
RIGHT MOUSE BUTTON SURROGATE ON TOUCH SCREENS

Jan Vanek and Bruno Jezek
Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50002 Hradec Kralove, Czech Republic

Keywords: Right mouse button, Touch screen, Gesture, Statistics.

Abstract: The pervasiveness of computer systems is largely determined by their ease of use. Touch screens have
proven to be a natural interface with a strong sensorimotor feedback. Although multi-touch technologies are
ever more popular, single-touch screens are still often preferred. They are cheaper and they map directly to
pointing devices such as computer mice, thus requiring no software modifications. Therefore, they can
easily be integrated into existing systems with WIMP interfaces, e.g. MS Windows based systems.
Applications in such systems often rely on user pressing the right mouse button to open context menus etc.
Since single-touch screens register only one touch at a time, different methods are being used to allow a user
to determine the outcome of the touch. The paper proposes a new interaction scheme for this purpose and an
algorithm to detect it.

1 INTRODUCTION

A significant performance increase and new
discoveries in the field of computer technologies and
electronics bring great advancements also in the area
of human-computer interaction (HCI). New and old
user interface modalities, which complement the
long established and widespread WIMP interface
(Windows, Icons, Menus, Pointing device) (Anthes,
2008) (Taylor, 1997), are being employed in real
life. If implemented correctly, multimodal
interaction can improve user interface efficiency and
lead to greater work effectivity (Raisamo, 1999).

Devices that combine a display unit with a touch
sensor are a rediscovered input modality, which,
thanks also to its commercial availability, is gaining
momentum in the field of HCI. All such devices will
be referred to as touch screens in the following text.
Touch screens convey a direct bond between
displayed information and haptic interaction and
thus are very intuitive and close to lowest level
sensorimotor processes, which has manifested not
only in human psychology research (for example
(McGuire et al., 2000), (Weber et al., 2003) and
others), but also in animal behaviour experiments
(for example (Conway & Christiansen, 2001),
(Hashiya & Kojima, 1997) and many others). The
popularity of touch screens is also due to their
hardware, software and functional compatibility
with computer mice, which significantly simplifies

their application to areas, where information
technology with typical user interfaces is already
being extensively used.

Today, common WIMP user interfaces depend in
much functionality (context menu, extended object
manipulation) on input from an at least two button
mouse. However, most of the touch screen
technologies allow only one touch to be registered.
This article proposes a new method of right mouse
button press emulation on touch screens for some
touch screen technologies and its implementation.

2 TOUCH SCREENS

Although touch screens got major commercial
attention in past several years their history is rather
long. The first touch screen was developed by Sam
Hurst in Elographics in 1971 (Ellis, 2007), the first
personal computer equipped with a touch screen was
launched to market by Hewlet Packard in 1983
(Knight, 2007). Since that time touch screens have
found a wide range of application including
information kiosks, register desk systems,
educational presentation boards and a large class of
mobile digital devices.

Several technologies and physical principles are
used to detect touch. Resistive and capacitive touch
screens are the most widespread, as they are robust,
adequately sensitive and have low production costs.

304 Vanek J. and Jezek B..
RIGHT MOUSE BUTTON SURROGATE ON TOUCH SCREENS.
DOI: 10.5220/0003504803040309
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 304-309
ISBN: 978-989-8425-56-0
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Other technologies include strain gauging, surface
acoustic wave, optical imaging and frustrated total
internal reflection.

In many touch screen usage cases individual
applications have their user interface tailored to the
given task and touch interaction. Especially
technologies that register multiple simultaneous
touches and thus cannot have their output mapped to
a pointing device require user interfaces to be
designed with respect to that (Buxton, 2011)
(Nichols, 2007). However, touch screens are often
employed as a mouse compatible complement to a
personal computer with general, unspecified use.
This includes already widespread presentation and
education screens such as SmartBoard, but also
special industrial solutions, such as the Interactive
Mural touch wall (Guimbretière, Stone, &
Winograd, 2001). Such kind of a setup then runs a
variety of applications in a WIMP user interface of
some operating system, usually MS Windows.

As mentioned in the introduction, many user
activities in a WIMP interface involve a right mouse
button press. The most prevalent touch screen
technologies, however, interpret touch only as a
single left mouse button press. Therefore, different
methods are being used to emulate the missing right
mouse button on touch screens in general
applications.

3 RIGHT MOUSE BUTTON
SURROGATE

Basically two methods are being used to surrogate
the right mouse button on touch screens. Following
the first method, usually called tap&hold, a user
maintains touch for at least the set time period, after
which the touch is interpreted as a right mouse
button pressed and released event. A short time
period can cause frequent false alarms, i.e. incorrect
touch interpretation as a right mouse button press
user did not intend. On the other hand, a longer time
period increases the delay before following activities
and also amplifies motoric strain, especially on large
touch boards.

Second class of methods requires the user to
notify the system before the intended right mouse
button press. Individual implementations can differ;
some manufacturers solve the problem at the
software level – user touches some object displayed
on screen; other solutions include physical button
placed near the touch screen. This method, even
more than tap&hold, hinders users in their work and

causes grater strain from repetitive movements. This
is prominent especially on large touch boards in
combination with a physical button.

From the construction of resistive touch screens
it is possible to infer that multiple simultaneous
touches will be interpreted as a single touch in the
centre of pressure. This assumption was empirically
verified on several resistive and capacitive
technology devices from different manufacturers.

The assumption leads to the new right mouse
button substitution method proposed in the paper.
The intended right mouse button press is indicated
by sequentially simultaneous touch of two fingers.
The user touches the desired point with her index
finger, maintains the touch and simultaneously
presses and releases her middle finger in adequate
distance and, finally, releases her index finger. The
first touch sets coordinates to the desired point. The
increasing pressure from the second finger causes
the coordinates to move towards the point of the
second touch. The movement stops when the
pressure is maximal and after that coordinates move
back to the desired point. See figure 1. After the first
finger is released, respectively after coordinates
reach the desired point, the touch is interpreted as a
right mouse button click, respectively as a right
mouse button press.

Figure 1: Coordinates movement caused by second touch,
pressure illustrated by circle diameters.

The described semantic assignment of the index
and middle finger is natural and intuitive (the fingers
usually operate left and right mouse button), but the
proposed method does not depend on it; any two
fingers of one or both hands in any order can be
used. The important thing is the sequence press first
– press second – release second – release first.

The proposed interaction scheme may be
detected directly in hardware based on the used
technology, but it can also be done based solely on
the inferred coordinates.

3.1 Implementation

Since the proposed interaction scheme can be
evaluated from coordinates, the method can be
implemented in software independently of the touch
screen hardware. The captured coordinates,
interpreted by the operating system as mouse
coordinates, change in time when second touch
occurs. The resulting path, which is sampled into

RIGHT MOUSE BUTTON SURROGATE ON TOUCH SCREENS

305

linear segments, can be considered a single-stroke
gesture and as such it can be processed and
evaluated.

There are a number of different approaches to
gesture recognition. Some authors use purely
geometrical algorithms (Hammond & Davis, 2006)
(Wobbrock, A. D. Wilson, & Li, 2007), some
construct ad-hoc algorithms (Notowidigdo & Miller,
2004) (A. Wilson & Shafer, 2003), sometimes based
on very simple principles (Lank, Thorley, & Chen,
2000); other approaches employ image analysis
(Kara, 2004) or neural networks (Pittman, 1991).
Rather complicated methods use dynamic
programming (Myers & Rabiner, 1981) (Tappert,
1982) or hidden Markov models (Anderson, Bailey,
& Skubic, 2004) (Cao & Balakrishnan, 2005)
(Sezgin & Davis, 2005). Probably the most cited
works are based on statistical feature classification
(Cho, Oh, & Lee, 2004) (Cho, 2006), with the best
known being (Rubine, 1991).

The gesture resulting from the second touch can
certainly be detected using some of the existing
gesture recognition algorithms. However, the
general algorithms are not optimal for this specific
task. They are used mostly in environments, where
gestures are initiated modally with a predefined
indication. Therefore, the algorithms are built on the
premise that the input path is a gesture and thus only
solve the task of differentiation between known
gestures. The problem of gesture recognition within
a set of movements with varying user intentions is in
most of the algorithms considered only marginally,
if at all. The proposed method, however, requires
evaluation of movements for which it is not known
whether the user is attempting to perform the gesture
or not. The implementation of the method must
facilitate this detection.

Because the gesture attempt is indicated in
advance, most of the algorithms work with the
complete gesture. That does not allow for right
mouse button drag&drop operation using the
proposed interaction scheme. In order to facilitate
on-the-fly movement processing the proposed
method implementation must allow for sequential
mouse coordinates path evaluation with constant
computational complexity per segment.

For these reasons we have designed an algorithm
optimized for the described gesture, which is
computationally efficient and can be applied on-the-
fly with constant time with respect to the number of
already processed segments.

3.2 The Algorithm

The algorithm was designed based on data acquired
on a for-wire resistive touch screen ADI V-Touch
1710. The driver of the display maps touch to
system mouse coordinates. To record the data we
created software that with frequency of 64Hz using
DirectInput interface in non-exclusive background
mode captures mouse coordinates. The data was
recorded per individual complete gestures derived
from touch press, movement and release. Each
gesture vertex is described by absolute screen
coordinates in pixels and time in milliseconds that
passed since the previous vertex was recorded.

400 reference gestures were recorded by several
users. The gestures were performed to follow the
proposed interaction scheme. The gestures
originated at randomly selected locations distributed
across the whole screen so that the influence of
eventual local touch screen irregularities was
eliminated. The same set of locations was used by
all the users.

Figure 2 shows the first and third reference
gesture plotted in absolute pixel coordinates.
Segment vertices are complemented with time in
milliseconds that passed since the start of the
gesture. It is clear that the algorithms that use vertex
data directly are not suitable for the task. Gestures
do not correspond in either number of segments,
screen-space location, size, rotation or even in
topology.

A new variable, which is invariant to rigid affine
transformations, can be derived from the screen
coordinates. Let us denote the variable by C. Let us
set c1 = c2 = 1. For i = 3,…, n let us set

()() ()()
() () () ()221

2
21

2
1

2
1

211211

−−−−−−

−−−−−−

−+−−+−

−−+−−
=

iiiiiiii

iiiiiiii
i

yyxxyyxx

yyyyxxxx
c

(1)

In other words, C = cos(Φ), where φi is the angle
between direction vectors of i-1 and i-2 segments
(see figure 3) and n is the number of gesture
segment vertices.

In order to compare a gesture to the reference
ones, gestures have to be described by a fixed set of
attributes. The reference gestures exhibit several
characteristic features, as figure 2 suggests. That can
be taken advantage of and each gesture can be
described by a vector of the characteristic features.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

306

Figure 2: Example of reference gesture plots at absolute
pixel coordinates.

Figure 3: Angle between two segments.

The most prominent feature of the reference
gestures is exactly one occurrence of point of return,
i.e. exactly one negative value of variable C. Each
gesture with exactly one point of return is then
described by selected characteristic features in the
vector (N, TO, LO, C , min(C)), where N is the
number of vertices of gesture segments, TO is the
normalized time of point of return, LO is the
normalized length at the point of return, C is the
average of absolute values of variable C and

min(C) is the minimum of absolute values of
variable C. Table 1 shows vectors of sample means,
standard deviations and coefficients of variation of
the selected features of the reference gestures. The
coefficients of variation suggest that the selected
features describe the reference gestures tightly
enough.

Table 1: Sample statistics of the selected features of the
reference gestures.

Statistic N TO LO C min(C)

x 12.306 0.731 0.647 0.986 0.907

s 3.244 0.119 0.088 0.019 0.151

CV 0.264 0.162 0.135 0.020 0.166

The main output of the proposed algorithm is the
decision whether the input gesture should be
interpreted as a result of the proposed touch scheme
or not, i.e. as user’s indication of an intended right
mouse button press. The vector of sample means of
the reference gestures will serve as an etalon, to
which input gestures are compared using a suitable
distance metric. Mahalanobis distance was used, as
it takes into account the differences in feature
variances and the correlations of features.

To determine a suitable distance threshold all
mouse movements with the left mouse button
pressed were recorded on several users’ computers
within the course of one working day. These
gestures are equivalent to gestures that do not result
from the proposed interaction scheme, i.e. all the
touches that are not intended as a right mouse button
press following the proposed method. These
movements will be referenced as random gestures in
the following text. 4052 gestures were recorded in
total.

The distance threshold is selected so that both
the probability of intended gesture rejection and the
probability of random gesture acceptance are
reasonably low. Table 2 shows an example of
distance thresholds, out of which the threshold of 6
gives the best results for the recorded data. This way
the numbers of incorrectly evaluated gestures reach
circa 2% of the recorded gestures in each category.
The optimal threshold can be calculated by
minimizing the disparity between the percentages of
incorrectly classified reference and random gestures,
but such precision would be superfluous considering
the fact that each user may prefer different
recognition sensitivity.

φi

[xi-2; yi-2]

[xi-1; yi-1]

[xi; yi]

RIGHT MOUSE BUTTON SURROGATE ON TOUCH SCREENS

307

Table 2: The numbers of reference gestures with distances
from etalon exceeding example thresholds and random
gestures with exactly one point of return and with
distances below the thresholds.

Threshold DRef > threshold DRand ≤ threshold

2 175 1
4 36 22
6 8 101
8 2 190
10 1 258
12 0 326

4 RESULTS AND CONCLUSIONS

The algorithm was implemented as a prototype using
DirectInput API to read coordinates in background.
The resulting application was tested on a resistive
touch display ADI V-Touch 1710, capacitive touch
display NEC V-Touch 1921 CU and resistive touch
wall SmartBoard 540. Computational load was
immeasurable on all the computer setups. Gesture
detection error rate and its dependence on the
distance threshold corresponded to expectations. The
touch wall produced high noise in the recorded data,
which caused frequent points of return and gesture
rejection with segment lengths close to one or two
pixels. To remove the noise a segment was recorded
only after it reached a defined minimal length. The
minimal length of four pixels yielded results
equivalent to those on the displays.

To assess the efficiency of the proposed method
of right mouse button surrogate and its comparison
to the tap&hold method, software button method and
hardware button method an experiment was
designed, in which users react to a series of
graphical symbols with either left or right virtual
mouse button press in dependence on the currently
displayed symbol. Expected type of reaction,
reaction time and the number of corrections are
recorded in the course of the task.

For technical, organizational and economic
reasons the experiment is yet to be performed on a
statistically significant sample of users. Thorough
analysis of the method impact on user performance
thus remains future work. However, preliminary
tests taken by a limited number of users suggest the
potential of the method especially in comparison
with the button methods. The tests also show that the
method requires some dexterity and practice, but
that the touch interaction scheme is intuitive.

The proposed method of right mouse button
surrogate on touch screens is a sound alternative to

other existing methods in use, but it is not intended
as a complete replacement. The described detection
algorithm of the proposed touch interaction scheme
is computationally efficient and easy to implement
and therefore it can be integrated both into the
software driver and the firmware of the underlying
touch screen hardware.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Defence
research project MO0 FVZ0000604.

REFERENCES

Anderson, D., Bailey, C., & Skubic, M. (2004). Markov
Model Symbol Recognition for Sketch-Based
Interfaces. Proceedings of AAAI Fall Symposium (pp.
15-21). Presented at the AAAI Fall Symposium,
Menlo Park, CA: AAAI Press.

Anthes, G. (2008). Give your computer the finger: Touch-
screen tech comes of age - Computerworld. Retrieved
February 16, 2011, from http://www.computerworld.
com/s/article/9058841/Give_your_computer_the_finge
r_Touch_screen_tech_comes_of_age

Buxton, B. (2011). Multi-Touch Systems that I Have
Known and Loved. Multi-Touch Systems that I Have
Known and Loved. Retrieved February 16, 2011, from
http://www.billbuxton.com/multitouchOverview.html

Cao, X., & Balakrishnan, R. (2005). Evaluation of an on-
line adaptive gesture interface with command
prediction. Proceedings of Graphics Interface 2005
(pp. 187-194). Victoria, British Columbia: Canadian
Human-Computer Communications Society.

Conway, C. M., & Christiansen, M. H. (2001). Sequential
learning in non-human primates. Trends in Cognitive
Sciences, 5(12), 539-546.

Ellis, N. (2007). Sam Hurst Touches on a Few Great Ideas.
Berea College Magazine, 77(4), 22-27.

Guimbretière, F., Stone, M., & Winograd, T. (2001). Fluid
interaction with high-resolution wall-size displays.
Proceedings of the 14th annual ACM symposium on
User interface software and technology, UIST ’01 (p.
21–30). New York, NY, USA: ACM.

Hammond, T., & Davis, R. (2006). Tahuti: a geometrical
sketch recognition system for UML class diagrams.
ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06.
New York, NY, USA: ACM.

Hashiya, K., & Kojima, S. (1997). Auditory-visual
Intermodel Matching by a Chimpanzee (Pan
troglodytes). Japanese Psychological Research, 39(3),
182-190.

Cho, M. G. (2006). A new gesture recognition algorithm
and segmentation method of Korean scripts for
gesture-allowed ink editor. Information Sciences,
176(9), 1290-1303.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

308

Cho, M. G., Oh, A. S., & Lee, B. K. (2004). A Feature-
Based Algorithm for Recognizing Gestures on
Portable Computers. Computational Science and Its
Applications – ICCSA 2004, Lecture Notes in
Computer Science (Vol. 3043, pp. 33-40). Springer
Berlin / Heidelberg.

Kara, L. B. (2004). An Image-Based Trainable Symbol
Recognizer for Sketch-Based Interfaces. Proceedings
of AAAI Fall Symposium (Vol. 2, pp. 99-105).
Presented at the AAAI Fall Symposium, Menlo Park,
CA: AAAI Press.

Knight, M. (2007). In touch with the digital age. Retrieved
February 16, 2011, from http://edition.cnn.com/2007/
TECH/07/27/fs.touchscreen/index.html

Lank, E., Thorley, J. S., & Chen, S. J.-S. (2000). An
interactive system for recognizing hand drawn UML
diagrams. Proceedings of the 2000 conference of the
Centre for Advanced Studies on Collaborative
research (p. 7). Mississauga, Ontario, Canada: IBM
Press.

McGuire, M., Bakst, K., Fairbanks, L., McGuire, M.,
Sachinvala, N., von Scotti, H., & Brown, N. (2000).
Cognitive, mood, and functional evaluations using
touchscreen technology. The Journal of Nervous and
Mental Disease, 188(12), 813-817.

Myers, C. S., & Rabiner, L. R. (1981). A Comparative
Study Of Several Dynamic Time-Warping Algorithms
For Connected Word Recognition. The Bell System
Technical Journal, 60(7), 1389-1409.

Nichols, S. J. V. (2007). New Interfaces at the Touch of a
Fingertip. Computer, 40, 12–15.

Notowidigdo, M., & Miller, R. C. (2004). Off-Line Sketch
Interpretation. Proceedings of AAAI Fall Symposium
(Vol. 2, pp. 120-126). Presented at the AAAI Fall
Symposium, Menlo Park, CA: AAAI Press.

Pittman, J. A. (1991). Recognizing handwritten text.
Proceedings of the SIGCHI conference on Human
factors in computing systems: Reaching through
technology, CHI ’91 (p. 271–275). New York, NY,
USA: ACM.

Raisamo, R. (1999). Multimodal Human-Computer
Interaction: a Constructive and Empirical Study
(Dissertation). University of Tampere, Tampere.

Rubine, D. (1991). Specifying gestures by example. ACM
SIGGRAPH Computer Graphics (Vol. 25, p. 329–
337). New York, NY, USA: ACM.

Sezgin, T. M., & Davis, R. (2005). HMM-based efficient
sketch recognition. Proceedings of the 10th
international conference on Intelligent user interfaces,
IUI ’05 (p. 281–283). New York, NY, USA: ACM.

Tappert, C. C. (1982). Cursive script recognition by elastic
matching. IBM Journal of Research and Development,
26, 765–771.

Taylor, A. G. (1997). WIMP Interfaces (Topic Report No.
CS6751). Winter ’97. Atlanta, GA: Georgia Tech.
Retrieved from http://www.cc.gatech.edu/classes
/cs6751_97_winter/Topics/dialog-wimp/

Weber, B., Schneider, B., Fritze, J., Gille, B., Hornung, S.,
Kühner, T., & Maurer, K. (2003). Acceptance of
computerized compared to paper-and-pencil

assessment in psychiatric inpatients. Computers in
Human Behavior, 19(1), 81-93.

Wilson, A., & Shafer, S. (2003). XWand: UI for
intelligent spaces. Proceedings of the SIGCHI
conference on Human factors in computing systems,
CHI ’03 (p. 545–552). New York, NY, USA: ACM.

Wobbrock, J. O., Wilson, A. D., & Li, Y. (2007). Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. Proceedings of the 20th
annual ACM symposium on User interface software
and technology, UIST ’07 (p. 159–168). New York,
NY, USA: ACM.

RIGHT MOUSE BUTTON SURROGATE ON TOUCH SCREENS

309

