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Abstract: Violated integrity constraints should be repaired by eliminating the violations. However, it may be unfeasible
to eliminate all violations. We show that it is possible to eliminate some but not necessarily all violations, i.e.,
to tolerate remaining inconsistencies, while preserving the consistent parts of the database.

1 INTRODUCTION

Database integrity can be enforced by repairing ex-
tant violations of integrity constraints. Traditionally,
repairs are conceived to betotal, i.e., all violations
are supposed to be eliminated. In general, elimi-
nating all violations is intractable (Chomicki, 2007).
Thus, we propose to opt forpartial repairs that are
inconsistency-tolerantandintegrity-preserving. For a
databaseD and an integrity theoryIC, such repairs
eliminate some subsetS of all constraint violations,
while tolerating the persistence of violations in the
complement ofS, and preserving all consistent parts
of the database.

In Section 2, we outline the formal background
of the remainder; in particular, we recapitulate
inconsistency-tolerant integrity checking (Decker and
Martinenghi, 2011). In Section 3, we define re-
pairs, and distinguish between partial and integrity-
preserving repairs. Both partial and integrity-
preserving repairs tolerate inconsistency, but only the
latter guarantee the preservation of consistency. The
theme of Section 4 is integrity-preserving repair man-
agement. Its goal is to show how to compute partial
integrity-preserving repairs, in 4.3. For that purpose,
we recapitulate integrity-preserving updating in 4.2.
In Section 5, related work is addressed. In Section 6,
we conclude with an outlook to further work.

2 BACKGROUND

After some preliminaries, we are going to recapitu-
late the concepts of inconsistency-tolerant integrity

checking and integrity-preserving updates (Decker
and Martinenghi, 2011). Unless specified otherwise,
we use notations and terminology that are common
for datalog.

As usual, we assume that each integrity constraint
(in short,constraint) is represented as adenial, i.e., a
clause of the form←B, where the bodyB is a con-
junction of literals that asserts what should not hold
in any state of the database. Anintegrity theoryis a
finite set of constraints.

For an updateU of a databaseD, we denote the
updated database byDU . For each sentenceF , we
write D(F)= true (resp., D(F)= false) if F evalu-
ates totrue (resp.,false) in D. Similarly, we write
D(I)= true (resp.,D(I)= false) if I is satisfied (resp.,
violated) inD, andD(IC)= true (resp.,D(IC)= false)
if all constraints inIC are satisfied inD (resp., at least
one constraint inIC is violated inD).

Due to the possibly complex quantification of con-
straints, integrity checking tends to be prohibitively
expensive, unless some simplification method is used
(Christiansen and Martinenghi, 2006). Simplification
theory traditionally requires that, for each updateU ,
the state to be updated byU must satisfy all con-
straints. However, that requirement is unnecessary for
inconsistency-tolerant integrity checking, as shown in
(Decker and Martinenghi, 2011).

Integrity checking methods (in short, methods),
and in particular inconsistency-tolerant ones, can be
abstractly defined by their i/o behaviour. Each method
M takes as input a databaseD, and integrity theory
IC and an updateU , and outputs eitherok or ko. In-
tuitively, ok means thatU does not increase the set of
violated constraints, andko that it may.
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Definition 1. An integrity checking methodmaps
triples (D, IC,U) to {ok,ko}. A method M is
called inconsistency-tolerantif, for each database
D, each integrity theoryIC and each updateU ,
M (D, IC,U)= ok entails that, for each constraint
I ∈ IC such thatD(I)= true, alsoDU(I)= trueholds.

Essentially, the only difference between conven-
tional and inconsistency-tolerant integrity checking is
that the former additionally requires total integrity be-
fore the update, i.e., thatD(IC)= true. The absence
of that requirement means that not necessarily each
constraint has to be satisfied beforeD is updated, i.e.,
extant inconsistency inD∪ IC is tolerated.

Note that Definition 1 is somewhat simpler than
the original definition in (Decker and Martinenghi,
2011). The latter does not only require the preser-
vation of the satisfaction of each constraintI such
thatD(I)= true, but of each instanceI ′ of I such that
D(I ′)= true. However, that difference is only a tech-
nical one, not an essential one, since each instance
of each constraint can be taken as an individual ele-
ment inIC. Indeed, it can be shown that Definition 1
is equivalent to the definition of the soundness of
inconsistency-tolerant integrity checking in (Decker
and Martinenghi, 2011).

3 REPAIRS

Repairing means to compute updates to databases in
order to eliminate extant integrity violations. As al-
ready mentioned, repairing can be intractably costly.
Thus, it should be a reasonable heuristic to curtail in-
consistency by not repairingall, but onlysomevio-
lations, particularly in large databases with hidden or
unknown inconsistencies.

The definition below, which is due to (Decker and
Martinenghi, 2011), distinguishes between total re-
pairs, which eliminate all inconsistencies, and partial
repairs, which repair only a fragment of the database.
Partial repairs tolerate inconsistency, since violated
constraints in the complement of the repaired set may
persist.

Definition 2. Let D be a database,IC an integrity
theory and S a subset of IC such that D(S) =
false. An updateU is called a repair of S in
D if DU(S)= true. If DU(IC)= false, U is also
called apartial repair of IC in D. Otherwise, if
DU(IC)= true, U is called atotal repair of IC in D.

In the literature, repairs usually are required to
be total and minimal. Mostly, subset-minimality is
opted for, but several other notions of minimality ex-

ist (Chomicki, 2007) or can be imagined. Note that
Definition 2 does not involve any particular variant
of minimality. However, Example 1 features subset-
minimal repairs.

Example 1. Let D = {p(a,b,c), p(b,b,c), p(c,b,c),
q(a,c), q(c,a), q(c,b), q(c,c)} be a database and
IC ={← p(x,y,z)∧∼q(x,z), ← q(x,x), ← p(x,y,y)}
an integrity theory. Clearly, the instances of
constraints in IC that are violated in D are
← p(b,b,c)∧∼q(b,c) and ← q(c,c). Hence,
there are exactly two minimal total repairs of
IC in D, viz. {delete q(c,c), delete p(b,b,c),
delete p(c,b,c)} and {delete q(c,c), insert q(b,c),
delete p(c,b,c)}. Each of U1 ={delete p(b,b,c)}
and U2 = {insert q(b,c)} is a minimal repair of
{← p(b,b,c)∧∼q(b,c)} in D and a partial repair of
IC in D. Both tolerate the persistence of the vio-
lation of← q(c,c). Similarly, U3 = {deleteq(c,c)}
is a minimal repair of{← q(c,c)} in D and a par-
tial repair of IC, which tolerates the violation of
← p(b,b,c)∧∼q(b,c).

A significant problem with partial repairs is that
they may not preserve integrity, i.e., they may cause
the violation of some constraint that is not in the re-
paired set, as shown by the following example.

Example 2. Consider againD andIC in Example 1.
As opposed toU1 andU2, U3 causes the violation
of a constraint in the updated state that is satisfied
before the update. That constraint is the instance
← p(c,b,c)∧∼q(c,c) of the first denial inIC. Thus,
the non-minimal partial repairU4 = {delete q(c,c);
delete p(c,b,c)} is needed to eliminate the violation
of← q(c,c) in D without causing a violation that did
not exist before the partial repair.

The enlargement ofU3 to U4, i.e., deleting also
p(c,b,c), fortunately does not induce any similar side
effect as produced by deletingq(c,c) alone. In gen-
eral, iterations such as the one fromU3 to U4 may
possibly continue indefinitely, due to iterative side ef-
fects. The termination of such iterations is unpre-
dictable, in general, as is known from repairing by
triggers (Ceri et al., 2000). However, such iterations
can be avoided by checking if a given repair is an
integrity-preserving update, according to the follow-
ing definition.

Definition 3. For an integrity theoryIC, an update
U of a databaseD is called integrity-preservingif,
for each instanceI of any constrait inIC such that
D(I)= true, also DU(I)= true holds.

Example 3. As seen in Example 2, bothU1 andU2,
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and alsoU4, preserve integrity since all instances of
constraints inIC that are satisfied inD remain sat-
isfied in DU . According to Definitions 2 and 3, the
updateU4 is a minimal integrity-preserving repair of
{← q(x,x)}, althoughU4 is not a mere minimal re-
pair of {← q(x,x)}, since the minimal repairU3 of
{← q(x,x)} is a proper subset ofU4. However,U4 is
preferable toU3 sinceU4 preserves integrity, whileU3
does not, as seen in Example 2. In general, each total
repair (e.g., the two total repairs in Example 1) triv-
ially preserves integrity, since no violations remain af-
ter total repairs.

4 INTEGRITY-PRESERVING
REPAIR MANAGEMENT

In Section 3, we have distinguished desirable (partial)
and preferable (integrity-preserving) repairs. How-
ever, all we have so far are definitions and examples,
while a method to compute such repairs is still miss-
ing. The goal of this section is to close that void.

Fortunately, the main building blocks of the
technology to compute partial and inconsistency-
preserving repairs already exist. They recur on
inconsistency-tolerant integrity checking (in short,
ITIC), as characterized in Definition 1, and methods
for computing integrity-preserving updates for satis-
fying given update requests, as discussed in (Decker
and Martinenghi, 2011). In 4.1, we show how to
check if repairs are integrity-preserving or not. In 4.2,
we then recapitulate update computation. In 4.3, we
finally show how update computation plusITIC can
compute partial and integrity-preserving repairs.

4.1 Checking Integrity Preservation

Clearly, each integrity-preserving update, hence each
integrity-preserving repair, is inconsistency-tolerant,
in the sense that there may be arbitrarily many con-
straint violations inD that persist inDU . Moreover,
the following result is an immediate consequence of
Definitions 2 and 3.

Theorem 1. For each databaseD, each integrity
theory IC, each updateU , and each inconsistency-
tolerant integrity checking methodM , U is integrity-
preserving ifM (D, IC,U) = ok.

In general, the only-if version of Theorem 1 does
not hold. However, it follows by definition that it does
hold for methods that arecompletefor inconsistency-
tolerant integrity checking, i.e., for methods that out-
put ok whenever an update is integrity-preserving.

For instance, the well-known method in (Nicolas,
1982) is complete for inconsistency-tolerant integrity
checking, as shown in (Decker and Martinenghi,
2011).

Thus, Theorem 1 is important for the following
reason: For each partial repairU , each inconsistency-
tolerant integrity checking method can be used to
check ifU is integrity-preserving, and each complete
inconsistency-tolerant method is a procedure for de-
ciding if U is integrity-preserving or not.

4.2 Update Methods

We are going to define update methods as algorithms
that take as input an update request and compute can-
didate updates as their output.

Definition 4.
a) An update requestin a databaseD is a first-order
sentenceR that is to be madetrue by some integrity-
preserving updateU , i.e.,DU(R)= true is requested to
hold.
b) An updateU is said tosatisfyan update requestR
if DU(R)= true and U preserves integrity. Clearly,
view update requests are a well-known special kind
of update requests.
c) An update methodis an algorithm that, for
each databaseD and each update requestR, com-
putes candidate updatesU1, . . . ,Un (n≥ 0) such that
DUi (R)= true (1≤ i ≤ n).

A well-known special case of update requests are
view update requests. Essentially, a view update re-
quest is expressed by a literal whose predicate is not
a base relation but a database view predicate. It is to
be satisfied, i.e., to be madetrue, by an update of the
base relations by which the view predicate is defined.
Thus, the class of methods for computing view update
requests is a special case of update methods.

Note that, according to Definition 4c, an update
method is impartial with regard to any integrity viola-
tion that may be caused by any of theUi . As opposed
to that, Definition 5, below, is going to take such un-
desirable side effects into account.

To avoid that updates cause new integrity viola-
tions, many of the known update methods in the lit-
erature (e.g., (Decker, 1990; Guessoum and Lloyd,
1990; Kakas and Mancarella, 1990)) postulate the to-
tal satisfaction of all constraints in the state before the
update, in analogy to the total integrity premise of tra-
ditional integrity checking, as mentioned after Defini-
tion 1. However, that requirement is as superfluous
for satisfying update requests as for integrity check-
ing, for the class of update methods defined next.
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Definition 5. An update methodUM is integrity-
preserving if each update computed byUM pre-
serves integrity.

For an update requestR and a databaseD, several
update methods in the literature work by two sepa-
rate phases. First, a candidate updateU such that
DU(R) = true is computed. Then,U is checked for
integrity preservation by some inconsistency-tolerant
integrity checking method. If that check is positive,U
is accepted. Else,U is rejected and another candidate
update, if any, is computed and checked. Hence, The-
orem 2, below, follows from the definitions above.

Theorem 2. Each update method that uses an
inconsistency-tolerant method to check its computed
candidate updates is integrity-preserving.

Theorem 2 serves to identify several known up-
date methods as integrity-preserving, since they use
inconsistency-tolerant integrity checking. Among
them are the update methods described in (Decker,
1990) and (Guessoum and Lloyd, 1990). Sev-
eral other known update methods are abductive e.g.,
(Kakas and Mancarella, 1990; Kakas et al., 1998;
Dung et al., 2006). They somehow interleave the two
phases as addressed above. Most of them are also
integrity-preserving, as has been shown in (Decker
and Martinenghi, 2011) for the method in (Kakas and
Mancarella, 1990).

The following example illustrates the usefulness
of integrity-preserving update methods, by featuring
what can go wrong if an update method that is not
integrity-preserving is used.

Example 4. Let D = {q(x)← r(x)∧ s(x), p(a,a)},
IC = {← p(x,x), ← p(a,y) ∧ q(y)} and R the up-
date request to makeq(a) true. To satisfy R,
most update methods compute the candidate update
U ={insert r(a), insert s(a)}. To check if U pre-
serves integrity, most methods compute the simp-
lification ← p(a,a) of the second constraint inIC.
Rather than accessing thep relation for evaluating
← p(a,a), integrity checking methods that are not
inconsistency-tolerant (e.g., those in (Gupta et al.,
1994; Lee and Ling, 1996)) may be mislead to use
the invalid premise thatD(IC) = true, by reasoning
as follows.

The constraint← p(x,x) in IC is not affected
by U and subsumes← p(a,a); hence, both con-
straints remain satisfied inDU . Thus, such meth-
ods wrongly conclude thatU preserves integrity,
since the case← p(a,y)∧q(y) is satisfied inD but
violated in DU . By contrast, each inconsistency-
tolerant method rejectsU and computes the update
U ′ = U ∪{delete p(a,a)} for satisfyingR. Clearly,

U ′ preserves integrity. Note that, incidentally,U ′ even
removes the violated case← p(a,a).

In fact, the reduction of the amount of inconsis-
tency as observed in Example 4 is not accidental.
In general, as long as inconsistency-tolerant integrity
checking is applied for each update, the number of vi-
olated cases is not only prevented from increasing, but
also is likely to decrease over time, since each update,
be it accidentally or on purpose, may repair part or all
of the extant inconsistencies.

4.3 Computing Partial Repairs that are
Integrity-preserving

The following example illustrates a general approach
of how partial repairs can be computed by update
methods off the shelve.

Example 5. Let S= {←B1, . . . , ←Bn} (n ≥ 0) be
a set of cases of constraints in an integrity theoryIC
of a databaseD. Thus, D(S)= false if and only if
D(Bi)= true for somei. Further, suppose that there is
a case inIC \S that is violated inD. Hence, a partial
repair can be computed by each update method, sim-
ply by issuing the update request∼vioS, wherevioS
be defined by the clausesvioS←Bi (1≤ i≤ n).

Now we recall from Section 3 that partial repairs
may not preserve integrity. That problem is solved
by the following consequence of Theorems 1 and 2.
It says that the integrity preservation of partial re-
pairs can be checked by inconsistency-tolerant in-
tegrity checking (parta), and that integrity-preserving
repairs can be computed by integrity-preserving up-
date methods (partb).

Theorem 3.
a) For each databaseD, each integrity theoryIC, each
partial repairU of IC in D and each inconsistency-
tolerant methodM such thatM (D, IC,U)= ok, U is
integrity-preserving.
b) Each partial repair computed as in Example 5 with
an integrity-preserving update method is integrity-
preserving.

5 RELATED WORK

Traditionally, concepts of repair in the literature (e.g.,
in (Arenas et al., 1999; Greco et al., 2003; Eiter et al.,
2008)) only deal with total repairs. To the best of the
author’s knowledge, partial repairs have never been
addressed elsewhere, except in (Decker and Marti-
nenghi, 2011). In (Furfaro et al., 2007), null values

INCONSISTENCY-TOLERANT ELIMINATIONS OF INTEGRITY VIOLATIONS

393



and a 3-valued semantics are used to “summarize”
total repairs. Since integrity preservation is a triv-
ial issue for total repairs, there is also no notion of
integrity-preserving updates or repairs in the litera-
ture.

Total repairs can be exceedingly costly, and so
can partial repairs, in general. However, by compar-
ison, partial repairs are more feasible than total re-
pairs, simply because the violations of some integrity
constraints may be hidden, unknown or not resolv-
able, while the repair of the violation of others may
be fairly straightforward. Moreover, the application
of our definitions and results is not compromised by
any limitation with regard to the syntax of integrity
constraints, while severe syntactical restrictions are
typical in the literature on repairs.

A broadly discussed issue in the literature about
repairs is repair checking, i.e., algorithms for decid-
ing if a given update is a repair or not. Analogous
to similar definitions in (Chomicki, 2007; Afrati and
Kolaitis, 2009), the problem ofintegrity-preserving
partial repair checkingcan be defined as the check if
a given update is an integrity-preserving repair. Thus,
Theorem 3a entails that each inconsistency-tolerant
integrity checking method is an implementation of
inconsistency-tolerant repair checking.

Probably the most widely discussed topic related
to repairs is consistent query answering (CQA) (Are-
nas et al., 1999). It defines an answer to be consistent
in a databaseD with regard to an integriy theoryIC
if it is true in each minimal repair ofIC in D. CQA
suffers from its dependence on the chosen notion of
minimality, of which our definitions are steered clear.
Moreover,CQA usually is not computed by comput-
ing each repair, but by techniques of semantic query
optimization or disjunctive logic programming. It
should be interesting to devise a new way of comput-
ing CQA by computing partial instead of total repairs,
since, in general, not all violated constraints are rele-
vant with regard to the given query.

6 CONCLUSIONS

The evolution of a database typically involves falla-
cious updates and other events that may compromise
the quality of the stored data, e.g., during down- and
uploads, migrations, changes in the schema, system
failures, etc. In particular, it is hard to avoid that some
violations of integrity constraints occur and persist.
Thus, the need for a systematic maintenance of the
quality of the stored data arises. One way to meet that
challenge is to eliminate extant violations of integrity
constraints. Since a total elimination of all inconsis-

tencies is intractable, in general, the need to tolerate
inconsistency imposes itself as well.

In this paper, we have presented an approach to
reconcile the conflict between eliminating and liv-
ing with integrity violations in databases. It consists
in opting for possibly partial repairs, instead of to-
tal repairs. Partial repairs are inconsistency-tolerant,
in the sense that only some but not all causes of in-
tegrity violations are eliminated, while violations of
constraints not included in the repaired subset may
remain inconsistent. As illustrated by a paradig-
matic example, partial repairs can be computed by
any method for view updating.

A severe problem with partial repairs is that they
may have the unpleasant side effect of increasing
the amount of inconsistency in the fragment of the
database that is not repaired. In order to avoid
that problem, inconsistency-tolerant updates that are
integrity-preserving need to be filtered out of the set
of candidate partial repairs. To do that, the updates
associated to partial repairs should be checked for in-
tegrity preservation.

Traditionally, integrity checking methods had
been believed to be not applicable for checking up-
dates for inconsistency-tolerant integrity preservation.
They all have insisted on the requirement of total
consistency, which cannot be complied with when-
ever repairs are partial. Fortunately, however, many
known integrity checking methods could be shown to
be inconsistency-tolerant (Decker and Martinenghi,
2011), and hence applicable to check partial repairs
for integrity preservation.

Future work is concerned with replacing the no-
tion of cases by a similar but more basic notion of
causes, for explaining the reasons for integrity vio-
lations. Causes provide a uniform basis for an al-
ternative concept of inconsistency tolerance and, at
the same time, of ‘answers that have integrity’ (AHI )
(Decker, 2010). The latter is not provided by case-
basedITIC. Based on causes,AHI is, by intents and
purposes, similar toCQA, and, as argued in (Decker,
2010), compares favorably toCQA.

Replacing repairs of violated cases by repairs of
the actual causes of integrity violation is going to be
elaborated in a follow-up version of this paper.
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