
SEMANTICALLY RICH API FOR IN-DATABASE DATA
MANIPULATION IN MAIN-MEMORY ERP SYSTEMS

Vadym Borovskiy, Christian Schwarz, Alexander Zeier
Hasso-Plattner-Institute, Potsdam, Germany

Wolfgang Koch
SAP AG, Walldorf, Germany

Keywords: Business object query language, Business object virtualization, ERP data manipulation API, Main-memory
ERP systems.

Abstract: Assuming the feasibility of main-memory database management systems, the current research aims at de-
signing a new type of data manipulation API, called Business Object Query Language (BOQL), specifically
tailored for in-database data manipulation in main-memory ERP systems. The paper contributes the concept
of business object virtualization and describes a query processor that takes advantage of this concept. The first
serves as a means of grouping raw memory-resident data into high-level data structures, while the second ex-
poses a flexible query-like API to manipulate the high-level data structures. Special effort has been dedicated
to integrating the API into C++ programming language.

1 INTRODUCTION

Enterprise resource planning (ERP) systems fully de-
pend on database management systems (DBMSs) in
data manipulation tasks. Such a dependency makes
ERP systems very sensitive to changes in DBMSs.
Because the popular DBMSs were architectured more
than 25 years ago for much different hardware than
today, their capabilities are far below the level that is
achievable with the state of the art hardware (Stone-
braker et al., 2007). In particular, the availabil-
ity of very large and relatively inexpensive memory
made possible keeping enterprise-scale data volumes
in main memory. Motivated by this opportunity, a
number of researches proposed a new design of a
DBMS optimized for permanent main memory data
residence (Manegold et al., 2000), (Kallman et al.,
2008), (Legler et al., 2006). Experiments conducted
on a number of different prototypes illustrating the
new design showed its remarkable performance ad-
vantage (up to two orders of magnitude) over the con-
ventional DBMSs on benchmark workload.

This fact opens a new horizon in ERP systems de-
velopment: having orders of magnitude performance
advantage for in-database operations allows shifting
part of business logic from an application server down
to the database layer. Getting business logic executed
directly inside the database process eliminates expen-

sive data transfers between the application server and
the database, removes the need for application-server-
side cache and allows performing operations other
than declarative SQL data manipulation.

Unfortunately, deploying business logic code in-
side the database is not that easy because of the
mismatch in semantics of the application and the
database’s data models. That is, business logic
accesses ERP data via a semantically rich object-
oriented application programming interface (API),
whereas a DBMS is capable of exposing only plain
relations via semantic-free (generic) SQL. Resolving
this mismatch is one of the major milestones on the
way towards shifting business logic from application
servers to the database.

The main goal of the current research is to lever-
age the fact of having all database objects perma-
nently living in main memory in order to provide
more efficient data manipulation API that ERP sys-
tems can employ while executing in-database busi-
ness logic operations. In particular, in this paper we
present the design and prototype of a semantically
rich API for in-database data manipulation for ERP
systems. The following three points constitute the
contribution of the paper:

� virtualization of business objects - the way of re-
solving high-level business object data model into
the primitives of the storage engine;

253Borovskiy V., Schwarz C., Zeier A. and Koch W..
SEMANTICALLY RICH API FOR IN-DATABASE DATA MANIPULATION IN MAIN-MEMORY ERP SYSTEMS.
DOI: 10.5220/0003503502530260
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 253-260
ISBN: 978-989-8425-53-9
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



� business object query language (BOQL);

� integration of BOQL into an object-oriented pro-
gramming language.

A significant part of the work has been dedicated
to demonstrating the feasibility of BOQL, which pro-
vides a basis for a larger and more careful effort, in-
cluding the in-depth development and analysis of for-
malism for BOQL (i.e. optimization algorithms).

2 RELATED WORK

In this section we briefly review the most important
APIs that to our knowledge are used in different state-
of-the-art ERP systems.

A straightforward approach to data manipulation
is to use standard SQL. Since modern ERP systems
rely on relational databases, SQL statements can be
issued directly against the database tables in order to
operate on data. Although feasible, this approach is
unlikely to satisfy the requirements stated above. The
problem with standard SQL is that it violates the data
encapsulation principle. It exposes too much control
over the underlying database and increases the risk of
corrupting data in the system. An ERP system is not
only data, but also a set of business rules that apply
to the data. Generally, these rules are not a part of
the system’s database. Direct SQL access to the data
circumvents the rules and violates data integrity. An-
other disadvantage of SQL as API is the need for so
called ”glue code“: in order to manipulate data with
SQL from an application the later must use a data
provider (e.g. OBDC, ADO.NET, JDBC and etc.).
This hinders the usability.

To increase the productivity of the previous ap-
proach and allow direct consumption of data from
object-oriented programs, storage layers provide ob-
ject views on existing relational databases. The views
are implemented on top of particular DBMSs to map
persistent database relations to object models of ap-
plications. This approach has received the name of
object-relational mapping (ORM) and is even more
attractive with object-relational DBMSs, which sup-
port more of the desired object functionality in the
database engine itself (Bernstein et al., 1999). The
advantage of ORM is having data objects as first-class
citizens of a programming language. This simplifies
coding and increases application developers’ produc-
tivity. A number of ORM generators can be used to
alleviate the tedious development of mappings. Some
development platforms even include such generators
into their toolboxes. For example, the Enterprise
JavaBeans specification offers two alternatives for

defining the data access code of entity beans: Bean-
Managed Persistence (BMP) and Container-Managed
Persistence (CMP). In the latter case a correspond-
ing mapping is generated automatically by the bean’s
container. The main disadvantage of mapping is low
performance. Application object models are inher-
ently navigational (Bernstein et al., 1999). That is, ob-
jects have references or relationships to other objects,
which applications follow one at a time. Each access
to a relationship entails a round-trip to the DBMS,
which hinders the performance.

An alternative to SQL is data as a service ap-
proach. In this case a system exposes a number of
Web services with strongly-typed interfaces operating
on data. By calling these services application devel-
opers perform required data manipulation. This ap-
proach has an advantage of hiding internal organiza-
tion of data. Instead of a data schema and a query in-
terface an ERP system exposes a set of operations that
manipulate its data. By choosing operations and call-
ing them in an appropriate sequence required actions
can be performed. Because of using Web services this
approach is platform independent. In fact, the data-as-
a-service approach has been very popular. SAP, for
instance, has defined hundreds of Web service oper-
ations that access data in SAP Business Suite. Ama-
zon Electronic Commerce service is another example
of such approach. However, this method has a se-
rious disadvantage - lack of flexibility. Although an
ERP system can expose many data manipulation op-
erations, they will unlikely cover all combinations of
attributes that applications might need to operate on.
Therefore, granularity mismatches are very likely to
occur. As discussed earlier, this will require applica-
tion developers to manually construct a sequence of
calls on existing operations to perform a desired ma-
nipulation. An example of such a case is presented in
(Grund et al., 2008). To partially overcome the mis-
match, the interfaces of Web services can be relaxed
(Borovskiy et al., 2009). This, however, will blur the
semantics of the operations.

Service data objects (SDO) enhance the data-as-a-
service approach by specifying many aspects of data
manipulation. SDO is a specification for a program-
ming model that unifies data programming across het-
erogeneous data sources, provides robust support for
common application patterns, and enables applica-
tions, tools, and frameworks to more easily query,
view, bind, update, and introspect data (Resende,
2007). SDO has a composable (as opposed to mono-
lithic) architecture and is based upon the concept of
disconnected data graphs. Under the disconnected
data graphs pattern, a client application retrieves a
data graph from a data source, mutates the it, and

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

254



can then apply the data graph changes back to the
data source. Access to data sources is provided by
a class of components called data access services. A
data access service (DAS) is responsible for querying
data sources, creating graphs of data containing data
objects, and applying changes to data graphs back to
data sources. SDO essentially wrap data sources and
fully control access to them via a set of strongly-typed
or dynamic interfaces. SDO offer a number of advan-
tages: data encapsulation, better semantics in com-
parison to the previous approach (because data ma-
nipulation is organized around data objects from ap-
plication domain), better modularity and reuse. How-
ever, SDO have a weakness (as in the case of data-as-
a-service approach): the problem of interface design
is not solved. Therefore, granularity mismatches are
possible, but the usage of dynamic interfaces can al-
leviate the problem at the cost of code complexity.

3 BUSINESS OBJECT QUERY
LANGUAGE

As one can see the APIs used in the state-of-the-
art ERP systems have advantages and disadvantages.
SQL provides great flexibility by allowing construct-
ing queries that match the granularity of any infor-
mation need. At the same time, SQL exposes too
much control over the database and circumvents busi-
ness logic rules. In contrast to SQL, object-centric
and service-centric APIs enforce business rules and
data integrity by exposing a set of operations with
well-defined semantics (i.e. strongly-typed interface),
which encapsulate data manipulation and hide data
organization. However, the granularity of the exposed
operations (in terms of record selection and attribute
projection) often does not match the needs of applica-
tion developers.

The main contribution of the current research is
an attempt of combining the advantages of the state-
of-the-art approaches by leveraging main-memory
database technology. The designed API follows data
encapsulation principles without restricting the flex-
ibility of data manipulation. Data encapsulation
is achieved by organizing data manipulation around
business objects. In order to avoid the disadvantages
of object-centric APIs (overhead of reconstructing
business objects out of raw data and inflexibility of
strongly-types interfaces), we suggest ”virtualizing”
business objects and manipulating them in a query-
like style via unified generic CRUD (Create, Retrieve,
Update, Delete) interface. The following subsection
describe the suggestions in detail.

3.1 Virtualizing Business Objects
Business objects are the corner stone of BOQL. An
important difference to existing object-centered APIs
is that in BOQL business objects are virtualized or
not materialized. Because BOQL is targeted at main-
memory-based ERP systems, there is no need for ma-
terializing the objects: all required data always re-
sides in main memory and thus can be directly ac-
cessed. Therefore, instead of pulling the data from
the database, caching it on the application server and
materializing the objects from the cache, the objects
can be reconstructed on the fly by resolving high-
level data model into physical locations (see Figure
1). This means that whenever a given attribute is re-
quired the system calculates its location in the sys-
tem’s address space and performs required manipula-
tion via the storage engine.

The schema resolution is done by business object
engine (BO engine) using the metadata (system cat-
alog), which describes the structure of business ob-
jects, e.g. their attributes and associations. In its sim-
plest implementation BO engine maps the attributes
and associations of business objects to the primitives
of the underlaying storage engine (record collections
and referential constraint). This, however, is not the
best design, as it creates dependency of the BO en-
gine on the storage engine. A much better design
is keeping the two engines separated by a storage-
independent abstraction layer. This permits the busi-
ness object engine to work with multiple storage en-
gines using the same API. We called this layer object
view infrastructure (OVI).

Figure 2 illustrates the relationships among
memory-resident database, storage engine, OVI, BO
engine and applications. An application issues a
BOQL query that is dispatched to the query engine.
The engine parses the query and creates an execution
plan: a sequence of CRUD calls on involved business
objects. The plan is than executed and the result is
than sent back to the application.

Business object virtualization essentially offer an
alternative to object-relational mapping (ORM) as a
mechanism of assembling business objects from raw
data. In comparison to ORM virtual objects impose
less overhead. This advantage is achieved by in-place
data manipulation. ORM, in contrast, reconstructs
business objects only partially and from replicated
data. This results in many network round trips be-
tween the database and application server. Moreover,
ORM complicates the internals of the ERP system,
because of the need of keeping database and applica-
tion server cache in-sync. Virtualized business object,
on the other hand, avoid this overhead altogether, by
providing access directly to the original data.

SEMANTICALLY RICH API FOR IN-DATABASE DATA MANIPULATION IN MAIN-MEMORY ERP SYSTEMS

255



Figure 1: An instance of SalesOrder business object is constructed by ”grouping” memory-resident data and attaching the
CRUD interface.

Figure 2: System Architecture.

3.2 Querying Business Objects

In order to support the query-like style of manipula-
tion (and thus overcome the second major deficiency
of object-centric APIs - inflexibility) we suggest to
unify the interfaces of business objects and design a
query engine that would convert declarative queries
into a sequence of calls to the limited and well de-
fined number of operations (very much like an SQL
engine decomposes queries into relational algebra op-
erations).

The diversity of business objects makes it im-
possible to inherit them all from a single data type

with semantically rich interface. Therefore, we sug-
gest inheriting all business object data types from a
class with generic (semantic-free) interface, that fea-
tures the collections of attributes and associations and
CRUD-operations - Create, Retrieve, Update, Delete.
Such a uniform representation allows introducing a
query language for business objects very much like
SQL for relations with a difference that a query
is translated into a sequence of CRUD-operations,
rather than relational algebra operations. Hence,
query processing is implemented as follows:

1. Write Query. A programmer composes a BOQL
query describing what to retrieve from or change
in the system and sends the query to the BOQL
query processor.

2. Build Query Tree. The processor parses the
query to detect involved business objects and op-
erations on them and builds a query tree - an in-
ternal representation of the query.

3. Emit Execution Script. The query processor
traverses the query tree and emits an execution
script - a sequence of CRUD-operation calls on
the source business objects. For example, tokens
from select clause are converted to Retrieve or
RetrieveByAssociationChain operations, while to-
kens from update clause are converted to Update
operations.

4. Bind Parameters. Having constructed the
call sequence, the processor binds corresponding
query tokens to the input parameters of CRUD-
operations, e.g. the value of a filter in where

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

256



clause.

5. Execute. The execution script gets executed by
business object engine and the result is sent back
to the client.

In its essence BOQL performs on-the-fly orches-
tration of calls to objects’ CRUD-operations based on
user-defined queries. This orchestration is made fea-
sible by a uniform representation of business objects
(in terms of the structure and behavior). In compar-
ison to other object- and service-centric APIs BOQL
has an advantage of supporting access and manipula-
tion at any granularity level. At the same time, BOQL
does not circumvent business rules (because CRUD-
operations control data manipulation and enforce all
required constraints), which favors BOQL over the
SQL-based APIs. To the query processor the data is
seen through the interfaces of business objects. The
direct access to the data is prohibited to enforce data
integrity and internal business logic implemented by
business objects. To access the business data a BOQL
query must be issued.

Because the query processor is a single point of
access into the system, it is a potential bottle-neck. In
order to make the query processor scalable, it has to
support multi-threading and allow simultaneous and
independent processing of individual queries (inter-
query parallelism). Therefore, when the processor re-
ceives a query, it acquires a thread from the system’s
thread pool. The worker thread processes the query
as outlined above. In order to further increase the
scalability of BOQL, intra-query parallelism can be
supported. This can be achieved by parallelizing the
execution of CRUD-calls. To figure out what calls
to execute at the same time, the query processor ana-
lyzes the query tree and issues every call, which does
not rely on yet not retrieved data, in a separate thread.
Both intra- and inter-query parallelism will not pro-
duce any positive effect, unless there is enough hard-
ware capacity available (most importantly the number
of CPUs/cores).

3.3 BOQL Grammar

The formal grammar of BOQL is almost fully re-
sembles that of data manipulation language (DML)
constructs of SQL. As SQL DML, BOQL supports
SELECT, UPDATE, DELETE and INSERT state-
ments. It also has SELECT, FROM, WHERE,
GROUP BY, ORDER BY and HAVING clauses.
Moreover, the standard SQL aggregate functions like
COUNT(), AVG(), SUM(), MIN() and MAX() are
supported. BOQL has full support for arithmetic ex-
pressions, nested expressions, comparisons and pred-
icates (LIKE, BETWEEN, IN, AND, OR and others).

The choice of SQL as a reference language was not
a coincidence. The main reason is that we wanted
BOQL to be as expressive as SQL. With SQL a de-
veloper can access any data (at any granularity level)
with little effort (minimum number of statements).
The second reason was the willingness to minimize
the learning and migration effort: for years SQL has
been the primer choice of data manipulation in ERP
systems. Therefore, having BOQL similar to SQL
will somewhat simplify the transition.

Apart from some minor syntactic differences,
BOQL differentiates from SQL in three ways, which
essentially position it apart from SQL dialects.

1. BOQL natively supports business object hierarchy
and enforces business logic. Because of tight in-
tegration with BO engine, the type system of the
later is fully shared with query engine. This is the
biggest advantage over SQL, which has no knowl-
edge of business objects. For SQL this essen-
tially implies, that objects must be reconstructed
in the application layer of the system, whereas
with BOQL they are embedded into data storage.

2. BOQL does not support relations. Because ERP
data is inherently object-oriented, there is no need
for supporting plain relations.

3. BOQL query always has one source business ob-
ject. Because business objects are connected with
associations and BOQL ”understands” this, there
is no need for explicit joins in FROM clause.
Joins are implied by associations and, thus, can be
omitted. The later fact greatly simplifies BOQL
queries in comparison to SQL.

3.4 Integrating BOQL into a
Programming Language

In order to improve the productivity of ERP applica-
tion developers, the effort of issuing BOQL queries
from business logic code must be minimized. There-
fore, we suggest integrating BOQL with the language
used for programming business logic. The integration
must be at three levels: syntactic, type system and ex-
ecution.

Syntactic integration means that the grammar of
the chosen programming language must be extended
with BOQL grammar. This enables mixing BOQL
queries with control statements written in the chosen
language. Type system integration means extending
the language’s type system with business object data
types. This makes business objects first-class citizens
of the programming language. Integration at execu-
tion level (or runtime integration) means that business
logic code and data manipulation statements execute

SEMANTICALLY RICH API FOR IN-DATABASE DATA MANIPULATION IN MAIN-MEMORY ERP SYSTEMS

257



on the same runtime/infrastructure. Strictly speaking,
syntactic and type system integration automatically
imply runtime integration.

The simplest way of integrating BOQL into a
programming language is to cross-compile BOQL
queries into this given language. This immediately
implies that business object data types and object
view infrastructure must be implemented in the very
same language (or in compatible ones).

3.5 Prototype System

The current subsection demonstrates a possible im-
plementation of the concepts presented in the paper.
In particular, a small ERP system featuring six busi-
ness objects1 has been developed. The ERP exposes
BOQL as a single data manipulation API. The proto-
type uses Berkeley DB, configured as an in-memory
data store, as its storage engine. The system assumes
row-oriented data organization. Because Berkeley
DB is a key-value store, it does not natively sup-
port row layout. Therefore, the prototype takes the
burden of reconstructing rows out of key-value pairs.
This functionality is provided by object view infras-
tructure. As for BOQL query execution, two models
are supported: interpretation and cross-compilation.
All components of the system are developed in C++.
Obviously, queries that are cross-compiled are cross-
compiled into C++. The prototype system also inte-
grates BOQL into a programming language (C++) as
described in subsection 3.4. For convenience, the pro-
grams mixing BOQL and C++ statements are called
to be written in Business C++ (BC++). Hence, BC++
is a language integrating C++ control statements (e.g.
function calls, assignments, arithmetic expressions,
loops, branching, etc.) and BOQL data manipula-
tion statements by providing a single type system and
runtime environment for both types of statements.
BC++ programs are translated into C++, compiled
with GNU g++, linked against the business object en-
gine and later are executed inside its address space
(the closest possible to data) and thus become its inte-
gral part. The rest of the subsection gives more details
on the prototype.

Using Flex (lexer generator) and Bison (parser
generator) tools a parser for Business C++ has been
generated. Its main purpose is to recognize and
process BOQL queries embedded in C++ programs.
Therefore, the parser ignores any constructs other
than BOQL queries and emits them unchanged (as
they are) directly to the output file2. For BOQL con-

1customer invoice, sales order, order line item, cus-
tomer, product and address

2The reason is simple: C++ constructs must be compiled

structs the parser builds an abstract syntax tree (we
call it query tree). If the query stands alone (is not part
of any program), the generated tree is handed over to
query interpreter. The interpreter traverses the tree
and issues CRUD-calls on involved business objects.
If the query is embedded into a C++ program, it must
be cross-compiled into C++ and merged with the pro-
gram. Therefore, for an embedded query the query
tree is handed over to the C++ code generator (cross-
compiler). The later generates a C++ program per-
forming CRUD-calls on business objects. Then, the
query code is merged with the rest of the program and
resulting code is compiled with a native C++ com-
piler (GNU g++). The developed parser is capable
of processing BOQL data manipulation (DML) state-
ments and data definition (DDL) statements. That is,
the system allows not only querying business objects,
but also defining them. There is, however, one limita-
tion. DDL statements can only be interpreted, there-
fore, they cannot be embedded into a C++ program.

The following steps describe the process of work-
ing with the system. For demonstration purposes we
have selected a dunning use-case.

Define Business Object Data Model. Before work-
ing with the system its data model must be defined.
This can be done with Create Type statement. The fol-
lowing code defines sales order business object data
type. The rest five types are defined in the same way.
Create Type SalesOrder {

attributes:

string id,

DateTime date

associations:

Customer Customer,

OrderLineItem Items

};

Each Create Type statement leads to creation of
two C++ classes: business object data type and object
view class. The first class implements data schema,
whereas the second one maps the schema to the prim-
itives of Berkeley DB. The following code demon-
strates classes generated for SalesOrder type3.
class SalesOrderBo : public BusinessObject {

public:

SalesOrderBo(BoView *owner, char *id);

string id();

DateTime date();

CustomerBo *Customer();

vector<OrderLineItemBo*> &Items();

};

...

with native C++ compiler. So parsing them at this stage is
redundant.

3for the sake of brevity non-conceptual details were
omitted

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

258



string

SalesOrderBo::id() {

string res;

char *rawVal = boView->getAttributeRaw(0, getKey());

res.assign(rawVal);

return res;

}

...

class SalesOrderView : public BoView {

public:

SalesOrderView(DbEnv *env);

˜SalesOrderView();

void associate(DbEnv *env);

//CRUD

...

vector<SalesOrderBo*> &Retrieve();

...

private:

Db *OrderLineItemInd;

};

...

vector<SalesOrderBo*> &SalesOrderView::Retrieve() {

vector<SalesOrderBo*> *res = new vector<SalesOrderBo *>();

vector<char*> id = GetIds();

SalesOrderBo *bo;

for (int i = 0; i < id.size(); i++) {

bo = new SalesOrderBo(this, id[i]);

res->push_back(bo);

}

return *res;

}

//Retrieve IDs from Berkeley DB

vector<char*> &BoView::GetIds() {

vector<char*> *res=new vector<char*>();

Dbc *cur; Dbt key_, value_;

collection->cursor(NULL, &cur, 0);

...

int ret;

while((ret = cur->get(&key_, &value_, DB_NEXT))==0) {

res->push_back((char*)key_.get_data());

...

}

...

return *res;

}

Mount Business Objects Data Types. Once the
classes have been generated they are compiled and
dynamically loaded into the address space of the sys-
tem. Then, the classes are registered in the system’s
catalog, which makes the data types available to the
query processor. Mounting data types is done auto-
matically by the system.

Inserting Data. Having defined business objects,
they must be populated with data. This step is omit-
ted, as we generated test data.

Write Business C++ Programs. Once the data
model and actual data are ready a programmer may
start developing their Business C++ code.
void RunDunning(Currency email,

Currency sms, Currency call) {

DateTime curDate = System.CurrentDate;

//retrieve overdue invoices

CustomerInvoice[] inv = SELECT OBJECTS

FROM CustomerInvoice as CI

WHERE CI˜Status != Status.Paid AND CI˜dueDate < curDate;

//send reminders

for(int i=0; i<inv.size; i++) {

if (inv[i]˜Amount <= email)

EmailAlert(inv[i]);

else if (inv[i]˜Amount <= sms)

SmsAlert(inv[i]);

else if (inv[i]˜Amount <=call)

CallAlert(inv[i]);

}

}

Execute. An application developer may now call the
program by issuing the Execute instruction with cor-
responding input parameters.

Hence, Business C++ offers two advantages over
the SQL stored procedures:

� BC++ integrates business object hierarchy of a
given ERP system into C++, which allows mix-
ing control flow statements with data manipula-
tion statement;

� BC++ compiles (translates) into a C++ program
(the language of storage engine).

4 FUTURE WORK

The presented techniques will result in a higher work-
load for the DBMS. Therefore, the scalability of a
database system got high attention in the current re-
search. A number of approaches on database scala-
bility based on horizontal partitioning and data dis-
tribution within a cluster of nodes have been studied
(Boral et al., 1990; DeWitt et al., 1990; Teeuw and
Blanken, 1993). In order to benefit from the comput-
ing resources available in a database cluster, conven-
tional query processing approaches must be revised.
In particular, operators within a query execution plan
have to be assigned to processing nodes according to
the nodes’ data. Those distributed operators can re-
quire additional communication based on the required
synchronization and collection of their results (Mehta
and DeWitt, 1997).

Because distributed query processing is a chal-
lenging research topic in itself, contributing to it is

SEMANTICALLY RICH API FOR IN-DATABASE DATA MANIPULATION IN MAIN-MEMORY ERP SYSTEMS

259



out of the scope of the current work. The main contri-
bution to this research area will be devising formal
models for optimizing database partitioning strate-
gies, that is, deciding at what parts a database must
be split.

5 CONCLUSIONS

The feasibility of in-memory DBMSs and their
tremendous performance advantage over the conven-
tional DBMSs in ERP systems market sector pro-
voked us to rethink the distribution of workload in
an ERP system. Orders of magnitude performance
advantage of in-database operations suggests shifting
more business logic operations inside the database.
This requires the database to provide a semantically
richer data model and API than currently available. In
this paper we presented an API, called business object
query language, that we think better suits the needs of
ERP application developers than any of the currently
employed APIs.

The main idea of BOQL is to provide a system that
groups together different pieces of memory-resident
data and casts the resulting constructs to specific busi-
ness object data types. That is, BOQL is essentially
a system that resolves high-level abstractions (busi-
ness objects) into low-level storage primitives that are
manipulated via the storage engine’s API. We also
demonstrated how BOQL can be integrated into an
object-oriented programming language by means of
cross-compiling BOQL queries into the target lan-
guage.

REFERENCES

Bernstein, P. A., Pal, S., and Shutt, D. (1999). Context-
based prefetch for implementing objects on relations.
In VLDB ’99: Proceedings of the 25th International
Conference on Very Large Data Bases, pages 327–
338.

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth,
S., Franklin, M., Hart, B., Smith, M., and Valduriez, P.
(1990). Prototyping bubba, a highly parallel database
system. IEEE Transactions on Knowledge and Data
Engineering, 2(1):24.

Borovskiy, V., Enderlein, S., and Zeier, A. (2009). Generic
web services - extensible functionality with stable in-
terface. In IEEE International Conference on Web
Services.

DeWitt, D., Ghandeharizadeh, S., Schneider, D., Bricker,
A., Hsiao, H., and Rasmussen, R. (1990). The gamma
database machine project. IEEE Transactions on
Knowledge and Data Engineering, pages 44–62.

Grund, M., Krueger, J., and Zeier, A. (2008). Declara-
tive web service entities with virtual endpoints. In
Proceedings of the IEEE International Conference on
Services Computing.

Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A.,
Zdonik, S., Jones, E. P. C., Madden, S., Stonebraker,
M., Zhang, Y., Hugg, J., and Abadi, D. J. (2008). H-
store: a high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow.,
1(2):1496–1499.

Legler, T., Lehner, W., and Ross, A. (2006). Data mining
with the sap netweaver bi accelerator. In Proceedings
of the 32nd international conference on Very large
data bases, VLDB ’06, pages 1059–1068. VLDB En-
dowment.

Manegold, S., Boncz, P. A., and Kersten, M. L. (2000). Op-
timizing database architecture for the new bottleneck:
memory access. The VLDB Journal, 9:231–246.

Mehta, M. and DeWitt, D. (1997). Data placement in
shared-nothing parallel database systems. The VLDB
Journal, 6(1):53–72.

Resende, L. (2007). Handling heterogeneous data sources
in a soa environment with service data objects. In
ACM SIGMOD international conference on Manage-
ment of data.

Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos,
S., Hachem, N., and Helland, P. (2007). The end of an
architectural era: (it’s time for a complete rewrite). In
Proceedings of the 33rd international conference on
Very large data bases, VLDB ’07, pages 1150–1160.
VLDB Endowment.

Teeuw, W. and Blanken, H. (1993). Control versus data flow
in parallel database machines. IEEE Transactions on
Parallel and Distributed Systems, 4(11).

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

260


