
SEMANTIC WEB BASED PROACTIVE SEARCH FOR
ENTERPRISE

Li Li, Feng Liu and Wu Chou
Avaya Inc. 233 Mt. Airy Road, Basking Ridge, NJ 07920, U.S.A.

Keywords: Semantic web, REST web service, Proactive search, Text annotation, Software agent, Implicit social
network, Expert finder.

Abstract: This paper presents an approach and a software architecture based on agent and web service technologies to
support proactive search to enrich enterprise communication and collaboration. In particular, we combine
software agents and REST web services to deliver relevant information found from RDF databases to the
users without interrupting their workflows. The relevant information includes text annotations, implicit
social networks, and recommended experts. We discuss how service composition can be used to efficiently
combine results from distributed functions to support independent and scalable semantic web development.
Initial experimental results indicate the proposed approach is feasible and efficient.

1 INTRODUCTION

Enterprise communication and collaboration
typically involves email, meeting schedule, voice,
video, chat, wiki, blogs, and various forms of
documents, such as design documents and bug
reports related to products and service offerings. As
different organizations adopt technologies in
different paces, these rich sets of digital content
often exist in different formats managed by different
systems that are often not connected to each other.
For example, emails between group members are
stored in special format at local disks or email
servers. The product design documents are managed
by some special proprietary relational database,
whereas the project progress is tracked on a separate
group wiki site. As a consequence, a lot of valuable
information is buried in disparate computers that are
not readily accessible.

As the number of media types and the amount of
digital contents increase, it can cost significant
overhead and a reduction in productivity, as users
may have to spend extra effort searching for the
relevant information. For instance, when scheduling
a project planning meeting between several groups,
people typically receive invitations in email that
have a subject, time and location, a short description,
and some attachments and links. If people need to
find out more background information about the
participants, the previous history of contacts on this

subject, or new products related to this project,
people have to do searches using several special
applications. As every participant repeats almost
identical searches to become informed, the
productivity of the enterprise is reduced as the
number of participants increase.

To address this problem, we present a
knowledge agent based approach for enterprise,
derived from two related technologies - semantic
web and proactive search.

The semantic web in our approach refers to a set
of technologies based on the web architecture and
knowledge representation languages including RDF
(RDF) and OWL (OWL 2004). The semantic web
technologies offer a set of solutions to address the
heterogeneous data problem in enterprises, whereas
URI provides a uniform identification mechanism
for data in enterprises, and RDF provides a uniform
representation language about the relations between
those identified data. In addition, HTTP provides a
uniform protocol to access the distributed data, and
SPARQL provides a declarative way to query those
data. Moreover, ontologies offer a way to integrate
RDF graphs from different sources. Because
semantic web technologies are based on Description
Logic (RDF 2004), they also offer a framework to
reason and inference about the data.

Despite these advantages, a challenge to adopt
semantic web for enterprise is how to transform the
raw enterprise data into RDF. It is ideal but

649Li L., Liu F. and Chou W..
SEMANTIC WEB BASED PROACTIVE SEARCH FOR ENTERPRISE.
DOI: 10.5220/0003474806490656
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (SWAT-2011), pages 649-656
ISBN: 978-989-8425-51-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

unrealistic to force all enterprise systems and
applications to expose their data according to a
predefined ontology. Instead, we need to allow
organizations to evolve their semantic web
incrementally and independently. To support this
path, we adopt REST (Fielding 2000, Richardson
2007) web service paradigm as our semantic web
infrastructure, because REST is optimized for such
distributed hypertext systems. Unlike conventional
approaches to semantic web that aim to support
linking and querying of raw RDF triples (Linked
Data), we focus on developing knowledge based
web services that can enhance enterprise
communications. In particular, we investigate how
to develop a scalable and robust REST architecture
that can share and compose distributed knowledge
web services across organizations.

 Proactive search pushes relevant information to
users without user’s asking for it specifically. It is a
departure from current interactive search paradigm
in several aspects. In interactive searches, a user
composes a specific query, enter it into a search box,
select results and integrate them into his application
manually. Albeit being quite flexible, interactive
search has some disadvantages and limitations.
Firstly, the interactive search mode usually forces a
user to leave his current activity and work on a
separate search activity. Secondly, the query does
not carry the context from which the search is
launched. Thirdly, the results of interactive search
depend on the quality and accuracy of user’s query.
Fourthly, to integrate the search result back into the
user’s workflow and context, it typically requires
user’s manual operation.

In proactive search, a user’s communication
activity is treated as the query to the search engine,
thereby providing the necessary context for more
accurate results. Instead of asking a user to select the
results, proactive search integrates relevant
information directly into the communication activity
in a nonintrusive way. As a result, the user can focus
on his business activities without taking detours to
seek for relevant information. For example, an
incoming email or an outgoing email can be treated
as query to the proactive search engine. The relevant
information found about the topic, people or
products mentioned in the emails is integrated into
the emails as hyperlinks. The disadvantage of
proactive search is that the input is limited to current
user’s activity and context. The second challenge in
adopting semantic web technologies is how to
determine what is relevant given a context as this is
significantly more complex than most queries. In
open domain search, these are very difficult

problems. However, as enterprises have more
organized and predictable activities and workflows
than individual users, we can use those patterns in
enterprise data to help tackle these tough problems.

Proactive search can be supported by client-
server architecture as interactive search. However,
the clients in proactive search assume more
responsibility than in interactive search. In proactive
search, the clients are software agents that monitor
user’s activities and invoke the corresponding
knowledge base web services to obtain the right
information at the right time.

The rest of the paper is organized as follows.
Section 2 presents the overall architecture of our
semantic web based system. Section 3 briefly
discusses the knowledge transformation process.
Section 4 presents some functions and services built
into our approach and architecture. Section 5
discusses the agents and applications based on the
described functions and services. Section 6 is
dedicated to implementation and experimental
results. Section 7 reviews some related work, and we
conclude this paper with Section 8.

2 OVERALL ARCHITECTURE

To support semantic web based proactive search, we
need to provide customized semantic web based
functions that are targeted to different business
environments. For example, in a call center, we need
functions that classify emails, annotate important
concepts in emails, and suggest relevant responses.
In a group collaboration application, we need
functions that bring up contact history on a subject
and show common interest between participants.
However, due to the limitation of SPARQL, many of
these functions cannot be implemented as SPARQL
queries to RDF databases. For this reason, we decide
to expose these functions as REST services that are
sharable and reusable across organizations. REST
services encourage distributed and independent
development of services, which is one of our design
goals. Besides connecting different applications, our
REST composition approach allows us to distribute
a semantic function that is too large for one machine
to multiple machines in parallel, and use service
composition to aggregate the distributed logic.

On the client side, our software agents are
embedded in user’s communication and
collaboration applications. These agents monitor
user’s activities, retrieve relevant information from
the REST services, and inject the relevant
information into the collaboration environment.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

650

Figure 1 illustrates the high level components in our
REST composition architecture.

Figure 1: High level components of REST architecture.

By driving the agent states with hypertext from
the REST services, this REST architecture offers the
following degrees of freedom for adopting
independent changes. At the server side, a new
service can be deployed without having to
reconfigure all the agents. An existing service can be
upgraded without breaking those agents that use the
service. On the client side, agents can acquire
different “skills” required for different environments
by following the hyperlinks to different REST
services. Although in this architecture, the agents do
not need to directly communicate with each other,
they can still collaborate indirectly by sharing their
states through the servers. Agents and servers can
also use content negotiation to find the best
representation for a given situation.

Each server in our architecture builds the REST
services from the knowledge base in layers as
depicted in Figure 2.

Figure 2: Web Server Stack.

The bottom layer is the raw RDF triples collected
from various sources of enterprise data, including
relational databases and web pages. On top of this, it
is a layer of the knowledge derived from the RDF
triples - some of those triples are collected off-line,
and some of them are derived dynamically based on

queries. A function takes an input query and
produces some outputs based on the derived
knowledge. The basic REST services expose these
functions as resources, and the composed REST
services invoke the basic or composed services at
local and remote servers to carry out a task.

Service composition is a process that implements
a service by combining outputs from other services.
This process can be used to break a large semantic
database into small ones and distribute a related
function into a set of servers that form a tree
structure. The servers in the leaf nodes offer the
basic services, while the servers in the interior nodes
offer partially composed services. As the result, the
server at the root node offers the completely
composed services. Because the services are
stateless, a composed service invokes its children
services in parallel and merges the results for its
parent. This process is illustrated in, Figure 3 where
“local” means some local services involved in the
compositions.

Notice that this composition architecture is
different from the conventional computer cluster
architecture which has a fixed entry point and a
specified topology. Instead, in our case, each
distributed function may have a different entry point
and topology of its own. For example, Figure 3
illustrates two distributed functions with entry points
Server 1 and Server 3 respectively. Server 1 is the
entry point to the server tree consisting of Servers 1,
2, 4, 6 and Server 3 is the entry point to the server
tree consisting of Servers 2, 3, 4, 5.

Figure 3: Service compositions of two distributed
functions with solid and dotted lines respectively.

3 RDF TRANSFORMATION

As enterprise data often exist in different forms and
formats, they have to be transformed into semantic
web first. This transformation contains two steps.
First the data are transformed into web resources
that have unique URI. Second the metadata are
extracted and transformed into RDF triples, often
with the help of public and private ontologies. For

Server1

Server2

Server3

Agent1

Agent2

Agent3

Web Server Stack

Raw RDF triples

Derived Knowledge

Functions

Basic Services

Composed Services

Server1
(local)

Server2
(local)

Server3
(local)

Server4

Server5
(local)

Server6

SEMANTIC WEB BASED PROACTIVE SEARCH FOR ENTERPRISE

651

structured data, such as relational databases, this
transformation is straightforward as outlined in
(RDB2RDF). In our study, we have transformed a
relational database about documents with 160,699
records into 3,182,721 triples following the Dublin
Core (Dublin Core) ontology. The subject is the
document URI in all triples. The following are some
sample triples with sensitive information replaced by
generic strings:
<uri_1>
<http://purl.org/dc/elements/1.1/title>
“Title 1” .
<uri_1>
<http://purl.org/dc/elements/1.1/creato
r> “Author 1” .

Our experience shows some problems for well-

defined data. First, it turns out that many important
relations (predicates) are not in Dublin Core or other
ontologies that we know of. We created and added
private ontologies to cover them, but they cannot
interoperate easily outside this domain. Second,
many data fields, such as author names, are not
properly entered in the database. Many names have
variations that make matching and cross-reference
from other RDF databases difficult.

4 FUNCTIONS AND SERVICES

Within our proposed REST architecture, we develop
several functions and services for semantic web
based proactive searches.

4.1 Entity Annotation

Entity annotation function takes an incoming text
and produces a set of annotations for the entities in
the text based on current knowledge. An annotation
is a 4-tuple (phrase, start, length,
link) that identifies the phrase being annotated,
the starting position and the length (both in
characters), and the concept related to the phrase.
When clicked, the link will open a web page
showing the detail information.

To support this function, we first index the RDF
triples on selected predicates. This dramatically
reduces the indexing and search space from entire
literals to the selected literals. Another technique to
save memory and improve efficiency is to avoid
creating separate index. Instead, we pre-process
RDF triples by tokenizing the literals into phrases so
that they would match the tokenized input. The
outcome of this process is a many-to-many mapping

from indexed phrases to concepts.
The annotation algorithm is a modification of the

left-to-right maximum tokenization algorithm (Guo
1997) developed for Chinese language processing.
The algorithm aims to find the longest token
sequence from left to right that matches an indexed
phrase in the RDF triples and record the
corresponding concept. If more than one concept is
found, the server creates a link representing a list of
matches. Unlike the traditional tokenization
algorithm that covers the entire text, our algorithm
skips unmatched tokens. The high-level components
of this function are illustrated in Figure 4.

Figure 4: Components of the annotation function.

This function is exposed as a REST service on a
designated resource. There are two ways to invoke
the service: HTTP GET and HTTP POST. GET is
used for short text, and POST is used for long text.
The REST service returns related annotations in the
following formats: 1) JSON for agents in web
browsers; 2) HTML for direct rendering in web
browsers; 3) HTML tables for embedding and
debugging in web browsers; and 4) Prolog terms for
efficient service composition.

When this function is distributed on a tree of
servers (Figure 3), the parent server sends a copy of
the text to all its children in parallel, which will
return the annotation results (or faults). Once the
parent server receives all the results (within a
timeout interval), it merges what it received so far
into a coherent annotation and sends it back to its
parent or the client if it is the root server. To
maintain the longest phrase condition, the merge
process removes all covered phrases. In other words,
if a server returns an annotation for phrase x and
another server returns a phrase that contains x as a
substring, then the first annotation is removed from
the merged annotation. The merged annotation
therefore will contain only longest phrases.

4.2 Implicit Social Network

In enterprise, people communicate and collaborate
on daily basis. These activities form a social network

RDF triples

text Annotation
Function

Hypertext
Annotations

Tokenization,
Index

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

652

that is dynamic and implicit with rich relations
associated with social contents, e.g. email, IM, co-
authorship, etc. This implicit social network can be
discovered by inspecting the artefacts of these
activities, such as email exchanges and authorships
of project documents, etc. Because there are very
rich relations between people in an organization, our
semantic web approach is well suited for
representing and discovering such implicit social
networks. In our study, we find the following
relationships being important for a person in implicit
social networks (Table 1).

Table 1: Relations in implicit social network.

Relation Comment
collaborators Collaborators of this person
followers People interested in this person
citations Artefacts that cite this person
products Artefacts made by this person
expertise Expertise of this person

To cope with the dynamic nature of the implicit
social network and to save memory, these relations
are derived by rules in response to incoming queries.
The input of this function is a URI identifying a
person, and the output is the relations about the
persons found in the knowledge base. Because this
information is to be consumed by human users in
our system, the current output supports only HTML
in which relations are represented as hypertext. The
high-level components of this function are illustrated
in Figure 5.

Figure 5: Implicit Social Network function.

When calculating these relations, a relation with
more recent and frequent activities are valued more
than one with infrequent activities in the past, as
people in the organizations can take different roles
over time. The activities in a relation are therefore
weighted by an exponential decay function to reflect
this time-based relevance value. Assume that a
relation R is derived from a set of n activities each
with timestamp Ti, then the time value of this
relation, with respect to the current timestamp T, is

calculated as follows, where C is a normalizing
factor and λ is a scaling factor:

()

1
(, , ,) , { |1 }i

n T T
i

i
tv T C R C e R T i nλλ − −

=
= = ≤ ≤∑

Similar to the annotation function, when this
function is distributed, the parent server sends a
copy of the URI to its children servers in parallel,
which return the relations (or faults). The parent
server then merges the results using set unions.

4.3 Expert Finder

In many enterprise systems, there is a need to find
experts with certain skills, so that a problem can be
directed to the most qualified persons. In an
organizational environment, since we value team
work and influence as much as individual skills, we
need to find experts who not only have required
expertise, but also have high reputation and
authority.

The expertise of a person can be evaluated based
on the products he produces or contributes. For
example, if a person designed several web servers, it
is reasonable to assume he is an expert in that area.
In current system, the expertise of a person is
represented as a vector where each dimension
corresponds to a skill and the value indicates the
strength of the skill. To speed up the matching
process, a training process is used to compute and
save the expertise vectors for each person in the
knowledge base. For a person p with an expertise
vector e, the relevance of p with respect to a given
problem description vector x can be calculated using
the vector space based semantic model as the angle
between x and e:

relevance(p) = cos(x, e)
The reputation of a person can be evaluated

based on how other people evaluate his work. This is
calculated with bounded recursion and loop
detection based on the implicit social network as
follows, where rating(p) reflects the total evaluation
a person received:

reputation(p) = rating(p)+∑reputation(followers(p))

The authority of a person captures how much
power a person has in an organization. It can also be
calculated with bounded recursion and loop
detection based on implicit social network as
follows, where level(p) corresponds to the power
level a person has in an organizational hierarchy:

authority(p)=level(p)+∑authority(collaborators(p))
The input to the expert finder function is a text

describing a problem, and the output is a ranked list

RDF DB

URI Inference
Engine

Social Relations

Inference Rules

SEMANTIC WEB BASED PROACTIVE SEARCH FOR ENTERPRISE

653

of experts. The input text is first converted to a
vector to search for persons whose expertise is
above a threshold. The candidates in the list are then
re-ranked by averaging the normalized relevance,
reputation and authority scores. The high-level
components of this function are illustrated in Figure
6.

Figure 6: Expert finder function.

When this function is distributed, a parent server
sums up the scores returned from its children servers
for the same person. The returned experts are then
merged and re-ranked to pass back up to the parent
or agent.

5 SOFTWARE AGENTS AND
APPLICATIONS

The proposed architecture, functions, and services
were used and applied to several enterprise
communication and collaboration systems. All the
applications use the same REST services, but they
differ in how the agents behave.

5.1 Browser Agent

The browser agent in our study is a Firefox
extension that monitors and annotates the web page
a user is viewing. A user can activate and deactivate
the agent from the browser menus and ask the agent
to annotate the current page or restore the original
page. The user can also configure the agent to use a
different REST service by entering a different URI.
Figure 7 is a screenshot of the interface to our
browser agent in front of the Firefox browser
window.

5.2 Call Center Agent

This software agent in our study assists human
agents in call centers by finding relevant information
in incoming contacts (e.g. emails) to save human
agents from searching for them. Each incoming

email was intercepted by the software agent to find
and identify the important concepts and recommend
experts related to the email using our REST services.
The email was then enriched to embed found
information as hyperlinks into the original email,
and forwarded to the system. When a human agent
receives this enriched email, he can click the links to
obtain the detailed information.

Figure 7: A software agent embedded in Firefox browser.

Figure 8 is a screenshot of an annotated email in our
prototype Call Center system as seen by a human
agent. For privacy, any personal identification
information is whitened out.

Figure 8: An annotated email in call center client.

5.3 Google Wave Agent

We developed a special software agent for Google
Wave using Google Robot API (Google Wave) to
monitor and annotate multi-party group chat in real-
time. To enable this agent function, a user just needs
to invite our software agent to the current Wave
conversation. When a user clicks a button to finish

RDF DB

Problem Expert Finder Ranked experts

n-gram vector model,
social Network

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

654

his chat, the agent will invoke the REST services
and annotate the chat text with hyperlinks that point
to the relevant concepts and information to bridge
the semantic gap in collaboration. These hyperlink
annotations are propagated to all participants of the
Wave session in near real-time. Any user can click a
link in the chat window to visit it.

6 IMPLEMENTATION AND
EXPERIMENTS

We implemented a prototype REST server system
using SWI-Prolog (SWI-Prolog). The HTTP servers
were Prolog images (executable program) compiled
for different machines. Our current RDF database
contains triples from three sources as listed in the
following table (Table 2).

Table 2: Size of knowledge sources.

Source Triples
Wikipedia (2006/03/26) 47,054,407
database 3,182,721
product 75
total 50,237,203

To simulate distributed REST services that
contain different knowledge bases, the Wikipedia
RDF file was broken up at random into 10 small sets
each with up to 5 million triples. This resulted in 12
text files in N-Triples format. These 12 files are
loaded into SWI-Prolog, indexed and converted into
binary SWI-Prolog RDF database format for
efficient loading. The following table (Table 3)
compares the size (KB) of text files with the size
(KB) of binary databases. This table shows that for
most large files, the binary format has an over 80%
size reduction.

Table 3: Comparison of size reductions.

Name Text Binary Ratio
WP_0 753243 148159 19.67%
WP_1 753268 149143 19.80%
WP_2 753986 147896 19.62%
WP_3 753976 147493 19.56%
WP_4 754396 149513 19.82%
WP_5 753430 148539 19.72%
WP_6 753364 148594 19.72%
WP_7 753890 149200 19.79%
WP_8 753979 149268 19.80%
WP_9 309799 67885 21.91%

database 380004 73624 19.37%
product 10 7 70.00%

These binary databases were loaded into the
memory of different machines according to their
capacity. This distributed configuration allows us to
recruit different number of non-dedicated machines,
ranging from powerful servers to even notebook
computers. The smallest system that provides
satisfactory performance for the entire 50+ million
triples consisted of two Linux machines (3.0 GHz
CPU/4 GB RAM and 1.6 GHz CPU/4 GB RAM),
each with about 25+ million triples.

To test the performance of the distributed
servers, we selected 3 Wikipedia binary databases
WP_{0,1,2}, and distributed them into three server
trees in a LAN environment. The first server tree
had one root node containing all 15 million triples;
the second server tree had one root with 5 million
and one child with 10 million triples; the third tree
had one root and two children, each with 5 million
triples. In all these trees, the root server was a
Windows 2003 Server machine with Dual Core (3.0
GHz and 2.99 GHz) and 2GM RAM and the child
servers consisted of two Linux machines mentioned
above. To test the performance of these trees, a test
text of 1142 characters was sent 10 times to the root
server which returns 30 annotations. The average
service execution time was recorded using Prolog
time/1 predicate on the root server and
summarized in the following table (Table 4) with
standard deviations. The execution time includes
time for local function, service composition as well
as logging.

Table 4: Performance of three server trees.

Server tree Avg. Time (second)
1 node 0.406 (0.0003)
2 nodes 0.390 (0.0179)
3 nodes 0.401 (0.0321)

Our results showed that a distributed function
may outperform its local version when it is
distributed over faster machines. When the two
Linux machines with more RAM were used, the
average service execution time on the root was
improved slightly (2 and 3 vs. 1). Also the test
showed that parallel distribution of a function to two
nodes created only a small overhead compared to
distribution to one node (3 vs. 2).

7 RELATED WORK

There have been active researches in how to process
large scale RDF databases (Cai 2004, Urbani 2009,
Ianni 2009, Husain 2009, Large Triple Stores). But

SEMANTIC WEB BASED PROACTIVE SEARCH FOR ENTERPRISE

655

the focus of these efforts is different from ours. First,
their focus is limited to efficient storage and
retrieval of large datasets whereas ours is to support
general computing and inference over the datasets.
Second, the approaches have been based on a
homogeneous architecture where a set of computers
either use a single protocol or form a fixed topology,
whereas our REST composition service based
approach does not assume any single protocol or
topology.

There has been some work on using RDF
database to annotate text (Schönhofen 2008,
Ferragina 2010). But these systems are special cases
of proactive search that we propose. In addition,
they do not propose a general architecture to support
distributed functions.

Our REST service architecture is also different
from the conventional 3-tier web architecture
consisting of data, business logic and presentation.
In our architecture, the presentation is not consumed
by end users but by agents. Unlike business logic
that accesses local data, our logic can access
distributed functions through service composition.

8 CONCLUSIONS

The contributions of this paper are summarized
below:

• We proposed a software architecture by
combing software agents and REST web
services to support distributed and scalable
semantic web development;

• We demonstrated that this architecture can
effectively support proactive search to
enrich enterprise communication and
collaborations;

• We demonstrated that service composition
is a feasible approach to efficiently
combine distributed functions;

• We implemented several agents in different
use cases and a prototype system with 50+
million RDF triples;

The future work will be focused on collecting
more RDF data and develop more advanced
algorithms, functions and services.

ACKNOWLEDGEMENTS

We would like to thank Mr. Jan Wielemaker for
answering our technical questions about SWI-

Prolog. We also thank Mr. Jack Barnard for
providing access to a large document database.

REFERENCES

RDF. Resource Description Framework (RDF),
http://www.w3.org/RDF/, last accessed, 10-Feb-11.

OWL 2004. OWL Web Ontology Language Overview,
W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/owl-features/, last accessed 10-
Feb-11.

RDF 2004. RDF Semantics, W3C Recommendation, 10
February 2004, http://www.w3.org/TR/rdf-mt/, last
accessed 10-Feb-11.

Fielding, Roy T., Architectural Styles and the Design of
Network-Based Software Architectures, Ph.D.
Dissertation, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.
htm, last accessed 10-Feb-11.

Richardson, L.; Ruby S., Restful Web Services, O’Reilly,
2007.

Linked Data, http://linkeddata.org/, last accessed 10-Feb-
11.

RDB2RDF, Use Cases and Requirements for Mapping
Relational Databases to RDF, W3C Working Draft, 8
June 2010, http://www.w3.org/TR/rdb2rdf-ucr/, last
accessed 10-Feb-11.

Dublin Core, Dublin Core Metadata Initiative,
http://dublincore.org/, last accessed 10-Feb-11.

Guo, J., Longest Tokenization, Computational Linguistics
and Chinese Language Processing, Vol. 2, No. 2,
August 1997, pp 25-46.

Google Wave, http://wave.google.com/about.html, last
accessed 10-Feb-11.

SWI-Prolog, http://www.swi-prolog.org/, last accessed 10-
Feb-11.

Cai, M.; Frank, M., RDFPeers: A Scalable Distributed
RDF Repository based on A Structured Peer-to-Peer
Network. WWW 2004 Proceedings of the 13th
International Conference on WWW, pp 650-657.

Urbani, J. et al, Scalable Distributed Reasoning using
MapReduce, ISWC 2009, Vo. 5823, pp 634-649.

Ianni, G. et al, Dynamic Querying of Mass-Storage RDF
Data with Rule-Based Entailment Regimes, ISWC
2009, pp 310-327.

Husain, M. F. et al, Storage and Retrieval of Large RDF
Graph Using Hadoop and MapReduce, Lecture Notes
in Computer Science, 2009, Vol. 5931, pp 680-686.

Large Triple Stores: http://www.w3.org/
wiki/LargeTripleStores, last accessed 10-Feb-11.

Schönhofen, P., Annotating documents by Wikipedia
concepts, 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent
Technology.

Ferragina, P.; Scaiella, U., TAGME: On-the-fly
Annotation of Short Text Fragments (by Wikipedia
Entitities), CIKM’ 10 Proceedings of the 19th ACM
international conference on Information and
knowledge management, pp 1625-1628.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

656

