PROPERTY DRIVEN PROGRAM SLICING REFINEMENT

Sukriti Bhattacharya and Agostino Cortesi
Ca’ Foscari University of Venice, Via Torino 155, 30170 Venezia, Italy

Keywords: Abstract Interpretation, Program slicing, Semantics, Static analysis.

Abstract: A slice is usually computed by analyzing how the effects of a computation are propagated through the code,
i.e., by inferring dependencies. The aim of this paper is to further refine the traditional slicing technique by
combining it with a static analysis in Abstract Interpretation based framework. This results into a deeper
insight on the strong relation between slicing and property based dependency.

1 INTRODUCTION respect to the property of interest. Then, a backward
program slicing technique is applied to the augmented

Program slicing is the study of meaningful subpro- Program exploiting the abstract dependencies.

grams. Typically applied to the code of an existing

program, a slicing algorithm is responsible for pro-

ducing a program (or subprogram) that preserves a2 ABSTRACT SEMANTICS

subset of the original programs behavior. A specifica-

tion of that subset is known as a slicing criterion, and The essential issue in program slicing is to define

the resulting subprogram is a slice. Generally speak-\yhat semantic relationship must exist between a pro-

ing, by applying a slicing technique on a progr@m gram and its slice in order that the slice is consid-

with a slicing criteriorC (i.e. a line of code ifP), we ered valid. Mark Weiser (Weiser, 1984) defined the

get a progranP’ that behaves lik& when focussing semantic relationship that must exist between a pro-

only on the variables i€. The sliced prograr® is gram and its slice in terms of state trajectories. In this

obtained through backward computation frétrby section we provide the abstract semantics of the tra-

removing all the statements that do not affect neither jectories. We consider the/HILE language for our

directly nor indirectly the values of the variable<dn giscussion (Nielson et al., 1999). The set of concrete
Very often, we are interested on a specific property states¥ consists of functions : V — 4 which maps

of the variables in the slicing criterion, not on their the variables to their values from the semantic domain

exact actual values. 7, where, L represents an undefined or uninitialized
In this direction (Bhattacharya, 2011), our aim value andZ is the set of integers. If a program Has

is to further refine the traditional slicing technique, variablesxy,...,x, we can represent states as tuples,

(Weiser, 1984) by combining it with a static analysis i.e.,0 = (xg,...,x) andZ = ¥ X,

in Abstract Interpretation (Cousot and Cousot, 1977) The semantics of arithmetic expressma AExp

based framework that looks for the statements affect- over the state is denoted by [[a] o where, the func-

ing a fixed property of variables of interest rather than tion is of the typeAExp — (o — 4/). Similarly,

values. This results into a deeper insight on the strong 3 [b]o denotes the semantics of boolean expression

relation between slicing and property based depen-b € BExp over the state of type BExp — (0 — T)

dency (Mastroeni and Zanardini, 2008) (Mastroeni whereT is the set of truth values.

et al., 2010) (Cortesi and Halder, 2010). D be an abstract domain on concrete values and
The resulting proposal is a fixed point computa- a andy areabstractionandconcretizatiorfunctions,

tion where each iterate has two phases. First, the con+espectively. The related abstract semantics on ex-

trol flow analysis is combined with a static analysis pressions # [a]¢, is applied to abstract statés—=

in a Abstract Interpretation based framework. Hence, (dy, ...,dk) € ©* and is defined as the best correct ap-

each program point of the program is enhanced with proximation ofz [[a]o as depicted in Table 1.

information about the abstract state of variables with In Table 10p; is the abstract operation in that

Bhattacharya S. and Cortesi A.. 149
PROPERTY DRIVEN PROGRAM SLICING REFINEMENT.

DOI: 10.5220/0003490101490155

In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 149-155

ISBN: 978-989-8425-77-5

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

Table 1: Approximation of arithmetic expressions. Table 3: Abstracting< operator.

_ (<[T L + 0 -]

et { atn 2= ne LIS A A

aj|p= a(n IT a=n& Num
— ; il ? ? ? ? ?
H H fa=

[a1]l¢ opa 7 [[a2l¢ if a=a10paar B~ =~y =
0?2 ? TRWE ? FALSE

safely approximat®p,, when we construct the ab- -l ? ? TRUE TRWE ?

stract semantics of programs, we need to define ab-

stract operations over the abstract domain, that ap-

proximate the corresponding concrete operationsoverd ABSTRACT TRAJECTORY

the concrete domain. The idea is that the abstract cal-

culation simulatesthe concrete calculation, and the We now define the abstract trajectory semantics for

concretization of the abstract calculation is a correct WHILE.

approximation of the values in the concrete result.
For example consider the following code fragment 211 - skidlt = (1

in Figure 1 and consider the abstract domain where] skipl={(.9))

O Forskipstatement:

the addition and multiplication are influenced accord- {(I,)) represents the singleton sequence consist-
ing to the well knowrrule of signs ing of the p_a|r(l,¢). i.e statement level alone with
the properties of the variables.
1. x=2; O For assignment statement:
2 e [x=a)o = (1, ¢x« s [a]$])
W maf |1\ Where # [[a]]¢ means thenew value resulting
Figure 1. Sample code fragment. from evaluating expressioa in abstract domain
and¢[x « # [[a]¢] is the abstract statie updated
The sign of the variable can be computed in the with the maplet that takes variabketo this new
abstract domain dBignby, abstract value.
R B 0O For sequences of statement [: ;S =
Hx+3+y[o = (A [X]o + #[3]0)* 7 [yl S o 2 [S] ¢’
_ Eif{%‘?j - Where¢' is the abstract state obtained after exe-
- 13- cutingS; in ¢ ande means concatenation.

- O Forif statement:
The abstract semanticsy[[b]¢ of boolean ex-

pressionb is defined as the best correct approxima- 1[I : if bthen S else Sl = ((I,)) ©

tion of 3[b]o in Table 2, whereop : D x D — _

{TRUE FALSE ?} is the abstract operation that safely L if Hp[[blg =7
approximatep: and ?(unde fined signifies that, the ° [St] if s£p[b]¢ = TRUE
abstract domain is not accurate enough to evaluate the T @[[SZ]] Y if sfp[[b]¢ = FALSE
condition. For instance, abstract operatiensn Sign (P [Sl9)U(T”[]¢) otherwise

domain is depicted in Table 3, The first element is the label of thikin the cur-

rent abstract state. The rest of the trajectory is the

Table 2: Approximation of boolean expressions. . .
pproximat Xpresst trajectory of one of the branches depending on the

TRUE if b=TRUE abstract execution of the boolean expression eval-
C;R uated in the current abstract state.
=aj;opr ap AND . .
#[[ac)d OF # [a]¢ = TRUE O Forwhile statement:
sp[b]o={ FALSE if b=FALSE T7[1'+ while bthen $ =
OR .
b=aj op ax AND A if Hp[b]¢ = FALSE
#H[[a1]]¢ Oop # [[az]]d = FALSE
[2a]}é opr 7 [[22]¢ (li,Ui>o(¢i)) otherwise
? undefined otherwise

If the predicate b evaluated to beFALSE
there would be a empty trajectory labther wise

150

PROPERTY DRIVEN PROGRAM SLICING REFINEMENT

a fixpont iteration on the abstract state of each
statements with in the loop body whepg = ¢
andoi1 =17 [S¢i

Definition 1. (Restriction of a state to a set of vari-
ables w.r.t a given property) Given a abstract state,
with respect to a propertyy and a set of variables,
7 € Var, §|{) restrictsp so that it is defined bp only
for variables inv .

Definition 2. (Projection of a abstract trajectory to
a slicing criterion w.r.t a given property) For a pro-
gram pointp’ and a abstract stafg the projection of
the abstract trajectory sequence eleni@htp) to the
slicing criterion(p,V) w.r.t propertyp is

, /7 p if /o
(p’¢>|‘()p,v){ (P,0f) if p’=p

A otherwise
whereA denotes the empty string.
The projection of the abstract trajectar to the
slicing criterion(p,V) w.r.t a propertyp is

; Proj(py)éri’) = ;
<(p0a¢0)|(p,v)7 (p1a¢l)|(p,v)7 RS (pk7¢k)|(p,v)>

Definition 3. (Property driven program slicing) A
property driven slicd®, of a programP on a slicing
criterion (p,V) and with respect to a given property
p is any executable program with the following two
properties:

O P’ can be obtained fron® by deleting zero or
more statements.

O WheneverP halts on an input staté with a
abstract trajectory” thenP’ also halts orp with

trajectoryr@/ where,

ZedProjpy)(1”)) = Zed Projpy) (1))

WhereZedis defined in Table 4, given a abstract
trajeCtory L <(p07¢0>ﬂ(plaq)l)v"'ﬂ(pkv(bk»
Zedis obtained by applying the following reduc-
tion algorithm,

Table 4:z7ed

begin
i=0;
while(i < n){
=1
while(pi+j = pi) && (bitj=¢i)
remove @, ¢j) from the trajectory
i=i+j;

}

Table 5: Property driven slicing ddign

St.No. | Original Program| Sliced Program
1 X=25; X=75;

2 y=3; y=3;

3 Z=y-—X; Z=y—X;

4 if(x > 2){ if(x > 2

5 y=Xx+72;

6 w=yxZz} W=Yyx*Z

7 else

8 y=xX>+z

9 wW=yxZ}

10 print f ("%d”,w); | printf("%d”,w);

Consider Table 5 for an illustration of the above
definitions,

The abstract state trajectory of progradtwith
respect toSign property is denoted as>'9" and the
abstract state trajectory of the sliced progrBsyn
with respect to the propertgignon slicing criteria

C = (10,w) is denoted asSi9",

50= (1,{L,1,1,1}), (2{L,+L,1}), B{L,+,—,L}),
el e =) Nt e Yope e 4,1 (15, 1ot § 1o}
(10,{*,+,+,*})>

SioT= ({1, 1,1, 1}), (2{L,+ L1}, G{L+—,1}),
(53{1-34’77’7)' (63{L3+7+17})1 (10,{*,4’7‘*’,*}))

Notice that,

#edProjiow) (159) =% edProj(iow) (t519))

4 DATAFLOW BASED PROPERTY
DRIVEN PROGRAM SLICING

This notion of dependencies often loses some infor-
mation, because syntactic occurrence is not enough
to get the real idea of relevancy. For instance (Mas-
troeni and Zanardini, 2008), the value assignea to
does not depend opin the statement =z+y—Yy,
althoughy occurs in the expression. The syntactic ap-
proach may fail in computing the optimal set of de-
pendencies, since it is not able to rule out this kind of
false dependenciesThis results in obtaining a slice
which contains more statements than needed.The first
step towards a generalization of the way of defining
slicing is to considesemantic dependencjeshere
intuitively a variable is relevant for an expression if it
is relevant for its evaluation.
Definition 4. (Semantic dependency) Lety € Var,
then the semantic dependency between the expression
eand variable is defined formally as,

Jo1,02 € Z.Vy # x.01(y) = 02(y) A
£[[€]oy # £ [e]o..

This semantic notion can then easily generalized

151

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

in what we will call abstract dependengyhere a

stract state is transferred into one state to another state

variable is relevant to an expression if it affects a at program poinp:

given property of its evaluation. More precisely, This
notion of dependency is parametric on the properties
of interest. Basically, an expressierdepends on a
variablex w.r.t. a propertyp if changingx, and keep-
ing all other variables unchanged with respecpto
may lead to a change mwith respect t.

Definition 5. (Abstract dependency) Lety € Var,

e and variablex with respect to an abstract domain
(property) is defined formally as,

301,02 € ZP.VY # X01(y) = P2(y) A
A [€]¢1 # 7 €] da.

Dataflow based property driven program slicing is
a fixed point computation where each iterate has two
phases, first, the control flow analysis is combined
with a static analysis in a abstract interpretation based
framework. Hence, each program point of the pro-
gram is enhanced with information about the abstract
state of variables with respect to the property of in-
terest. Then, a backward program slicing technique is
applied to the augmented program exploiting the ab-
stract dependencies.

4.1 Phase 1: Static Analysis

Our representation of programs adef/usegraphs.
The objective of a static analysis based on Abstract
Interpretation is to assign sets of possible abstract val-
ues to edges of def/lusegraph. Thedef/usegraph
consists of five different node types which represent
program points:

1. A designated start and end node representing the
beginning and end point ofdef/usegraph.

2. Expression nodes representing different expres-
sion types found in a concrete semantic model.

3. Condition nodes representing forks in a control
flow, i.e. this type of nodes has one incoming and
two outgoing edges.

4. Join nodes merging two paths of tlief/use
graph, i.e. these nodes have two incoming and
one outgoing edge.

Like the classical approach, our analysis also be-
gins at the start node of tlief/usegraph and traverses
the graph during its static program analysis phase.
Depending on the encountered node type, a particular
set of rules which is based on Abstract Interpretation
is applied.

Based on thelef/lusegraph, the classical approach
begins with the construction of a complete transition
system for the five node types. It defines how an ab-

152

Tp:0(2) = 0(27)

The transition systen¥ is used to construct a sys-
tem of equations which define the assignment of ab-
stract states to program points. A solution is found
by afixed-pointiteration. It begins with the least pos-
sible assignment’ (L) where_L is the least element
then the abstract dependency between the expressioﬁepresemin@‘ Thefixe_d-pointjteration continues as

long as a further application o¥ does not compute

anew state:7"1= ",

Now we will define.7 for the different types of

edges in alef/usegraph. For any edgec E we shall
denote its predecessor edgesg@s For merge nodes,
which have two incoming edges, the second is de-
notedepre. In the following, 7 is given for every
type of program point with respect to a given abstract
domainp. V¢, € 2P denotes the abstract states asso-
ciated to program variables at each program point.

Start Edge. At the start edge, nothing is known
about the values of variables. Having said this, the
natural definition of an abstract state associated
with the initial state should be as follows:

Te(9p) =L

Assignment Edge. An assignment edge is an
edge which emerges from an assignment node.
Let, an assignment node has an assignment

a associated with it, whenee Var anda € AExp,
then 7 (¢,) should be equal to the previous ab-
stract state with the variableupdated to the ab-
stract value o& (Table 1), as follows:.

Te(9p) = Tepre(Bp[x < 7 [$p])

Merge Edge. The problem of Abstract Interpre-
tation is that a termination of the fixed-point it-
eration can not be guaranteed. Due to the nature
of Abstract Interpretation which iteratively sim-
ulates each state transition, the fixed-point itera-
tion can consume a significant amount of time for
loops with large iteration counts. To overcome
both problems, the widening operatdr(Cortesi
and Zanioli, 2010) can be applied. Its applica-
tion typically enlarges the abstract states during
the fixed-point iteration leading to a correct but
also over-approximated solution which might be-
come infeasible as result for many applications.
Thus, a narrowing operatof was introduced
(Cortesi and Zanioli, 2010) to restrict the over-
approximation afterwards.

A merge edge is an edge emerging from a merge
node. A merge node combines the analysis re-
sults of the two incoming edges. The least ab-
stract value which is correct with respect to both

PROPERTY DRIVEN PROGRAM SLICING REFINEMENT

incoming values is the supremum of the these. In a reduced CFG by statically analyzing the associated
addition, if the merge node is the entry of a loop, program with respect to a certain propepty
then that is a good place to put the widening based

on the abstract domain. Thus, the abstract transi- Table 7: Application of rule 1(a) on prograf

tion function for merge nodes is

P d{w,x,y,z} P’
Input z (L, L, L, 1) | Inputz
'%(q)P)D(‘%pre(q)P) U ’%pre/ (q)P)) y= 15; (l, 1,1, T) y= 15;
if loop merge X=2xZ (L, 1,0, T) | x=2x%z
%((bp) - if (X' :y) (J-a Ev Oa T)
‘%pre(q)p)u%pre/(q)p) W=X+Y, (JﬂEv 07 T) W=X+Y,
otherwise else (L,E,O, T)
w=x-y+1;| (L, E, O, T)
Out put w (T,E, O, T) | Outputw

Conditional Edges. The conditional node has

two outgoing edges. Conditionals are resolved
by only boolean expressions with relational oper-
atorsOpy, so for an abstract domain it is necessary
to have abstract version of all relational operators

Op: (Table 2).

Tepre(9p) A #Hp[[b]¢p = TRUE

Tilbs)=
e Teye(0p) A 515 b0 = FALSE

The Abstract Interpretation may establish cer-
tain properties of a program through which we
can identify infeasible statements of the program
which will not be taken into account for program
execution by predicting predicates present in con-
ditional statements. By the following rules we
modify the programP in order to simplify the
control dependence, taking into account only the
statements that have impact on the property of in-
terestp.

Table 6: Rules for conditional nodes.

Rulel ForS:=1:ifbthenSelse$
(@P' =P[S/S] if s[b]¢p = TRUE
(P =P[S/ S| if sp[b]op = FALSE
()P =P[S/ 9 No replacement otherwise

Rule2 ForS:=1I: whilebdo$%

{ (a)P’ = P[skip/ S
(b)P" =P[S/ S

if #p[[b]l¢p = FALSE

Noreplacement otherwise

Let's apply the rules in Table 6 on the following
code fragments, In Table P/ is obtained by apply-
ing rule 1(a) orP by statically analyzing the program
in Parity domain. Notice® contains less statements

4.2 Phase 2: Slicing Algorithm

This section introduces a backward slicing algorithm
that uses the extracted information frophasel

at each program point. While traditional slicing

algorithms are typically syntactical dependency
based, this property driven approach must rely on
semantics dependencies and abstract dependencies.
In fact, the more abstract the property, the greater
the loss of precision of the syntactic approach with
respect to the actual semantic.

Algorithm: Property Driven Program Slicing

Input:

O gp: Statically analyzed (Phase 1) def/use graph of
the program P.

O C=(n,V): slicing criterion.
O p: Given property of interest.
Directly Relevant Variables (R?c o)

O The set of directly relevant variables at slice node,
n, is simply the slice seV.

O The set of directly relevant variables at every other
nodei, is defined in terms of the set of directly
relevant variables of all nodegsleading directly
fromito j (i — 4y J) in Gp. R‘(’C,p)(i) contains
all variablesx such that, either,

() xe RY (1) — defi)

(b)if (def(i) NR ,(j) # 0) then
(Vy # x € usdi)) A (Vo] ,_¢g, ezl)
() A (dp(def(i)) # dp(def(i)))

if (O (Y) = 0p
col)= R(()C,p)(i) U{x}

then
RO
The directly relevant variables of a a node are the

thanP. Therefore, the above rules can often generate set of variables at that node upon which the slicing

153

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

Table 8: Program P after Phase 1.

Stmt. No. | Code Xy |l |p|m|k]|c |w
1 scanf(*%d”, &y); | L | L | L | L | L | L|L|L
2 x=2*y+1 | T)LL) L] L] L)L
3 I=x+1; oO|T | L] L] L] L]L|L
4 p=l; O|T|E|L|L|L]L]|L
5 m=x+l; O|T|E|JE|L|L]|L]|L
6 k=m+(x%2)-m; |O| T|E|E|O| L | L]l
7 if(k!=0) { O|T|IE|E|O|O]| L] L
8 x=p+1; O|T|IE|E|O|O| L] L
9 X=X+1; O|T|IE|JE|O|O]|L]|L
10 c=x+p;} E|T|IE|JE|O|O|L|L

elsg E|T|E|E|O|O|E/|L
11 X=x-1;
12 p=I+1;
13 c=x-p;}
14 W=X+p E|T|E|E|O|O|E/|L
15 printf("%d”, c); E| T E|E|O|O|E|E
16 printf("%d”, w); E|T|E|E|O|O|E|E

criterion-is transitively dependent based on-a given
propertyp.

Directly Relevant Statements £)

In terms of the directly relevant variables, a setlof
rectly relevant statementis defined:

if (def(i)nR® o) #0) then

Sep) = Sep Ui}

Indirectly Relevant Variables (Rk+ 1 K>0)

In calculating the indirectly relevantvarlables, control
dependency is taken into account.

for each predicate nodein gp’ do

if (bﬁSO) #0
B'(<C7)= BK o U ib}
BK. . is the set of all predicate nodes that control a

(Cp)
statement |r55O

RE3(0) = R ()0 Upces, ()

Indirectly Relevant Statements (S‘((g‘l», K>0)

Adding predicate nodes lﬁ’ mcludes further in-
directly relevant statements |n the slice:

if (def(i) RS (1) # 0) then
St = Scp) UBle) Ui}
Let us consider the following code in Table 8. No-

Cp)’
RO

(b,useb).p)

tice that, statements 7 and 11 to 13 can be ignored by

Rule 1(a) discussed in Table 6.

Table 9 shows the comparison between the value
based slice and property driven slice with respect to
slicing criterion C=(16, w) and a property= Parity.

154

Since the property ok at statement 2 does not de-
pend on the property of, statement 1 is irrelevant.
The property ok stays same before and after the ex-
ecution of statement 8, for that reason statement 8 is
also irrelevant in this context. And statement 6 and
statement 10 are deleted from the slice due to the tra-
ditional slicing rules.

5 CONCLUSIONS

The proposed slicing algorithm does not allow any
huge alteration on the traditional algorithm, it just em-
phasizes on the abstract dependencies rather than on
value based dependencies and has some significant
advantages over the traditional slicing algorithms.

On the practical side, property driven program
slicing is interesting since, in general, the slicing
based on a property of some variables is smaller than
the slicing technique based on the exact value of the
same variables, since, properties propagate less than
concrete values, some statements might affect the
values but not the property. This can make debug-
ging and program understanding tasks easier, since a
smaller portion of the code has to be inspected when
searching for some undesired behavior.

ACKNOWLEDGEMENTS

Work partlally supported by RAS L.R. 7/2007 Project
L

Table 9: Property driven slice of

PROPERTY DRIVEN PROGRAM SLICING REFINEMENT

PRAMY \.r.tp = Parity and C=(16,w), and value based slice OPRg,), W.I.t p = Parity

(16,w)
and C=(16,w).
Stmt. No. | P Plow, Pasw)
1 scanf("%d", &y); scanf("%d", &y);
2 X=2*y+1; X=2*y+1; X=2*y+1;
3 [=x+1; [=x+1; [=x+1;
4 p=l; p=l; p=l;
5 m=x+l; m=x+l;
6 k= m+(x%2)-m; k= m+(x%2)-m;
7 if(k!=0) { if(k!=0) {
8 X=p+1; X=p+1;
9 X=x+1; X=x+1; x=x+1;}
10 c=x+p;}
elsg elsg
11 X=x-1; X=x-1;
12 p=I+1; p=I+1;}
13 c=x-p;}
14 W=X+p; W=X+p; W=X+p;
15 printf("%d”, c);
16 printf("%d”, w); printf("%d”, w); | printf("%d”, w);
REFERENCES Weiser, M. (1984). Program slicingEEE Transactions on

Software Engineeringl0(4):352-357.

Bhattacharya, S. (2011). Property driven program slicing
and water marking in the abstract interpretation frame-
work. PhD Thesis, Ca’ Foscari University of Venice,

Italy.

Cortesi, A. and Halder, R. (2010). Dependence condition
graph for semantics-based abstract program sli¢ing.
proceedings of the Tenth Workshop on Language De-
scriptions, Tools and Applications, ACM Preék):4—

17.

Cortesi, A. and Zanioli, M. (2010). Widening and narrow-
ing operators for abstract interpretatiorlComputer
Languages, Systems and Structug1):24—42.

Cousot, P. and Cousot, R. (1977). Abstract interpretation:
A unified lattice model for static analysis of programs

by construction or approximation of fixpoints Pro-

ceedings of the 4th ACM Symp. on Principles of Pro-
gramming Languagegages 238-252.

Mastroeni, |., , and Nikolic'., D. (2010). Abstract program

slicing: From theory towards an implementatidior-

mal Methods and Software Engineering, LNCS 6467

pages 452-456.

Mastroeni, I. and Zanardini, D. (2008). Data dependencies
and program slicing: from syntax to abstract seman-
tics. Proceedings of ACM SIGPLAN symposium on
Partial evaluation and semantics-based program ma-

nipulation pages 123-134

Nielson, F., Nielson, H., and Hankin, C. (1999). Principles
of program analysisSpringer Verlag

155

