
DISTRIBUTED SOFTWARE INTEGRATION MODEL BASED ON
ATTRIBUTE-DRIVEN DESIGN ADD METHOD

Hamid Mcheick1, Yan Qi1 and Hani Charara2
1 Department of Computer Science and Mathematic, University of Quebec at Chicoutimi

UQAC, 555 Boulevard de l’Université Chicoutimi, G7H2B1, Chicoutimi, Canada
2 Department of Computer Science and Mathematic, Lebanese University, Faculty of Science I, Lebanon Hadath, Lebanon

Keywords: Connector, ADD.

Abstract: Software integration in distributed architecture plays an important role to improve software quality.
Engineers often face challenges coming from connectors. Especially, design of connectors in a distributed
system encounters more design issues such as: i) how to fulfil the functional and quality requirements of
connectors in distributed system; ii) how do multiple technologies combine together to resolve design issues
of connectors. In order to design connectors in distributed software, this paper proposes a design model by
using ADD methods. And then we give an example of MVC architecture for presenting how to instantiate
that model based on ADD design method.

1 INTRODUCTION

Software components and connectors are two
important parts of the software architecture.
Connectors are regarded as software elements for
delivering data and control in a software system
(Base et al. 2003).

In software development, there are some simple
connectors, such as procedure call, association class,
etc. These connectors are widely used and some of
them become general programming approaches
(procedure call) provided by most of development
tools. The connectors are good at linking
components together in local environment.

However, in the recent years network
technologies and distributed system are rapidly
growing. In distributed architecture the components
are distributed in separate computers over the
network and the traditional approaches (for example,
the method-based mechanism) are not directly
available for interacting with the distributed
components (Qiu, 2005). In order to design the
connectors in distributed system, multiple
technologies are applied in practice. However, when
facing these technologies, developers often meet
some problems. For example, messaging system
(middleware) is used to deliver messages in network
for constructing connectors. But they do not have the

ability to build the relationship of components. On
the other hand design pattern is most effective for
building relationship when combined with aspect-
oriented programming (AOP). However, AOP only
provides the mechanisms for developer to weave
aspects and base code together into a coherent
program (Elrad et al. 2001). Thus, AOP is merely
applied to handle classes situated in one local
application. As a result of this property, AOP cannot
be directly used in distributed system. Furthermore,
the qualities of connectors may be seldom discussed
in the design process of connectors, particularly
when these technologies are put together for solving
problems.

In our research, we focus on these design issues:
in order to fully satisfy both the functionalities and
qualities of connector, how to analyze and design
connector in distributed architecture by weaving the
relevant technologies together (design pattern,
aspect-oriented programming, middleware, network
protocol etc.)

In the following sections, we firstly present
background related to connectors (section 2).
Secondly, section 3 develops a general design model
and an example scenario for connector in distributed
architecture by following ADD method. Thirdly, we
draw a conclusion in section 4.

53Mcheick H., Qi Y. and Charara H..
DISTRIBUTED SOFTWARE INTEGRATION MODEL BASED ON ATTRIBUTE-DRIVEN DESIGN ADD METHOD.
DOI: 10.5220/0003506500530058
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 53-58
ISBN: 978-989-8425-76-8
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2 BACKGROUND

2.1 Middleware in Distributed Systems

Middleware in distributed system is a dedicated
software which is designed to deliver messages
between components without involving knowledge
of network protocol and hardware platform.
Distributed system frequently applies two kinds of
middleware to interactions of components: object
oriented and message oriented middleware.

Object oriented middleware (OO middleware) is
applied to component interaction in distributed
system. It provides an easy programming model for
the interaction of distributed programs by using
current programming language features (Pryce,
2000), such as CORBA (OMG, 2004) and Java RMI
(Remote Method Invocation). But there are some
disadvantages: they are only suitable for
client/server architecture; especially, it is hard to
apply them to complex distributed systems.

Message oriented middleware (MOM) is also
called as messaging system. It is a separate software
system that provides messaging capabilities for
distributed components (Hohpe et al., 2004). In
contrast to OO middleware, MOM implements the
interactions of components by formatting them as
messages instead of modelling the interaction as
procedure calls. MOM provides users with the
capability of providing stable communications in an
unstable network environment.

The two kinds of middleware work towards a
common goal: sending/receiving data over network.
However they cannot be used to describe the
relationship of components and they have no idea
about the message construction.

2.2 Design Pattern

Design patterns are often used to describe
relationships between components (classes or
objects). The design patterns in Gamma et al.’s book
(1995) are descriptions of communication of objects
and classes that are customized to deal with general
design problems. The communication of object and
class should be loosely coupled without becoming
entangled in each other's data models and methods
(Cooper, 2000). Gamma et al.’s design patterns
particularly deal with problems at the level of
software design, especially object-oriented software
design. They can be classified by criterion scope
which is used to specify whether the pattern is
mainly used to classes or objects. Thus, the design
patterns have two kinds: class design pattern and

object design pattern (Gamma et al., 1995). Object
patterns are applied to object relationships, which
can be modified at run-time and are more dynamic,
such as Proxy Pattern, Observer Pattern, Publish-
Subscribe and so forth.

Design pattern is specially used to design the
dependency of components. It cannot be directly
applied to distributed architecture, if it is does not
have a proper transport mechanism.

2.3 Aspect-oriented Programming

Aspect-oriented programming (AOP) is combined
with object-oriented programming (OOP) for
achieving a basic objective (Gradecki et al., 2003):
describe and divide the concerns by crosscutting
components. The core mechanism of AOP uses an
aspect weaver that is a compiler-like tool. This tool
compiles the whole program by combining the
crosscutting concern (aspect) with other classes and
the compiling process is defined as weaving in AOP
(Laddad, 2003). Therefore, the working mode of
AOP technology is static. The whole program
cannot be dynamically changed after weaving them.

According to the properties of AOP, it has the
capability to build relationships (following a design
pattern) between separate components without
modifying much of the existing source code of
components. As a result of this point, AOP enables
the developers to easily design, implement, extend
and maintain software system.

Despite this, AOP has a major limitation. It is
merely applied to classes situated in one local
program. Thus, AOP cannot be directly used in
distributed system and the use of AOP across
network is still a challenge for developers.

2.4 Attribute-Driven Design (ADD)

In software engineering some design methods are
defined to model software engineering activities. For
example, both the attribute-driven design method
and object-oriented (OO) methods belong to
software engineering design methods. OO method
merely focuses on the functionalities of software
system.

Attribute-Driven Design (ADD) method is
developed by the Carnegie Mellon Software
Engineering Institute (SEI). In contrast to OO
method, ADD is an approach to designing a software
architecture in which the high level design process
relies on the software’s quality attribute (Wojcik et
al. 2006). ADD method follows a recursive design
process: 8 steps (Wojcik et al. 2006) that are iterated

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

54

until all architecturally important requirements are
satisfied (Bass et al. 2003).

The input of ADD involves functional
requirement, design constraint and quality attribute
requirement; the output of ADD is the high levels
design of some views of architecture. The views of
architecture include module decomposition,
concurrency, and deployment. Quality attribute
requirements show the different properties which a
system must exhibit; functional requirements
indicate what functions a system must be provided
for stakeholder’s needs when the software works
under some conditions; design constraints are
decisions about a system’s design that must be
involved into final design (Wojcik et al. 2006).

Architectural drivers are the combination of
functional requirement and quality requirements
which are used to form the architectures and
modules (Bass et al. 2003). Architectural patterns
and tactics are applied to satisfy the quality
attributes which are used to define types of elements
and interactions by following the step4 of ADD,
while functionality requirements are chosen to
instantiate the module types (in step 5 of ADD).

Bass et al.’s research (2003) addressed the
system quality attributes of software, such as
availability, modifiability, performance, security,
testability, usability, and so forth. In order to achieve
quality attributes of connector in distributed system,
these qualities should be considered when designing,
implementing connector.

3 DESIGN MODEL FOR
DESIGNING CONNECTOR

In this section we provide a general design model for
designing connector by using ADD method in
distributed architecture. And then, we give an
example scenario about design of connector in
distributed MVC (Model, View and Controller)
architecture.

3.1 Model for Designing Connector

Connectors which are situated in distributed system
must be designed to satisfy the demands: i) the
transport of information; ii) description of
relationship; iii) message construction. According to
the properties of the distributed connectors, we
propose a general model for designing connector
using ADD design method. The design process
following the standard of SEI’s ADD design method

is described below.
Step 1: collect the architectural drivers: specific

quality scenarios functional requirements and design
constrain (Table 1).

Step 2: choose the module to decompose. We
consider the whole connector as the primary
element.

Step 3: identify chosen architectural drivers. For
the design model, the quality attribute: Availability
and Modifiability are high priorities.

Step 4: choose the patterns and tactics to satisfy
the architectural drivers (Table 2). In light of the
architectural drivers, we propose a general layered
model in which each layer corresponds to different
modules for meeting the functional requirements and
achieving quality attribute of connectors. The
layered model consists mainly of Transport Layer,
Dependence Layer and Presentation layer.

Table 1: Architecture drivers.

DISTRIBUTED SOFTWARE INTEGRATION MODEL BASED ON ATTRIBUTE-DRIVEN DESIGN ADD METHOD

55

Table 2: Architectural patterns and Tactics.

Transport layer (module) situated in the base of

the connector is responsible for basic transceiver in
network. It is used to “carry” the dependence or
relationship between components by linking them
together. Normally, it is implemented by network
protocols (such as TCP/IP, HTTP protocol stacks) or
MOMs (WebSphere MQ/ Open Message Queue
etc.). MOM can satisfy the Availability and
Scalability, because that MOM has the ability to
provide the reliable communication and support high
scalability for a large number of clients. However,
there is a side effect for MOM: poor Performance.
Thus, if the Performance is very important to the
system, the socket API (TCP or UDP) should be
chosen. Particularly, secure socket layer can
provides Security for transfer.

Dependence layer (module) describes the
relationship between components in detail. In order
to build the relationship of components, we can use
object design pattern or architecture pattern to
implement it. AOP and design pattern are good at
building the relationship without modifying much of
existing components. Therefore, they can satisfy the
Modifiability.

Presentation layer (module) is responsible for
constructing the transferred information depending
on the type, format and amount of the information.
We can use Markup language such as XML or a
customized format defined by developers according
to the type and amount of the information. Secure
encryption of data and messages are always required
in this layer. Therefore, it can satisfy the Security.

3.2 Example Scenario: Design of
Connector

In this subsection, we design architecture of
connector for an example scenario: a distributed
MVC software system by using our general design

model. And then, decompose the general
architecture into concrete modules by using ADD
method.

The MVC architecture (Figure 1) shows: the
component Controller can send messages to all
Models and Views; the Model A can send messages
to View 1 and View 2; Model B can send messages
to View 2 and View 3. Based on this structure, the
MVC structure can provide active working model,
because when the data related to Model has been
changed, the Model can update the registered Views
without notifying Controller.

According to the standard of SEI’s ADD and
requirement of connectors, the steps 1- 4 have been
completed in the design process of the general
design model described in subsection 3.1. Then, we
start to discuss the design process from Step 5 of
ADD.

Figure 1: Example Scenario: MVC architecture.

Step 5: instantiate architectural modules and
define responsibilities. In this step, we instantiate the
modules analysed in step 4.

In the example, there are two kinds of
connectors: i) connector between Controller and
other components (Models and Views); ii) connector
between Model and View. The relationship between
Controller and others components is the same as the
relationship between Model and Views. They both
follow the Publish-Subscribe pattern. For example,
Controller publishes messages/command to Models
and Views; Views and Models can receive the
message they subscribe to.

i) In presentation layer, module writer and parser
are utilized to process messages by adopting the
message protocol of access (Figure 2).

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

56

Figure 2: Presentation layer of connector.

Message protocol is the meaning or logic of the
message. For example, if one component wants to
access a database server, it may use a SQL code as
the logic of messages. Message writer/parser handles
the format of message, such as the package/un-
package data, encryption/ decryption, compression/
decompression, etc.

ii) In dependence layer, we apply an Aspect of
AOP and design pattern to build the relationship of
components. In figure 1, it shows an active mode
MVC. When the data maintained in Model is
changed, the Model must notify the Views of the
changes. Thus, Publish-Subscribe pattern is suitable
to build the relationship between Model and View.
For the detailed design, we use Observer design
pattern to implement the Publish-Subscribe and
apply AOP to implement the Observer design
pattern. The reason why we prefer utilizing AOP is
analysed below: the component Model should
concentrate on the data processing of application and
all the functionalities of Model should be separated
from all things related to display and user interfaces
that should be done by component View. In other
words, the developers of Model do not need to know
when to notify Views and what data should be
delivered to Views. Fortunately, the AOP enables
developers to build the relationship between two
components (Model and View) by crosscutting the
two components without modifying much of the
logic of both components. Particularly, when
planning to update one MVC architecture by adding
a new connector between components (for example,
a new View wants to get some information from one
existing Model.), the developers can get maximum
benefit from the usage of AOP.

We show a diagram about the design of the
dependence layer (Figure 3).

Figure 3 shows that a new component Proxy is
added. The component Proxy and Model are situated
in one program that runs in a same computer. That
means that they share the same memory space and

CPU. One purpose of Proxy is to represent the

Figure 3: Dependence layer of connector.

component View in dependence layer. The other
purpose of Proxy will be described in transport
layer. In figure 3, we also note that another special
module is instantiated. It is named as an Aspect
which is used to crosscut the two components
(Model and View). In term of the Observer design
pattern, we make the Model work as Subject and
make Proxy work as Observer. In term of the
architecture of Figure 1, multiple Views can be
supported as Subject. Then the dependence
(relationship) is built between the two components
(Model and View).

iii) In transport layer, in light of the quality of
network and the requirements of whole system,
developers choose the network protocols or MOM to
implement the task of transport in network.

Figure 4: Transport layer of connector.

In the Figure 4, the component Proxy is
described in the design of dependence layer (shown
in Figure 3). Here, we talk about another purpose of
the Proxy. It is used to send message to Views by
using an instantiated module (messaging system or
network protocol). The component Proxy plays an
important role in our solution. It works as an
Observer to “monitor” the Model component. When
the Model changes its data which interests the
Proxy, the Proxy will be updated automatically in
dependence layer. In addition, it is responsible for
transferring the updated data to Views relying on the
module messaging system or network protocol.

In this Step, we instantiate the modules of
connector based on the MVC structure by taking
connector between Model and View for example.
Another type of connector between Controller and
other components can be designed in the same way.

After Step 5, the general model for connector in

DISTRIBUTED SOFTWARE INTEGRATION MODEL BASED ON ATTRIBUTE-DRIVEN DESIGN ADD METHOD

57

the MVC example is instantiated. According to
ADD methods, the Step 6 (define interfaces) and
Step 7 (refine requirements) should be done in an
actual project by meeting different requirements.

3.3 Analysis of the Design Model

This design model presents a clearly layered
structure of connector which fulfils the architectural
drivers by using ADD methods. Each layer is
responsible for dedicated requirements. The
developers can be guided through the process of
design of connector by using the design model.

Compared to other approaches of connector, this
model covers every aspect of connector in
distributed system. For example, in some research
works, network protocols (TCP/IP, P2P etc…) are
regarded as connectors. This misunderstand can lead
developers to only concentrate on the functionality
of transport, neglecting to study and design the
relationship of components.

Relationship is the core of the model. When
using this model, developers must put a lot of effort
into the relationship of the components. To simplify
the analysis of relationship, the pattern approach
(design pattern by using AOP) is applied to the
design of connector in distributed system.
Messaging system and other transport mechanisms
are designed to ensure that the messages can be
successfully delivered. In our opinion, the
messaging system should be situated in transport
layer of this model, even though some of messaging
systems have the function of description of
independency of components.

4 CONCLUSIONS

This paper discusses a design model of connectors in
distributed architecture. We mainly concentrate on
the design problems of connectors: how to gain the
benefit from the combination of multiple
technologies (design pattern, AOP, MOM and
network protocol) for satisfying the functional
requirements and achieving quality attribute. To
resolve the problems, we propose a general design
model for design of connector in distributed
architecture based on ADD method. And then we
give an example of distributed MVC architecture for
presenting how to instantiate that model based on
ADD. In that example, our design model enables us
to easily design and develop the connectors for
coherently linking the Views and Modes together
and fulfilling the functional and quality requirements

of connectors.
The presented approach is at an early stage of

development and would certainly merit being more
detailed especially for generalize our model to
facilitate the maintenance and reduce the cost of
distributed applications.

ACKNOWLEDGEMENTS

This work was sponsored by the University of
Quebec at Chicoutimi (Quebec), and by NSERC
(Canada).

REFERENCES

Bass, L., Clements, P. & Kazman, R., 2003. Software
Architecture in Practice, Addison-Wesley, Second
Edition.

Qiu, X., 2005. Message-based MVC Architecture for
Distributed and Desktop Applications. Syracuse
University PhD.

Elrad, T., Filman, R. E. & Bader, A., 2001. Aspect-
oriented programming: Introduction. Magazine
Communications of the ACM Volume 44 Issue 10,
Oct. 2001 ACM New York, NY, USA.

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson
P., Nord R. and Wood, B., 2006. Attribute-Driven
Design (ADD), Version 2.0. TECHNICAL REPORT,
CMU/SEI-2006-TR-023, ESC-TR-2006-023.

OMG (Object Management Group), 2004. The Common
Object Request Broker: Architecture and
Specification, Version 3.0.3.

Pryce, N. G., 2000. Component Interaction in Distributed
Systems. PhD Thesis. Imperial College of Science,
Technology and Medicine.

Hohpe, G. & Woolf, B., 2004. Enterprise Integration
Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley.

Gamma, E., Johnson, R., Vlissides, J. & Helm, R., 1995.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Cooper, J. W., 2000. Java Design Patterns: A Tutorial.
Addison-Wesley.

Gradecki, J.D. & Lesiecki, N., 2003. Mastering AspectJ:
Aspect-Oriented Programming in Java. Wiley.

Laddad, R., 2003. Aspect J in Action: Practical
Aspect-oriented Programming. Manning.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

58

