INTER-MODEL CONSISTENCY BETWEEN UML STATE MACHINE
AND SEQUENCE MODELS

Yoshiyuki Shinkawa
Department of Media Informatics, Ryukoku University, 1-5 Seta Oe-cho Yokotani, Otsu, Shiga, Japan

Keywords: UML, Model Consistency, Colored Petri Nets.

Abstract: UML state machine diagram and sequence diagram represent a system or software from contrastive two view-
points, namely part and whole. If these diagrams depict the same system, they must be consistent with each
other. However, UML does not provide us with an appropriate way to evaluate the consistency between the
models drawn by these different diagrams. This paper reveals the interrelationships between state machine
and sequence diagrams based on the ordering of method invocations, which determine the behavior of them.
Focusing on these relationships, two criteria are introduced to evaluate the consistency. The evaluation is per-
formed using Coloured Petri Nets (CPN) so that both diagrams are expressed and compared in the same form,
with the same syntax and semantics.

1 INTRODUCTION for more rigorous specification and verification us-
ing diverse formal techniques, which include process

UML state machine diagram and sequence diagramalgebra (Fischer et al., 2001), formal specification
are two of the most used diagrams in modeling the be- l2nguages like Z (Amalio and Polack, 2003), VDM,

havioral aspects of a system to be developed. While (Lausdahletal., 2009) or B (Snook and Butler, 2008),
the former mainly expresses the behavior of individ- Model checking (Knapp and Wuttke, 2006), and Petri-
ual object participating in the system, the latter deals Nets (Garrido and Gea, 2002). These formal tech-
with the behavior of the system in the form of inter- NiuUes examine the structure, functionality, and be-
actions between these objects. These two kinds of di-havior of the models written by UML diagrams pre-

agrams can be regarded to haysaat-wholerelation- cisely, and express the model semantics in their own
ship, and therefore they must bensistentvith each ~ Syntaxes.
other. On the other hand, much fewer efforts have been

However, if these diagrams are used indepen- made for inter-model relationships written by differ-
dently to model the objects and the system, it is diffi- €Nt UML diagrams, such as the relationship between
cult to maintain consistency between the models writ- YML state-machine models and sequence models. In
ten using these different diagrarhs If there are in- order to evaluate the inter-model consistency between
consistencies between the above models, the resultanfiférent UML models, we have to formalize not only
system would include various problems, e.g. unex- the internal structure of each model, but also the in-
pected malfunctions. terrelationships between them.

One of the reasons for this difficulty is that no ap- ~ 1hiS paper presents a formal and systematic
propriate ways are provided by UML to evaluate the W& to evalu_ate inter-model con5|s§ency between the
consistency between these models (Egyed, 2006), andbove two kinds of UML models using Colored Petri

it seems to be caused by expressive diversity and in-Nets (CPN) as a formalization technique. The paper
sufficient formalization of UML. is organized as follows. In section 2, interrelation-

ships between the models are examined and revealed.
Section 3 discusses the transformation of UML state
Lin this paper, we call a model written using a specific Machine and sequence models into CPN models. Sec-
UML diagram agdiagram-namer models e.g. asequence tion 4 presents how the transformed CPN models are
modelmeans a model written by UML sequence diagram. evaluated to determine whether they are consistent.

Various efforts have been made to formalize UML

Shinkawa Y.. 135
INTER-MODEL CONSISTENCY BETWEEN UML STATE MACHINE AND SEQUENCE MODELS.

DOI: 10.5220/0003474001350142

In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 135-142

ISBN: 978-989-8425-77-5

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

2 INTERRELATIONSHIPS Assuming each state in a state machine model rep-
BETWEEN THE MODELS resents such a state, a state transition
elvl/a o

S —— 5
Sheans the update of the variables by the action
when the guarg holds. The symbat represents an
event triggering the transition. The above actiois
implemented as a method of the object, if the state
variables are fully encapsulated. Therefore, in such a

situation, a series of state transitions correspond to a

h In ct)biect ohr_ler?ted aptproac”hesk,) eaChb?inith(.:aQ series of method invocations, each of which updates
ave states which are externally observable. 9N the values of the state variables.

abstraction levels, these states are recognized as the On the other hand, a sequence model represents
observable transitory properties qf an objegfsuch 3Sthe interactions betwesifelinesin the form of mes-
appearances, dlr_nenS|ons, or activities currently per- sage passing. These lifelines can represent various
forrpeld bylth?hObJeCt' Onthe otrzjer hand,lat more COP' oncepts and entities, e.g. classes, objects, actors, or-
crete Jevels, they are expressed as a value or a se 0Eaniza’tions, or other participants to the system to be
values of the variable or variables in the object. modeled

H Iln . - e Tsr(]:ussmn precas?j, ¥ye a(rj]opt In order to identify the interrelationships between
the latter interpretation of the states, and define them ;i machine and sequence models, both models

State machine and sequence models represent the b
havior of a system from different viewpoints, based
on different model components. Therefore, we first
have to identify the commonality between these mod-
els. We focus on the states of objects for this com-
monality.

as follows.] . 4] must have the common components, therefore we re-
1. LetQ be an object, including the variables gard the lifelines as objects. In this interpretation, a
X ={x1, =+, %} for its attributes, each of which ' receiving event occurrence represents a method invo-
is associated with the value spage=dom(x;). cation in a sequence model.
2. For a sub-domai C X1 x -+ X Xp, if the two One of the ways to express the behavior of a se-
tuples of values quence model is to show the series of messages ex-
changed between lifelines. Regarding the lifelines
(a1, ,@n) €5 S X1 X+ X Xp as objects, this series also represents the series of
(b1, - ,bn) €5 C X1 X+ X Xq method invocations. This series can be defined for

the whole system or for a specific object, by extract-
ing the method invocations along the lifeline.

From the discussion so far, two series of method
invocations can be obtained for the same object, one
3. The collection of such sub-domains defines a setfrom a state machine model, and the other from a

of the state€ = {Sy,---,Sn}, whereS is a sub- sequence model. Therefore, by refining these mod-

domain that is recognized as a state. els appropriately to make these two series consist of
This definition relates a state of an object with a sub- the same set of the ”?etho‘?'s’ they can be a measure
domain of the variables in the object. Such a sub- to define the |nter_relat|onsh|ps between the two mo_d-
domain can be defined by a logic formula with pred- els. One of the differences between these two series

icates. For example, if the temperature and humidity is that the sequence model might mclu.de the mes-
of an objectRoomare represented by the variables sages not affecting Fhe st_ates_ of the object. A typi-
andy respectively, and the statmcomfortablas de- cal such a message is an inquiry message, which only
fined by the sub-domain returns some information without updating the state

variables.

s ={(xy)[x>30,y> 60} U{(x,y)[x< 10} Taking the above difference into account, the
inter-model consistency between state machine and
sequence models from a method invocation viewpoint

are externally distinguishable, and the distinction
is meaningful from an application viewpoing,
forms astate Sof the Q.

the state is represented as a logic formula

_ is defined as follows.

P(xy) = (G(x,30) A G(y.60)) v ~G(x,10) 1. Letg =ajay---a, ands = byb,---by be the ob-
whereG(u,v) is the predicate, meaningis greater tained series of method invocations from state ma-
thanv. Even though there could be many different chine and sequence models respectively for the
forms of a logic formula, there can be a uniqurenex same object.
conjunction normal fornfPCNF), that is, the formula 2. Remove such methods frapnthat do not occur in
written as a string of quantifiers/ (and3), followed 4, and letc = c,1C;---Cp be the remainder series
by a conjunction of clauses. of 8.

136

INTER-MODEL CONSISTENCY BETWEEN UML STATE MACHINE AND SEQUENCE MODELS

3. ¢ must occurim as a partial series of methodin- 3 MODEL COMMONIZATION
vocations, since represents the series of method WITH CPN
invocations updating the states of the belonging

object. Colored Petri Nets (CPNs) are one of the extensions

The above series are not so easily obtained be-of regular Petri nets, which can express the structure,
cause of complicated structures of state machine andbehavior, and functionality simultaneously for vari-
sequence models. In order to identify and examine ous systems. CPN is formally defined as a nine-tuple
these series automatically, we use Colored Petri NetsCPN=(P, T, Az, V, C, G, E, I), where
(CPN) and CPN Tools (Jensen and Kristensen, 2009). P : afinite set of places.

Before discussing the usage of them, we introduce an- T : a finite set of transitions.

other consistency criterion based on the states of ob- (a transition represents an event)
jects. A afinite setof arc®NT =PNA=TNA=0.
Unlike state machine models, sequence models Z: a finite set of non-empty color sets.

are scarcely founded on the concept of states. How- (a color represents a data type)

ever, there are several points in a sequence model V : afinite set of typed variables.

where we can recognize the states. One is a state in- C : a color functiorP = 2.

variant located on a lifeline, and the other igw@ard G : a guard functiom — expression.

that is occurred in some combined fragments hke (a guard controls the execution of a transition)

andloop. E : an arc expression functigh— expression.
While the guards only control the sequence of |:aninitialization function :P— closed expression.

message passing, and might be true or false, the state

invariants represent the conditions that have to be sat-3.1 = Transforming State M achine

isfied at specific points in the sequence modell, gnd M odelsinto CPN

must be true. Therefore, state invariants are eligible

to evaluate the consistency. State machine models and CPN models show similar

Since tI:je Imethotdhln(\jloc_?;lct)k? tsefqtl?]ence In a SZ' properties, since both originated from finite automata.
quence model IS matched wi atorthe correspond--q gipyctural relationships between these two mod-
ing state machine model, the states in the state Ma-o|s are as follows

chine model can be injected into the sequence model, 1. Each state in a state machine model corresponds
so that we can identify the states at the receiving event ~ 10 a place in a CPN model. The color assoc?ated
occurrences where the corresponded messages arrive . P .)

with the place is composed of the types of the state

at. .
By this injection, each lifeline is partitioned into variables.

zones associated with the states as shown in Figure 1.2. A state transition corresponds to a transition put
As stated above, the states can be expressed in between two places that reflect the source and des-
the form of logical formulae with state variables, and tination states of the state machine
therefore we can assign these logical formulae to the For a label on the state transition, which is de-
above zones. On the other hand, state invariants arenoted as "event[guard]/action”, the event and guard
the assertions on the states, either object or systemare transformed into a guard function of the associ-
states, and can be expressed in the form of logical for- ated CPN transition, while the action is transformed
mulae. into the outgoing arc function that updates the token
Since each state invariant is located at a particular value.
point on a lifeline, it belongs to one of these zones as- Based on the above structural correspondences, it
sociated with a logical formulae. Therefore, the state is required to build a behaviorally equivalent CPN
invariant must not conflict with the logical formula of model to a given state machine model, in order to
the zone it belongs. Let the state invariang@), and commonize state machine and sequence models.
the logical formula of the associated zoneR{&), Unlike simple finite automata, UML state ma-
chine models can include complicated control struc-
P(T) — P(%) tures and functionality, and they must be embedded

must hold, wheré andx represent the state variables. in the CPN models. These can be expressed in the
These state injection and state invariant consis- form of CPN as follows.
tency are also implemented by CPN.

137

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

State Machine Model Sequence Model Including
for the Object L1 the Object L1 as a Lifeline
Injected State
al 1 '
e2[g2]/a2 e3[g3)/a3 | f
| b1 I
s2 S3 — |
| cl |
:e- ----- | S1
di] l
! |
a3 : |
— A\
| !
|
] | S3
[}
Figure 1: State Injection into Sequence Model.
[Initial State] izes a static branch, and multiple state transitions
Aninitial state is expressed in CPN as a place with are possible. A choice pseudo state is simply im-
initial marking, and with no incoming arcs. plemented by CPN using competing transitions with
[Final State] guards. On the other hand, a junction pseudo state
A final state is expressed as a place with no outgo- is rather tricky, which is implemented using a inter-
ing arcs. mediate place and arc functions that provatapty
[Composite State] tokens if the guards fail. Figure 2 shows the junction

A composite state includes another state machinePSeudo state with two incoming and three outgoing
model inside, and expressed as a substitution transi-State transitions, which is transformed into the CPN
tion in a CPN model, since this state itself can be re- Mmodel with the intermediate place “P". The arc func-
garded as a process or behavior. tion “&;(i = 3,4,5)" are the CPN/ML functions
[Submachine State] if gi thenx else empty N _ _

A submachine state is an inserted state ma- wheregi is the guard for the transition “Ti” angl is
chine, and simply expressed using a hierarchical cCPN the variable for the token.
model.

[Entry Point]

An entry point is an alternative initial state, and
expressed in the same way as an initial state in
CPN. The initial marking of the CPN model controls
whether it becomes initial state.

- . [93]
[Exit Paoint] (T3] [Ta] [T5]
An exit point is an alternative final state, and ex- [S3) C S4 J [S5) a3 a4 a5
pressed in the same way as a final state. If entry or an
exit point is a submachine state, they are expressed as GRIRPIRECY
a port-socket pair in CPN. Figure 2: Junction Pseudo State.

[Fork and Join Pseudo State]
A fork pseudo state initiates a parallel state tran- [Shallow and Deep History Pseudo States]
sitions, whereas a join pseudo state merges them intoThese pseudo states provide restart capability for
a single one. These pseudo states can be expressed asmposite states. In CPN models, a substitution tran-
splitting and merging transitions with multiple places sition that is equivalent to the composite state must
in CPN. also be restartable. This restart mechanism is realized
[Choice and Junction Pseudo States] by appending three places, each of which represents
These pseudo states express control branchesexit checkpointandre-entryrespectively, along with
While the former realizes a dynamic branch, and anescapdransition for each place that represents the
only one state transition is allowed, the latter real- state.

138

INTER-MODEL CONSISTENCY BETWEEN UML STATE MACHINE AND SEQUENCE MODELS

Shallow and deepare distinguished from each the fragment is controlled by guard it can be im-
other whether the above mechanism is nested or not. plemented as a transition with the equivalent guard,
which puts a token into the place outside the fragment.
3.2 Transforming Sequence Modelsinto [Critical Fragment]

CPN A critical fragment, designated bgritical tag,
represents a message passing process that must be
L . performed exclusively, and usually used within a par-
There are two possible implementations of sequence g fragment. This fragment s expressed in CPN us-
models by CPN. , , __ing a place with docktoken. The locking mechanism

One is a structure based implementation, which |\ 5.« as follows.
assigns a place for each lifeline, and assigns a transi-] o
tion with an incoming arc to it for each incoming mes- 1+ The first transition in the fragment gets toek
sage to the lifeline. We can easily transform a given i the above place, and the transition immediately
sequence model into CPN model using these simple &fter the fragment return theck
rules, however the resultant CPN model is not com- 2. Each transition that conflicts with the critical frag-
patible with state machine models, since no concepts ment refers to this place, that is, bidirectional arcs
of statesare included. are drawn between the transition and the place.
The other is a stat_e ba;ed implementatiorj, which Weak Sequencing Fragment]
_takes the states Qf_objects into account. As discussed A \veak sequencing fragment, designatedseg
N el dhinjected N2 defme_d for each tag, defines the ordering of messages as follows
incoming message to a lifeline, of which operation (OMG, 2010).
name occurs as an action name in the state machine ') o o
model for the object that the life line represents. 1. The ordering of OccurrenceSpecifications within
Therefore, a CPN model consisting of the places each of the operands are maintained in the result.
for these injected states, and of the incoming arc with 2. OccurrenceSpecifications on different lifelines
a transition to the above each place, reflects thisim- from different operands may come in any order.
plementatlon. Such a CPN model can bqsmally be 3. OccurrenceSpecifications on the same lifeline
transformed in the same way as state machines. How- from different operands are ordered such that

ever, sequence models CO.U|d form more com_plicated an OccurrenceSpecification of the first operand
structure than state machine models usiogbined comes before that of the second operand
fragments The treatment of these combined frag- '

ments is as follows (Shinkawa, 2006). This fragrr_lent redu_c_es to par fragm(_ent if_ all the_

[Alter native and Option Fragments] operands include disjunct sets of lifelines interacting
An alternative and option fragments, designated toge_ther. Ther_efore, when tranforming it into CPN,

by alt andopt tag, representaseandif - thenstruc- we first regard it apar fragment, then add the order-

tures respectively, and implemented by CPN using asing restrictions to it. The detailed implementation is
many transitions as the number of regions in the frag- aS follows.
ment. Each transition is assigned a guard equivalent 1. Build the CPN model for theeqgfragment agpar
to the guard of corresponded region. fragment.
[L oop Fragment]

A loop fragment, designated dgop tag, repre-
sents an iterative process, and is implemented using
two conflicting transitions for iteration and exit re-

2. Derive all the ordering constraintsy ; < M 1k)
between(i)th and (i + 1)th operands or regions
P andP1, whereni j andnmi_ 1k represent the
receiving event occurrences for the messagg

spectively. and in the operand® andP_ 1 respectivel
[Parallel Fragment] Mi+1k P ' 1 FESPe y-
A parallel fragment, designated Ipar tag, rep- 3. Draw an additional arc betweem(ify ;) to

resents concurrent message passing between the life- 7 (M+1k), and modify the incoming arc function
lines, and is interpreted as concurrent state transitions ~ ©f the ? (1} j) so that an extra token for the tran-
in the state based implementation. This fragmentis Sition 7 (M, 1) is provided. In addition, modify

expressed in CPN using a transition splitting one in- the guard ofr (M1 k) for this extra tokenz ()
coming arc into multiple outgoing arcs. and7 (M) represent the place and transition asso-
[Break Fragment] ciated with the receiving event occurrenmg ~

A break fragment, designated byeaktag, is used For example, in Figure 3, the order of the re-

to terminate the message passing in the outer frag-ceiving event occurrences, which are denoted by the
ment, to which the break fragment belongs. Since names of messages, must satisfy< my andmg <

139

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

‘ Obiectl‘ ‘ Obieth‘ ‘ Ob'ectS‘ The CPN models obtainable through the proposed
i transformation process are

e CPN model for each object from a state machine
m2 Operand 1 model. The model is referred to astate machine
——————————————— s S CPN model

Operand 2 e CPN model for a system including the above ob-
jects from a sequence model. The model is re-
ferred to as sequence CPN model

¢ CPN model for a object from a sequence model,
which occurs as a lifeline. The model is referred
to as difeline CPN model

r—— As discussed in section 2, the inter-model consistency
is defined-in the two ways. One is based on the or-
dering of method- invocations, and the other is based
on the state injection. We refer the formermasthod
based consisten@nd the latter astate based consis-
tency

[Method Based Consistency]

my, and these constraints can be embedded into the This consistency requires the series of method in-
CPN model fopar fragment using the additional arcs vocations occurring in a sequence model along a spe-
shown by the dashed arrows. In‘addition, the plage - cific lifeline must occur in-the corresponding state
andm, must include the additional tokens for this se- machine model. Formally, the consistency is defined
guence control, which can be implemented by the arc as follows.

functions toward them. 1. Let P and Q be a state machine CPN model

[Other Combined Fragments] R
There are other supplementary combined frag- fi\\r;gl}t,he correspondinglifeline CPN model respec-

ments like strict, assertion ignore, consider and
negationdefined in a UML sequence model, however 2. Let tracéP) and tracéQ) be the series of arc
they do not affect the essential behavior of the model, functions obtained through the execution of the
and therefore we do not take them into account. modelP andQ.

By applying the above process to a sequence 3 The modeP andQ are consistent if tra¢®) in-
model, we can obtain a behaviorally equivalent CPN cludes tracéQ) as a substring.
model from the method invocation viewpoint. In ad-)
dition, a CPN model for a specific lifeline or an object The above trad®) and tracéQ) can be expressed in
can be obtained by extracting the places representingthe form of integer lists by assigning a unique posi-
the receiving event occurrences for the object, with tivé number to each outbound arc from a transition.
the incoming arcs. To make the complete CPN model We refer to such lists asace listsand the evaluation

from these elements, a dummy initial place and tran- S€e€ms simple. However, if the models include con-
sitions are added with the appropriate arcs. current method invocations using tfeek/join pseudo

states in the state machine model, or pa com-
bined fragments in the sequence model, the ordering
of the method invocations does not uniquely deter-
4 EVALUATING THE mined, and therefore the above criterion is not always
CONSISTENCY adequate. In order to deal with such a situation, we
use a separate trace list for each process performed
For discussing the inter-model consistency between parallelly, along with a unique negative number as-
models, we posit the following assumptions, which sociated with each parallel processing. The detailed

Figure 3: Weak Sequencing Fragment.

seem reasonable for practical applications. procedure is as follows.
e A state machine model is built for each objectto 1. Until the first parallel processing occurs, use a sin-
represent its behavior under all situations. gle trace lisf—1,a3,a, - - -], where—1 is the neg-

e A sequence model is built for a system using the ative number assigned to this single processing,
above objects as lifelines. The model representsa anda is a positive number that represents an arc
specific individual application. or a method invocation.

140

INTER-MODEL CONSISTENCY BETWEEN UML STATE MACHINE AND SEQUENCE MODELS

2. Each time atransition splits the process imfzar-
allel processes, the currently used trace list ends

with a unigue negative numbagtess than the cur- T y ™~
rent onep, and an independentlist is used for each CPN-pre CPN-post
parallel process, which begins with the above neg- b

ative numben. —

3. When m parallel processes are merged into a
single process, the independent trace lists are
switched to the one for the previous common pro-
cess, from which thesm processes are split.

The above procedure suggests that each trace list is
composed in the form of

[P1,a11,812, - , P2, 821,812, - -]

where p; is the unique negative number assigned to
the process that uses the list, and is referred to as al- L€tL = [A1,A2, -~ An] andM = [py, o, -, pim]
“split ID”. This ID is propagated as a part of a token. be the lists of trace lists to be compared.
However, it is rather complicated to identify the 2. Identify the set of the trace lists in
above common process in the step 3, as depicted be- ~ . ~
P P P A= (A |Vj[hd A; <hd A;]}

Trace Holder

Figure 4: Trace Holder Place.

low.

1. LetQ = {qs1,---,0s} be a set of the split IDs as- which means the set of the trace lists that are as-
signed to then processes to be mergesi(m). signed the least negative number.

2. Compose a set of split IDB = {p;; } for eachg;, 3. Identify the set of the trace lists M
wherep;; is the first element of a trace list in the T4 ¥ ~
form of [pij, by, - -, pij—1] that satisfiegpio = q;). B={ll | 3A; € AlbutNegAj = butNeg i}
These lists must be identified unfil; becomes where “butNeg” is a ML function that is applica-
—1 from the definition of a trace list. ble to an integer list to remove the negative ele-

ments in it. If there is no such, the two models
are inconsistent.

4. For the sets of trace lists= L —AandM =M —
B, repeat the steps untilbecoms the empty set.

4. The above; is the split ID assigned to the origi- 14 make this consistency evaluation semi-automated,
nal common process that splits th@arallel pro- geyeral additional model components are needed. One
cesses to be merged, since when the original com-jg 3 transition that marks the initial tokens to the given
mon process split it into processes, they are as- cpN models. The second is a transition that receives
signed the same negative number. the lists of trace lists as the tokens from the CPN mod-

In order to make the comparison possible between els to be evaluated. This transition examines these

trace lists, we modify the original CPN models by lists of the trace lists whether they satisfy the consis-

adding a special place to hold them, which is referred tency criteria discussed above. The third is a place to
to astrace holder Each transition in the original CPN hold the evaluation results.

model is connected to the trace holder with a new arc [State Based Consistency]

to append the information of the arc functions that the This consistency requires each state invariant lo-

transition performed. The color set assigned to the cated on a lifeline must not conflict with the injected

trace holder is a list of the trace lists so that we can ac- state from the state machine model. Formally, the
cess all the trace lists by a single arc. Figure 4 showsconsistency is defined as follows.

simplified structure of a CPN model with the place 1 | gt) be the logic formula representing the in-

holder. _ _ _ jected state of a zone where a state invariantis
Smce the method b_ased consistency is def.med for located, which is expressed in the form of a logic

an object that occurs in both the state machine and ¢4 mia.

sequence CPN models, the CPN models to be com-))

pared is a state machine CPN model and a lifeline 2- S(U) and (V) are consistent if &) — 1(V) holds.

CPN model for the same object. The detailed com- For the state based consistency evaluation, we

parison algorithm is as follows. have to identify the state at the point where a state

3. LetR={ry,r2,---,ry} be a set of the split IDs
which satisfyr; <rp--- <r,=—1and

Y(1<i<m¥(1< | <V)[rj €R]

141

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

invariant is located in the sequence CPN model. As REFERENCES

discussed above, each lifeline is divided into zones,

each of which is associated with a predicate logic for- Amalio, N. and Polack, F. (2003). Comparison of formal-

mula. isation approaches of UML class constructs in z and

; object-z. In3rd international conference on Formal

A. place In a sequence (.:PNh moc_lell reltpresents a specification and development in Z angdfages 339—

receiving event occurrence in the original sequence 358. Springer-Verlag.

model, and this event occurrence belongs to one of the

. ._Egyed, A. (2006). Instant consistency checking for the
above zones. Therefore, each place in a CPN model is 9y UML. (In 28t)h International cOnfer)énce on S?Oﬁware

related to the state and its logic formula. In addition, Engineering pages 381-390. ACM.
a place is also related to the state invariants reside Ncischer, C., Olderog, E., and Wehrheim, H. (2001). A CSP
the same zone. _ _ view on UML-RT structure diagrams. lath Inter-
Assuming a place in a sequence CPN model s re- national Conference on Fundamental Approaches to
lated to a stateS and a set of state invarian{g;}, Software Engineeringpages 91-108. Springer-Verla.
L(S) — £(Ti) must hold in our consistency defini- Garrido, J. and Gea, M. (2002). A coloured petri net for-
tion, where£ (S) and £ (T;) represent the logic for- malisation for a UML-based notation applied to co-
mulae associated witBandT;. operative system modelling. bhe 9th Int_ernationa_l_
In order to examine the formula(S) — £ (T;), Workshop on Interactive Systems. Design, Specifica-

we introduce two new transitions for the place associ- tiog gndMerinicaiongiges 40 s el

ated with theT;. The guards for these transitions are Jensen, K. and Kristensen, L. (2009)Coloured Petri
/\(L(S) — L(Ti)) andﬁ/\(L (S = L(Ti)) respec- Nets: Modeling and Validation of Concurrent Sys-

tively. And a bidirectional arc is drawn between the tems Springer-Verlag.)
place and each of the transitions. Knapp, A. and Wuttke, J. (2006). Model checking of UML

In addition, the transition with the guard 2.0/interactions. IWMorkshops and Symposia at MoD-

. ELS 2006 pages 45-51.
ﬁ/\(L (S) = L(Ti)) Is connected to an pige fgf error Lausdahl, K ?_?nt?u H., and Larsen, P. G. (2009). Con
messages. In the casqT;) requires extra variables necting UML ar?él VDM++ with open tool support. In
that the associated place does not provide, the addi- e ond World Congress on Formal Methogmges

tional bidirectional arcs are drawn from the places that 563-578. Springer-Verlag.

can provide the required variables. OMG (2010). Unified Modeling Language Superstructure
http://www.omg.org/spec/UML/2.3/Superstructure/PDF.

Shinkawa, Y. (2006). Inter-model consistency in UML
5 CONCLUSIONS based on CPN formalism. [h3th Asia Pacific Soft-
ware Engineering Conferencpages 411-418. IEEE.

The inter-model consistency between UML state ma- Snook, C. and Butler, M. (2008). UML-B and Event-B: an
chine and sequence models was discussed in this pa- ~ integration of language. Ithe IASTED International
per. Method invocations were used as the basic com- Xgr%f:rgnce on Software Engineerjifgges 336-341.
. X ress.
mon elements of those both models, which define
the consistency criteria. We introduced two kinds of
inter-model consistency. The first is the method based
consistency which assures the ordering of method in-
vocations is identical for the same object between
these two models. The second is the state based con-
sistency which confirms the adequacy of the state in-
variants located in a sequence model, against the cor-
responding state machine models. The consistency
is evaluated using Colored Petri Nets (CPN) so that
the behavior of the both models is expressed and ob-
served in the same form, and is compared more rigor-
ously and precisely than UML.
This approach would be applied to other combina-
tions of UML diagrams, e.g. state machine and activ-
ity diagrams, to evaluate inter-model consistency.

142

