

features and EFPs are attached to the components.
Finally, isolated graphs, representing individual

components, produced by the previous steps are
connected by matching all pairs of corresponding
provided-required features as well as EFPs. Hence,
“match” edges of the type (Ematch(

�!
G)) complete the

graph. These edges denote the connections of features
among components and pairs of EFPs attached to the
features.

The final graph completely represents components
and their binding together with their EFPs.

3.2 Evaluation of EFPs

Having a graph representation of component connec-
tions, the evaluation is quite straightforward. The

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

160

evaluator must go through the graph and find possi-
ble problems in vertex connections first, then it uses
the values attached to EFPs to compare the value pairs
of two connected EFPs.

Figure 3: Example Graph.

3.2.1 Construction of EFP Graph

The algorithm which computes the values of attached
EFPs as well as checks the connection of components
with each other uses a modified depth first search al-
gorithm. It has the following steps (let us use a nota-
tion vx;exy where x;y 2 I and I is a finite index set for
indexing vertexes and edges respectively):

1. Input sets of vertexes Vcomponent(
�!
G), Vf eature(

�!
G)

and Ve f p(
�!
G) are established and the first vertex

vi 2Vcomponent(
�!
G) is selected, temporary vertexes

v j;vk;vl = null, previous vertex vi�1 = null.

2. Find a first feature vertex finding the first edge
ei j 2 E(

�!
G) where v j 2 Vf eature(

�!
G). The direc-

tion of the edge is from a component to the feature
which symbols a required feature. If there is no
such edge, the component has no required element
and a new input set is specified Vcomponent(

�!
G) =

Vcomponent(
�!
G)� fvig and the algorithm goes to

step 5. Otherwise, proceed.

3. Find the first edge e jk 2 E(
�!
G) where vk 2

Vf eature(
�!
G). A direction is from a feature to

another feature representing a connection of re-
quired feature to a matching provided one. If the
edge is not found and the feature is mandatory, it
means that a requirement of the component is not
fulfilled! ERROR. For non-mandatory features,
the algorithm goes back to step 2. Otherwise, set
vi�1 = vi.

4. An edge ekl 2 E(
�!
G) where vl 2 Vcomponent(

�!
G) is

selected. The new first vertex vi = vl is set and the
algorithm goes back to step 2.

5. If v j;vk 6= null two sets of vertexes Ve f pk =

fvo j 9k : eok 2 E(
�!
G)^ vk 2 Vf eature(

�!
G)^ vo 2

Ve f p(
�!
G)g and Ve f p j = fvp j 9 j : e jp 2 E(

�!
G)^

v j 2 Vf eature(
�!
G) ^ vp 2 Ve f p(

�!
G)g are selected.

Ve f pk is a set of EFPs on the feature vk and their

values are computed first, then EFPs Ve f p j on the
feature v j are also computed. The vertexes are
removed from the input set Vf eature = Vf eature �
fv j;vkg.
The computation of EFP values differs for three
types of values (Ježek, 2010a)

� Direct value: a concrete value assigned to the
EFP is directly used;

� Local value: a value for a context of usage a
user aims to compute is used;

� Mathematical formula: computed using values
on connected components which must be cer-
tainly known at this time (because the depth
first search algorithm must have already visited
connected components).

In addition, the following must hold: 8p9o : epo 2
E(
�!
G)^ vo 2 Ve f pk(

�!
G)^ vp 2 Ve f p j(

�!
G) meaning

that all EFPs on the required side must be con-
nected to their provided counterparts, otherwise
! ERROR.

6. If vi�1 6= null a new initial vertex is set vi = vi�1
else if the set Vcomponent 6= /0, select another ver-
tex vi 2 Vcomponent(

�!
G). Then go back to step 2.

Otherwise, the graph evaluation ends.

The algorithm verifies any inconsistency in the
graph in terms of component bindings. The veri-
fication finds missing provided component elements
connected to the required sides of other components.
It furthermore finds missing EFPs on the provided
sides matching EFPs on the required sides attached
on bound components.

3.2.2 Evaluation of EFP Values in Graph

Once the components are bound and the EFPs are in
matching pairs, as a result of the algorithm, it is pos-
sible to compare values on the EFPs. This step veri-
fies whether a quality demanded on the required side
is guaranteed by the EFPs on the matching provided
side.

The verification of values must first select a se-
quence of required-provided EFP pairs from the
graph. The sequence P(V (

�!
G);V (

�!
G)) = f(vx;vy) j

8x9y : exy 2 E(
�!
G)^ vx 2 Ve f p(

�!
G)^ vy 2 Ve f p(

�!
G)g

contains EFP vertexes to be compared. A sequence
of EFP values attached to these vertexes is obtained
applying the function:

value : V (
�!
G)�V (

�!
G)! T �T (7)

where T is a set of EFP value instances computed on
respective vertexes.

CORRECT MATCHING OF COMPONENTS WITH EXTRA-FUNCTIONAL PROPERTIES - A Framework Applicable
to a Variety of Component Models

161

Furthermore a function g : T�T ! Z (Section 2.1,
equation 1) compares value pairs returning a numeric
result. Taking it together, the sequence of vertex pairs
is transformed to a set of numbers.

g� value : V (
�!
G)�V (

�!
G)! Z (8)

Using the functions, vertexes from the input se-
quence are finally compared:

zk = gk(valuek(P(V (
�!
G);V (

�!
G))k));

k = 1::jP(V (
�!
G);V (

�!
G))j

The resulting sequence of numbers is checked. A
non-negative number means that a quality has been
satisfied. For that reason the evaluator verifies that
8k9zk : zk 2 [0;¥)� Z holds. Otherwise the evaluator
signals an error for the EFP wrapped in the respective
vertex.

For instance, let us assume the property
time_to_process with numeric values and a g func-
tion g(x;y) = x� y (shorter processing time is bet-
ter). Following Figure 3 with values assigned to ver-
texes vp := 10 and vo := 30 the evaluation returns
g(value(vp;vo)) = g(value(10;30)) = 10�30=�20.
The result of the evaluation for these vertexes leads to
incompatible EFPs. For different values vp := 40 and
vo := 30 the evaluation would succeed.

4 IMPLEMENTATION AND
TOOLBOX

As a proof of the concept, the framework has been im-
plemented1 in the form of a set of modules and tools.

4.1 EFP Repository Server

In our case, the EFP repository has been imple-
mented as a web application storing data in a rela-
tional database and producing raw output via web ser-
vices using SOAP. This approach provides a low-level
XML data via standard HTTP protocol. The server,
in addition, provides WSDL files describing the web
service interfaces with the advantage of generating a
client program communicating with the server.

On one hand this technology allows a low-level
access by several clients working with SOAP proto-
col, on the other hand the plain XML data may be
awkward for other modules. In order to solve this
problem we have created a sub-module named the
EFP Client, shown in Figure 4, which basically turns

1https://www.assembla.com/code/cosi/subversion/nodes
/efps

XML data into EFP Types and vice versa. Hence,
client modules access data via EFP Client using fa-
miliar EFP Types first, then the repository transpar-
ently receives XML data.

From a technological point of view, the server is
a Java application using the Spring framework2. It
integrates the Hibernate framework3 for the database
layer and Apache CXF4 providing web-services.
While Hibernate offers an independent access to a va-
riety of database systems, CXF provides a rapid cre-
ation of web-services. Currently, Spring is used as an
inversion-of-control container, however, its usage al-
lows extensibility in the future. For instance, a web
client may be implemented to improve a user comfort
to interact with the server. The EFP Client has been
created as a web-services client and thus it also uses
Apache CXF.

Figure 4: Server Communication.

4.2 EFP Assignment and Evaluator

The two modules for transferring data (EFP Types and
EFP Assignment Types) as well as the EFP Assign-
ment module have been developed in a pure Java.

Figure 5: EFP Repository Tool.

2www.springsource.org/
3www.hibernate.org/
4cxf.apache.org/

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

162

EFP Types module is implemented as a set of
classes implementing generic interfaces that are able
to hold a complete EFP representation. Main ad-
vantage of this approach is its extensibility (Ježek,
2010a). It allows to modify data processed by the
framework in the future by writing different imple-
mentation of the generic interfaces.

The sub-module of EFP Asssignment data uses
XML files for storing EFP. It creates an off-line mirror
of the component related data from the EFP reposi-
tory. In practice, as the data are loaded and applied on
the component, the EFP Assignment module mirrors
them to a XML file. Where and how the file is stored
is up to the other sub-module.

The other sub-module of EFP Assignment, which
adresses differences of component models, is devel-
oped as a prototype implementation for the CoSi com-
ponent framework (Brada, 2008). Components in
CoSi have a form of Java JAR files. Hence, the pro-
totype implementation packages the XML file into
the JAR archive under the Meta-Inf folder. Further-
more, a linkage of EFPs to each service is stored in the
manifest.mf file. A similar strategy may be used for
other component models.

The EFP evaluator has been also written in pure
Java, however, it uses the JgraphT5 library for both
creating and discovering vertexes of the graph. It
leads to an easier implementation of the evaluating
algorithm. The evaluator publishes the results via a
set of objects aggregating all incompatibility errors.
Client applications may process the results as they de-
sire. For instance, the results may be printed to users
or they may be sent to other systems.

Moreover, all modules are built and distributed as
a set of Java JAR files. The distribution form provides
other Java-based applications with a possibility to in-
tegrate this framework as a third-party library. For
instance, the framework may be integrated to a com-
ponent repository as a tool checking component as-
semblies.

4.3 Tools

Since modules composing the framework aim at be-
ing used in other systems, their direct access by users
is impractical. For that reason, we have developed
tools offering comfortable graphical interfaces.

The first tool shown in Figure 5 works with the
EFP repository to provide control upon the repository
data. The implementation is a Java JFC Swing client
communicating with the server via web-services. Al-
though the selected technologies would allow to cre-
ate a web client, the choice taken has been more prac-

5www.jgrapht.org/

tical for research purposes, because the process of de-
velopment simultaneously tests the web-services.

Figure 6: EFP Assignment Tool.

The other tool shown in Figure 6 is a Java JFC
Swing client accessing the EFP Assignment module.
The client’s main functionality is to show EFPs avail-
able in the repository and to attach them to compo-
nents. In a basic scenario the users drag-and-drop
EFPs within one panel to the other panel listing com-
ponent features. Moreover, each drag-and-drop oper-
ation opens a dialog to input a value for the EFP to
be attached. Another important aspect is the ability
to switch the tool to other component models if the
EFP Assignment module contains an appropriate im-
plementation.

5 APPLICATON TO INDUSTRIAL
FRAMEWORK

This section briefly shows a possible implementation
of the EFP framework for an existing industrial com-
ponent framework.

5.1 EFPs in Spring Framework

One of the widely used component frameworks is
Spring. Components in Spring have forms of so called
Beans where one Bean is one Java class. Dependen-
cies between components are explicitly expressed in
configuration XML files which in essence define a so
called Application Context (Spring, 2010).

Let us note that despite complexity of Spring,
we will for the purposes of this paper use only the

CORRECT MATCHING OF COMPONENTS WITH EXTRA-FUNCTIONAL PROPERTIES - A Framework Applicable
to a Variety of Component Models

163

Spring’s XML based configuration with setter injec-
tion. Details concerning the application of the EFP
framework to the Spring’s annotation driven configu-
ration are avoided to preserve clarity of the presented
approach.

Spring Beans defined in the application context
may be considered as provided features in terms of
the EFP framework. Each setter of a Bean denotes
the required side of the Bean. Hence, the binding of
the provided to required side is equivalent to the ex-
amination of values (objects) injected into the setters
of the Bean.

Since Spring does not handle extra-functional
properties, they must be explicitly added by the EFP
framework. The EFP Assignment module must there-
fore be extended to attach EFPs to Spring Beans.

This may for instance be achieved by extending
Spring’s XML configuration files using XML name-
spaces to include also the EFP declarations. We sug-
gest a solution in which the EFP data mirror is a stand-
alone XML file – as has been mentioned in Section 4
– and the links between the mirror and Spring Beans
are stored in the extended Spring XML files.

The main advantage of this solution is that the
new XML tags do not clash with existing ones and
the Bean definition is separated from the definition of
EFPs.

Example of the solution based on the extended
XML files:
<bean id="data"
class="cz.zcu.kiv.example.DataAccess" >
<property name="jdbc" ref="jdbcDriver" />
<efp:name="response-time" property="jdbc">

<efp:values>
<efp:lr id="1" value="average" />
<efp:direct value="100" />

</efp:values>
</efp:name>

</bean>

In order to evaluate EFPs attached on Spring
Beans, the EFP evaluator must be aware of Beans
binding. To obtain the binding information directly
from the Spring framework the suitable solution is to
participate in the container life-cycle. Spring contains
a set of so called Bean Post Processors providing de-
velopers with a rich spectrum of call-back methods
allowing to modify the container life-cycle.

For the purposes of components matching, the
InstantiationAwareBeanPostProcessorAdapter
is useful to monitor bindings of Bundles with one
another.

An implementation preparing data for the µ
matching function may look like this (in outline):

public class EfpAwareBeanPostProcessor
extends
InstantiationAwareBeanPostProcessorAdapter

{

List<Pair> matchingPairs = ...

public
PropertyValues postProcessPropertyValues(

PropertyValues pvs,
PropertyDescriptor[] pds,
Object bean,
String beanName)
throws BeansException {

for (PropertyDescriptor pd: pds) {
PropertyValue prop = pvs

.getPropertyValue(pd.getName());
Object anotherBean = prop.getValue();

// "bean" and "anotherBean"
//are in a matching pair.
matchingPairs.add(
new Pair(bean, anotherBean));

}
return pvs;

}

The presented code contains the method which is
invoked by the Spring container each time a new Bean
is created. The input parameters hold information
about the Bean and its properties which have already
been set. Hence, the EFP framework uses it to deter-
mine that other Beans have been injected into this one.
This information is used for producing the component
graph (Section 3.1).

An application of the EFP Evaluator for Spring is
straightforward. Using the strategy with Bean Post
Processors, the evaluator is invoked as a new Bean
is instantiated first, then the attached EFPs are evalu-
ated (Section 3.2). Depending on particular needs, the
evaluator can be invoked for each change in the Ap-
plication Context or only once when the system starts.
Any errors found in the evaluating process may cause
the Application Context to stop as well as the errors
to be logged.

6 RELATED WORK

This work has been partly based on our previous re-
search. Namely, the structure of data stored in the
EFP repository is an implementation of our formal
definitions published in (Jezek et al., 2010). EFP
Types has been implemented using meta-models de-
tailed in (Ježek, 2010a). Hence, the part of the frame-
work concerning the repository is mostly a comple-
ment of our previous work while the other part is a

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

164

new contribution.
There are a lot of other approaches targeting extra-

functional properties. They usually cover a rich spec-
trum of issues, from formal definitions to practical im-
plementations.

An often addressed issue is the description of
extra-functional properties. One of the expressing
means are specialized languages, for example CQML
(Aagedal, 2001) that serves as a complete extra-
functional language, CQML+ (Röttger and Zschaler,
2003) that explicitly takes a runtime environment
dependency into account, or NoFun (Franch, 1998)
that distinguishes between simple and derived extra-
functional properties. Furthermore there exist rather
specialized languages such as TADL (Mohammad
and Alagar, 2008) which is a language describing
architectures of systems with a concern of EFPs,
HQML (Gu et al., 2001) as a language targeted
to web-development, or the SLAng language suited
especially for service-level agreement specifications
(Lamanna et al., 2003). A general advantage of such
approaches is that they provide an answer of what
an extra-functional property should stand for. On the
other hand they do not address the question of how the
properties should be evaluated. Developing our ap-
proach, we use these languages to consolidate typical
features of extra-functional properties into our model.

Other works propose component frameworks tak-
ing extra-functional properties into account as a part
of their component models. Let us name at least Pal-
ladio (Becker et al., 2009) that targets mainly per-
formance characteristics, Robocop (Muskens et al.,
2005; Bondarev et al., 2006) for real-time charac-
teristics, or ProCom (Sentilles et al., 2009). These
approaches typically lack modularity in terms of the
peculiar ways of using extra-functional properties. It
prevents their extra-functional properties to be used in
other component frameworks.

Very often, an issue being solved is modeling
of extra-functional characteristics. For instance, the
OMG group standardized a UML profile (OMG,
2008) covering the quality of services.

Comparing these approaches to our contribution,
we aim at a system which is not tied with a concrete
component framework, is not intrusive and provides
easy integration with other frameworks.

7 CONCLUSIONS

This paper has pointed out a need for extra-functional
properties to improve current component based de-
velopment. Moreover a problem of applicability of
extra-functional properties to practice has been men-

tioned. The most important issue targeted in this pa-
per is a discrepancy of industrial and research com-
ponent frameworks together with slow application of
extra-functional properties to practice.

The contribution of this paper lies in the imple-
mentation of an independent framework for working
with EFPs in a comprehensive manner. The frame-
work includes a repository of extra-functional proper-
ties, a module assigning the properties to each com-
ponent and an evaluator of the properties. This ap-
proach enriches, but does not limits, current industrial
component frameworks and aims at filling the gap be-
tween application of extra-functional properties and
the practically used component frameworks.

The approach has been presented in terms of mod-
els and algorithms and the prototype implementation
has been introduced.

Since the work is still in the progress, we have
some issues to be solved in the future. First of all,
our preliminary implementation works with the CoSi
component framework. Since CoSi is highly inspired
by OSGi, we desire to implement our framework
also for OSGi. Furthermore, the implementation for
Spring-DM or Spring seems to be also worth consid-
ering.

Secondly, the prototype implementation of the
repository does not take questions such as security,
user access rights, or publishing of new versions into
account. We aim at answering these questions as soon
as the prototype is fully tested and working.

ACKNOWLEDGEMENTS

The work was partially supported by the UWB grant
SGS-2010-028 Advanced Computer and Information
Systems and by the Czech Science Foundation project
103/11/1489 Methods of development and verifica-
tion of component-based applications using natural
language specifications.

We would like to thank students Martin Štulc,
Lukáš Vlček and Jan Šváb for their considerable help
in programming the presented framework.

REFERENCES

Aagedal, J. Ø. (2001). Quality of Service Support in Devel-
opment of Distributed Systems. PhD thesis, University
of Oslo.

Bauml, J. and Brada, P. (2009). Automated versioning in
osgi: A mechanism for component software consis-
tency guarantee. In EUROMICRO-SEAA, pages 428–
435.

CORRECT MATCHING OF COMPONENTS WITH EXTRA-FUNCTIONAL PROPERTIES - A Framework Applicable
to a Variety of Component Models

165

Becker, S., Koziolek, H., and Reussner, R. (2009). The pal-
ladio component model for model-driven performance
prediction. Journal of Systems and Software, 82(1):3
– 22. Special Issue: Software Performance - Modeling
and Analysis.

Bondarev, E., Chaudron, M. R., and de With, P. H. (2006).
Compositional performance analysis of component-
based systems on heterogeneous multiprocessor plat-
forms. In Proceedings of Euromicro conference on
Software Engineering and Advanced Applications,
pages 81–91. IEEE Computer Society.

Brada, P. (2008). The CoSi component model: Reviving
the black-box nature of components. In Proceedings
of the 11th International Symposium on Component
Based Software Engineering, number 5282 in LNCS,
Karlsruhe, Germany. Springer Verlag.

Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (1999).
Non-Functional Requirements in Software Engineer-
ing. Series: International Series in Software Engineer-
ing, Vol. 5, Springer, 476 p, ISBN: 978-0-7923-8666-
7.

Franch, X. (1998). Systematic formulation of non-
functional characteristics of software. In Proceedings
of International Conference on Requirements Engi-
neering (ICRE), pages 174–181.

Garcı́a, J. M., Ruiz, D., Ruiz-Cortés, A., Martı́n-Dı́az, O.,
and Resinas, M. (2007). An hybrid, qos-aware dis-
covery of semantic web services using constraint pro-
gramming. In ICSOC ’07: Proceedings of the 5th in-
ternational conference on Service-Oriented Comput-
ing, Springer-Verlag Berlin, Heidelberg 2007, ISBN:
978-3-540-74973-8, pages 69–80, Berlin, Heidelberg.
Springer-Verlag.

Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., and Xu,
D. (2001). An xml-based quality of service enabling
language for the web. Technical report, University of
Illinois at Urbana-Champaign, Champaign, IL, USA.

ISO/IEC (2001). ISO/IEC 9126: Informational technology
- product quality - part1: Quality model, international
standard iso/iec 9126, international standard organiza-
tion.

Ježek, K. (2010a). A complex meta-model for extra-
functional properties concerning common data types
their comparing and binding. In 2nd World Congress
on Software Engineering (WCSE 2010), Volume 2,
pages: 71-74,ISBN:978-0-7695-4303-1.

Ježek, K. (2010b). Universal extra-functional proper-
ties repository, model overview and implementation.
In Proceedings of the International Conference on
Knowledge Management and Information Sharing
(KMIS 2010), pages: 382-385,ISBN: 978-989-8425-
30-0.

Jezek, K., Brada, P., and Stepan, P. (2010). Towards con-
text independent extra-functional properties descrip-
tor for components. In Proceedings of the 7th Interna-
tional Workshop on Formal Engineering approaches
to Software Components and Architectures (FESCA
2010), Electronic Notes in Theoretical Computer Sci-
ence (ENTCS) Volume 264, page 55-71, ISSN: 1571-
0661, pages 55–71.

Lamanna, D. D., Skene, J., and Emmerich, W. (2003).
Slang: A language for defining service level agree-
ments. Future Trends of Distributed Computing Sys-
tems, IEEE International Workshop, 0:100.

Lau, K. K. and Ukis, V. (2006). Defining and check-
ing deployment contracts for software components.
In Proceedings of the 9th International Symposium
on Component-Based Software Engineering, volume
4063 of LNCS, pages 1–16.

Mohammad, M. and Alagar, V. S. (2008). TADL -
an architecture description language for trustworthy
component-based systems. In ECSA ’08: Proceedings
of the 2nd European conference on Software Architec-
ture, pages 290–297. Springer.

Muskens, J., Chaudron, M. R., and Lukkien, J. J. (2005).
Component-Based Software Development for Embed-
ded Systems, chapter A Component Framework for
Consumer Electronics Middleware, pages 164–184.
Springer Verlag.

OMG (2008). UML profile for modeling quality of ser-
vice and fault tolerance characteristics and mechanism
specification. Technical report, OMG - Object Man-
agement Group.

Röttger, S. and Zschaler, S. (2003). CQML+: Enhance-
ments to CQML. In Bruel, J.-M., editor, Proc. 1st
Int’l Workshop on Quality of Service in Component-
Based Software Engineering, Toulouse, France, pages
43–56. Cépaduès-Éditions.

Sentilles, S., Stepan, P., Carlson, J., and Crnkovic, I. (2009).
Integration of extra-functional properties in compo-
nent models. 12th International Symposium on Com-
ponent Based Software Engineering (CBSE 2009),
LNCS 5582.

Spring (2010). Spring Framework, ver.3,
Reference Documentation. Spring Co-
munity, ver. 3 edition. Available at
http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/.

Szyperski, C., (with Dominik Gruntz, and Murer), S.
(2002). Component Software - Beyond Object-
Oriented Programming: Second Edition. Addison-
Wesley / ACM Press, 624 pages, ISBN-13: 978-
0201745726.

Yan, J. and Piao, J. (2009). Towards qos-based web services
discovery. In Service-Oriented Computing ICSOC
2008 Workshops, Lecture Notes in Computer Science,
2009, Volume 5472/2009, 200-210, ISBN: 978-3-642-
01246-4.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

166

