
LESSONS LEARNED IN APPLYING MDE TO THE
DEVELOPMENT OF HOME AUTOMATION SYSTEMS

Francisca Rosique, Pedro Sánchez, Manuel Jiménez and Diego Alonso
DSIE Research Group, Technical University of Cartagena, Campus Muralla del Mar s/n, E-30202, Cartagena, Spain

Keywords: Home Automation, Model Driven Engineering, Model Transformations, Domain Specific Languages.

Abstract: Home Automation (HA) systems represent a domain of interest to evaluate the benefits and difficulties of
adopting the well known Model Driven Engineering (MDE) approach. This is due to the existence of
determining factors in the development of such systems that makes MDE applicable with some
considerations. This article presents the lessons learned after the definition of a methodology and the
implementation of a set of tools to support the MDE-base development of HA systems. In particular, the
definition of a Domain Specific Language has made possible the generation of code although we have
identified some peculiarities and differences from a classical MDE perspective. These results can be
extrapolated to other domains with similar characteristic.

1 INTRODUCTION

Home Automation (HA) systems have emerged as a
field of great interest in the engineering field given
the current demand for information systems in
society. One of the main problems of HA systems
development lies in the fact that there is no
agreement in the standard to implement the
applications. HA applications and devices currently
belonging to different manufactures are isolated
from each other thereby creating the main obstacle
to HA market growth.

Leading companies in this market have adopted
several standards and protocols. Some examples
worth mentioning are the KNX (ISO/IEC14543-3-
X)) (Karlheinz, 2009), Lonworks (ISO/IEC
14908)(Echelon, 2009) and X10(Technica, 2005)
technologies. Furthermore, as stated in
(Miori, 2006), it is improbable that there will be a
single dominant technology for HA in the short
term. Each of these technologies provides its own
software suite to create HA applications and
program the devices. Hence the particular
technology (specific platform) must be selected at
the initial design stages, inasmuch as the tools and
devices to be used depend on this choice. Thus, the
development of these systems requires developers
that have a very high degree of specialization in the
used technology. But all these tools are,

unfortunately, incompatible among them, and thus
applications cannot be reused in HA systems that
use different technologies.

The Model-Driven Engineering (MDE) approach
(Selic, 2003) presentsa very promising alternative to
solve the problems of the current development
techniques for HA systems, as mentioned before.
MDE provides a theoretical and technological
framework for the use and management of models in
software development. The work presented in this
paper describeshow MDE has been used to develop
a framework for HA applications that(i) providesan
approach more in keeping with the principles of
Software Engineering, and (ii) considers the product
life-cycle.

The article (Sanchez, 2011)presentsour
integrated framework that allows the definition of
HA systems at different levels of abstraction, from
requirements to code, as can be seen in Figure 1.

These levels of abstraction have been organized
according to the Object Management Group’s
Model-Driven Architecture (MDA) (Mellor, 2004)
initiative, into a Computation-Independent Model
(CIM), a Platform-Independent Model (PIM), and
several Platform-Specific Models (PSM).

The steps taken to obtain this framework were
the following:
- A preliminary analysis of the current state of HA

systems (domain analysis) and identification of

265Rosique F., Sánchez P., Jiménez M. and Alonso D..
LESSONS LEARNED IN APPLYING MDE TO THE DEVELOPMENT OF HOME AUTOMATION SYSTEMS.
DOI: 10.5220/0003470502650268
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 265-268
ISBN: 978-989-8425-77-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

the HA domain concepts was carried out.
- Acatalog of reusable HA requirements was

created.
- A definition of the various software artefacts

(functional units, components, etc.) that can be
assembled and configured was done.

- Languages and tools for both the representation
of the specific requirements of each system and
the automatic transformation towards lower
levels of the MDA approach, which are closer to
the platform, were developed.

- A tool for traceability management through was
developed and integrated in the framework.

Figure 1: Framework for home automation.

This paper presents the lessons learned from the
decisions taken, the difficulties encountered and the
conclusions reached over the creation of a HA
development framework with the aforementioned
characteristics, that is from requirements to code.
Section 2 presents the main lessons learned during
its development, and finally section 3 outlines the
conclusions.

2 LESSONS LEARNED

In the previous section we have summarized the
main characteristics of the developed framework, the
tools used, and the steps that led us to its
development. This section describes the main
lessons learned from this work. These lessons seek
to extract, from the achievements and constraints,
conclusions and knowledge that can help other
developers when facing the development of a similar
framework in similar domains.

Lesson 1: About the Importance of
Platform Independence

Following the MDA guidelines, it is essential to
keep platform independence in the early stages of
the development process. In the HA domain, the
differences between platforms, technologies,
standards and manufacturers are significant. Most of
the time the compatibility is not guaranteed, so the
early selection of physical devices (switches,
controllers, alarms, etc.) and an implementation
technology (EIB, for instance) is usually inevitable.
This commitment to a specific platform makes it
difficult to carry to term an MDE approach.

The domain analysis performed previously to the
framework development demonstrates that there are
functional elements that appear in all HA
technologies and standards, although these
technologies differ in their architecture, protocols or
available modules. We have called these elements
“functional units”, and they form the core of the
approach, since we model HA systems according to
the functional units needed. In the later stages, and
depending on the selected technology, specific
devices that provide the functionality will be
selected, generating the corresponding code after a
model transformation step. In short, platform
independence has been achieved thanks to the study
of the domain and the consideration of the functional
units as basic elements to describe the HA systems.

Lesson 2: Reuse is Challenging

As Krueger states in (Krueger, 1992), “software
reuse is the process of creating software systems
from existing software rather than building software
systems from scratch”. In this context, abstraction
plays a key role, reducing the time and effort
required to develop and maintain any systems. With
DSLs, reuse is feasible at model level, making it
possible to reuse partial or entire models, rather than
pieces of platform-specific code. Thus, the
beginning of a new software development project
can be done from existing reusable assets.

We have identified two key aspects that
determine the feasibility of reuse in the context of
DSLs: (1) in order to select a model or a model
fragment for reuse, you must first know what it
does; and (2) in order to have effective reuse, you
must be able to discover the model fragment faster
than you could build it from scratch.

The existence of a generic requirement set for
subsequent system instantiation can significantly
contribute to model reuse. Modelers could select a
subset of these generic requirements when

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

266

developing new systems. For each generic
requirement a model fragment can be given using
the DSL. A model fragment is part of a complete
model in the sense that accomplishes part of the
desired functionality. Then, reuse may be fulfilled
by the integration of all the model fragments into the
system model to be developed. It is possible that a
model fragment would be syntactically or
semantically incomplete. Thus, integrity rules should
be disabled temporarily in order to facilitate the
integration of these model fragments. HA domain is
quite adequate to promote reuse by means of model
fragments since requirements are well structured and
it is quite straightforward to model them using the
DSL.

However, users must be aware of that not every
single developed artefact can be reused. But reusing
is easier when working with models than it is when
using code.

Lesson 3: Leveraging Existing Resources

It is essential to exploit the commercial tools
available for each home automation technology
rather than build a new set of tools from scratch,
since it will facilitate the generation of executable
code.

If we take the example of the KNX/EIB
technology, at present, the starting point for a
traditional developer is the creation of the project by
using the tool ETS (Engineering Tool Software),
which allows the creation of application code for
this platform by means of a scripting language. With
the proposed framework, the ETS tool becomes a
support for the implementation of the code obtained.
The ETS-ITTools plug-in allows us to interface the
manufacturer environment using the VBScript
programming language. The KNX specific model
(level PSM) is the source for the model-to-code JET
transformations to obtain the VBScript macros.
These macros are then executed using the ITTools
plug-in to automatically generate the project in ETS
for any HA application.

This approach is interesting in the way that it
takes advantage of the technology tools for code
generation rather than building a whole new set of
tools from scratch. In this way, the starting point for
a traditional developer would be the creation of the
project by interacting manually with the ETS tool.

Lesson 4: Benefits Obtained with
Traceability

The incorporation of traceability in the MDA

approach is a very interesting issue. A traceability
management tool is necessary to have an automated
way of visualizing the relationships between the
artefacts obtained in the generation process, from
requirements to code(Lago, 2009).

The framework described in ()includes a
traceability management tool that generates reports
from information collected in the traceability models
created automatically during the execution of the
modeltransformations steps. This report has been
demonstrated of great interest to:
• Validate whether all the requirements have

been supported. We have checked that all the
requirements are represented by means of DSL
model elements.

• Establish the impact of changing a
requirement. It is usual that the stakeholders of
the system suggest changes to the requirements
throughout the whole development process.
The traceability report has helped analysts to
evaluate the impact of these changes before
apply them.

• Verify whether the DSL model is compliant
with the requirements.

Lesson 5: Eclipse Modelling Tools are Still
Difficult to Use

Some difficulties have arisen at the creation of the
DSL tools with Eclipse plugins (Eclipse Fundation,
2007) such as EMF, GMF and GEF. Although they
are offered as intuitive graphical interfaces, rich in
colors and shapes, speaking in terms of development
they are not so easy to use. This is due to the great
complexity involved in using the tools and the lack
of adequate documentation.

EMF is the technological base on which to
support other modeling tools. The naming
convention of interfaces/classes generated by EMF
plugin and the location of the generated files must be
taken into account during the definition of the meta-
model. For example, some words reserved by EMF
can cause failure if selected as the name of a class,
an interface or a reference.

GMF Eclipse plugin, used to generate graphical
editors, tries to hide all the models by means of
wizards. When you want to customize the generated
editors it is needed to learn the use and origin of
each of these models and GMF main functions in the
development of the editor. A serious drawback of
GMF is the lack of a graphical editor to create and
manage the DSL elements. Besides, the definition of
new visual elements as a composition of those
previously defined is not a trivial issue. Thus,
developers must define relationships among nodes

LESSONS LEARNED IN APPLYING MDE TO THE DEVELOPMENT OF HOME AUTOMATION SYSTEMS

267

and connectors manually.
The constraints should be defined and included

in the design phase of the DSL. This fact has the
drawback that any later change or addition of one of
these OCL rules implies the rebuilding of the DSL
editor.

These modeling tools are relatively young, they
are still under development and new versions are
released frequently, so often different versions are
incompatible with each other. The documentation is
rather basic and almost non-existent, often the best
source of information can be found in the web news.
It must also be highlighted the learning time needed
to efficiently work with these tools (3-4 months).

3 CONCLUSIONS

Aframework has been created following the MDE
approach which has allowed the development of a
number of tools (requirements and traceability
managers, DSLs, model transformations, and so on)
to support the full development of HA systems.
These resources have helped users to create HA
applications in a way much more easier and
productive.

The availability of tools to promote the creation
of DSLs(Kelly, 2009) is quite promising. DSLs
allow describing systems in an easy and intuitive
way, using concepts from the application domain.

The use of new Software Engineering techniques
into domains traditionally not subject of this study,
such as the HA domain, is very promising. Although
the MDE approach is not new, there are no
integrated proposals for the development of HA
systems that cover the entire process. None of them
takes into account the advantage of reusing the
infrastructure already provided by HA manufacturer.

It may be difficult and laborious to create a DSL
from scratch. Nevertheless, the benefits are greater
than liabilities in some domains. Creating a new
DSL (with tools to support it) can be worthwhile if
the language allows a particular type of problems to
be expressed more clearly than pre-existing
languages (such as UML) would do. In MDE the use
of domain-specific languages is the best option for
HA systems where the concepts themselves are well
defined. In this way, it allows developers with some
experience in HA to create descriptions of HA
systems using visual notations that can be
automatically transformed into executable code.

For the transformations, graph grammar
techniques are a good choice given the graphic
nature of both the transformations and the models.
But the need to work with an integrated tool within

Eclipse makes more interesting the use of hybrid
declarative/imperative languages.

Furthermore, both the reuse and traceability
capabilities provide our framework with the basic
characteristics desirable in any development,
improving quality and reducing the resulting
software development costs.

All the lessons learned from our experience can
be of interest in other domains. For example, since
the HA domain is a specific case of reactive
systems, these same lessons can be extrapolated to
those that attend the same technological conditions:
(1) the existence of a substrate for the definition of a
DSL, (2) the possibility of reusing models from a
software product-line perspective, and (3) the
availability of commercial tools for making easier
and higher code generation.

ACKNOWLEDGEMENTS

This work was partially supported by the Spanish
CICYT project EXPLORE (TIN2009-08572).

REFERENCES

Eclipse Foundation, 2007. Platform Plugin Developer
Guide, Platform Architectur. http://help.eclipse.org/
help33/index.jsp?topic=/org.eclipse.platform.doc.isv/g
uide/arch.htm.

Echelon Corporation, LONWORKS Engineering
Bulletins, 2009.

Sánchez, P. ,Jiménez, M., Rosique, F., Álvarez, B. and
Iborra, A., 2011.A framework for developing home
automation systems: From requirements to code.
Journal of Systems and Software.88 (6): 1008-1021.

Karlheinz, F., 2009.EIB/KNX: Grundlagen
Gebaudesystemtechnik. Edition MundArt, 4th ed.

Kelly, S. and Pohjonen, R., 2009.Worst Practices for
Domain-Specific Modeling. IEEE Software. 26(4):
223-29.

Krueger, C., 1992.Software reuse. ACM Computing
Surveys. 24(2): 131-183.

Lago, P., Muccini, H., Vliet, H., 2009. A scoped approach
to traceability management. Journal of Systems and
Software, 82(1), pages 168-182.

Mellor, S., Scoot, K., Uhl, A.and Weise, D., 2004. MDA
Distilled: Principles of Model-Driven
Arquitecture.Addison Wesley.

Miori, V., Tarrini, L., Manca, M. Tolomei, G., 2006. An
open standard solution for domoticinteroperability.
IEEE Transactions on Consumer Electronics. 20(50),
pages 19-25.

Selic, B., 2003. The Pragmatics of Model-Driven
Development, IEEE Software.20, pages 46–51.

Technica Pacifica, 2005. Easy X10 Projects for Creating a
Smart Home.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

268

