
SOA PRACTICES AND PATTERNS APPLIED IN GLOBAL
SOFTWARE DEVELOPMENT

Marcelo Zilio Pereira, Jorge Luis Nicolas Audy, Rafael Prikladnicki
Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, Porto Alegre, Brazil

Mayara Figueiredo
Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil

Cleidson de Souza
IBM Research – Brazil, São Paulo, SP, Brazil

Keywords: Service oriented architecture, Design patterns, Practices, Framework, Distributed software development,
Global software development.

Abstract: Prior research has established a relationship between coordination of software development activities and
software architecture both in collocated and distributed projects. Despite the recognized importance of the
software architecture in the coordination of development activities, it is still unclear how software architects
design the architecture of software systems in distributed projects. To better understand this scenario, this
paper reports from a qualitative empirical study where we interviewed software architects to collect
information about the software architecture of distributed projects. Information collected has exposed the
wide adoption of Service Oriented Architectures (SOA), indicating a trend towards the usage of this low
coupling architectural style by companies developing projects with distributed teams. More detailed data
collected by follow-up interviews suggested a set of best practices for designing SOA architectures to
facilitate the work of the project members.

1 INTRODUCTION

Software Architecture (SA) is an important area
within Software Engineering as a transition between
the functional specification and coding. It represents
a mapping from the abstract concepts defined in the
specification to concrete concepts enabling the
software coding (Pressman, 200) (Sommerville,
2006).

Motivated by the growth of software development
companies with subsidiaries and offices worldwide,
researchers in the areas of Global (or distributed)
Software Development (GSD), and Computer
Supported Cooperative Work (CSCW) have
revisited the work of (Conway, 1968) that suggests
that software architecture is an important aspect
used in the coordination of collocated and
distributed software development activities.

Examples of research along these lines include
(Cataldo, 2009), (De Souza, 2004) and (Garlan,
2000).

(Herbsleb, 2007) argues that the need to manage a
variety of dependencies between distributed sites is
the essential problem of GSD. Additionally, to
achieve substantial progress in GSD is necessary to
deep the current understanding about the types of
coordination required in distributed projects and the
coordination principles adopted, aiming to reduce
the amount of communication. In other words, a
process should take distribution into account, or
even eliminate the incompatibilities in the process
through well-defined software architecture.

To design a SA, architects consider existing
architectural styles and their adherence to a
particular problem. These architectural styles are

286 Zilio Pereira M., Luis Nicolas Audy J., Prikladnicki R., Figueiredo M. and de Souza C..
SOA PRACTICES AND PATTERNS APPLIED IN GLOBAL SOFTWARE DEVELOPMENT.
DOI: 10.5220/0003507502860292
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 286-292
ISBN: 978-989-8425-55-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

abstractions of how software should be structured to
solve a certain problem.

Interviews conducted with expert software architects
in software development companies involved in
distributed projects indicated that most of these
companies are designing their projects based on
Service Oriented Architectures (SOA) (Papazoglou,
2007). This led us to conduct additional interviews
to identify best practices and patterns adopted in that
SOA projects in order to propose a framework of
practices in SOA focused on development phase of
DSD projects.

This paper presents information gathered from those
interviews and proposes the development of SOA
practices and patterns aiming to facilitate the
coordination of activities and the reduction of
communication gaps in DSD projects. The next
Section presents related work, while Section 3
presents the methodology used to collect data.
Information about the research settings is presented
in Section 4. Finally, Section 5 presents our results,
and section 6 concludes the paper.

2 RELATED WORK

Empirical studies have focused on identifying how
the software architecture and coordination of tasks
related each other in a DSD environment. (Grinter,
1999) studied the system architects work and how
they have coordinated design across boundaries,
tools and processes used to support the work.

(Herbsleb and Grinter, 1999) have proposed to
observe problems of coordination in geographically
distributed projects with the aim of identifying the
types of unforeseen events that may cause
coordination problems.

(Ovaska, 2004) found examples of coordination
problems in software projects and tried to identify
categories of cases that explain the coordination
problems encountered. After that, they used these
categories to compare centralized and decentralized
development to finally have a list of requirements
for a development methodology that uses the
architecture to support coordination.

Recently, (Cataldo, Nambiar and Herbsleb,
2009) presented the initial results of a qualitative
study about the decisions that architects had to take
on the design on DSD projects. This study revealed
some design patterns that were used to solve the
problem both from a technical viewpoint as well as
an organizational viewpoint, suggesting there is a

relationship between the organizational structure and
SA designed.

3 METHODOLOGY

While the design of software architectures is a
practical problem to every company doing
distributed software development, we took the
opportunity to plan this work following a rigorous
research process The research question that has
guided this work is the following: “Which practices
in SOA could facilitate development in DSD
projects?” This research is an empirical study,
conducted through qualitative data collection and
analysis to identify the strategies adopted by
software architects to design software architectures.
These architects are from software development
companies, an aspect considered of relative
importance in the field of DSD (Herbsleb, 2001).

This empirical study is intended to enable,
through a qualitative data analysis based on
Grounded Theory methods, a deep understanding of
good practices in SA and how these practices could
facilitate software development activities in
distributed projects. Grounded Theory approach
allows the process of data collection, data analysis
and collection of new data analyzed to continue
indefinitely, causing researchers to discover a way
forward, not knowing where to go or come to an end
when, based on samples to test and refine new
theories, ideas or categories as those that are
emerging from data collected and analyzed. This
process ends only when you can no longer get
through the data collected new categories or theories
(Oates, 2006). Yet, the current stage of the research
allowed us to make use of part of Grounded Theory
(there were no refinements of the theories that have
emerged or exhaustion of possibilities for research).
Because this was a qualitative study should be clear
the limitations of this type of research, mainly in
relation to organizational environments studied,
limiting the generalization of the results.

4 RESEARCH SETTING

The review of researches like (Cataldo, Nambiar and
Herbsleb, 2009), (Grinter, 1999), (Herbsleb and
Grinter, 1999) and (Ovaska, 2004), that focus on the
relationship between SA and DSD, the need for
further research in this field was raised. Those

SOA PRACTICES AND PATTERNS APPLIED IN GLOBAL SOFTWARE DEVELOPMENT

287

works tried to identify: software architect roles, SA
designs to improve the coordination of activities,
coordination problems in DSD environments and
events that may cause these problems, and even the
relationship between SA and organizational
structures. Aiming to better understand the
relationship between DSD and SA and to identify
how software architects are working on designing
the systems to a distributed environment, in practice,
we held a research divided in three phases of
interviews with specialists (Software Architects),
with expertise in DSD projects.
Data was collected using semi-structured interviews
conducted in five companies involved with
distributed software development projects, located
in Porto Alegre, RS, Brazil. Last round of
interviews, an in-depth interview, revealed solutions
adopted to solve architectural problems in SOA and
in business rules. Below are presented the problems
that were identified and the solutions adopted to
solve or minimize them. These solutions stand as a
set of practices in SOA in DSD projects.

4.1 Practices Adopted by Companies

Situation 1: Service Composition
- Problem: A particular requirement allows a user to
have one or more types of Internet product accounts,
and for each account type there is a service
(program) responsible for its creation, however there
is one type of account that must always be created.
- Solution: To avoid inconsistencies in the creation
of user accounts, they have created a service that
comprises the sum of transactions of two or more
services. With this kind of implementation two or
more services can become in one without the need
for changes in the implementations of those
services.
Situation 2: Service Security Facade
- Problem: The Company has a great concern for the
safety of their operations. Therefore, it is necessary
that all services implements a minimum set of
security requirements.
- Solution: To avoid failure in the development of
services security layer, they’ve designed a bus that is
responsible for receiving all requests, interpret the
entries and validate the safety rules and then invoke
the target service, which performs only the business
rule and also does not need to translate
communication protocols.
Situation 3: Sandbox
- Problem: The large number of service requests and
data traffic would cause an overload on the

company's ESB.
- Solution: To prevent service disruption could
hardly implement in the ESB, service requests are
passed to an intermediate service, isolating the bus
from external problems, preserving the continuity of
other services.
Situation 4: Contract Versioning
- Problem: During the development of a service,
changes can happen in the format of the output
responses of this service or on how to interpret the
incoming messages.
- Solution: To prevent other development teams,
who need to access this particular service are
constantly affected by these changes, has been
implemented what is known as versions of the
contract, where a service can serve multiple clients
simultaneously with different versions.
Situation 5: Multi-system Transaction
- Problem: A particular service starts a transaction
that triggers actions in several other subsystems and
modules that make up the architecture of a system of
sales.
- Solution: It was developed a mechanism for multi-
system rollback and commit to meet the business
needs.
Situation 6: Messages Marshaling / Un-marshaling
- Problem: The use of parsers to read and write an
XML object can become very expensive depending
on the amount of information.
- Solution: It was used SOAP message components
that translate into specific objects of the system,
eliminating the need to use an XML parser
manually.
Situation 7: Publish / Subscribe Service
- Problem: There are main services that centralize
information on the system. Those services have a
great demand, causing possible overload on it.
- Solution: It was implemented a mechanism that
includes the use of queues for asynchronous
processing of information. Information is published
in a queue where a component responsible for the
consumption of items from the queue, do a
broadcast to client services.
Situation 8: Centralized Error Log Service
- Problem: Error logs must be stored in a central
repository in order to be verified by a specific team.
- Solution: Every service deployed solution must
write the error log, invoking a specific service so
that another team, responsible for maintenance,
could have access to this information.
As we could get from data collected from these
interviews, there are practices that had adopted
solutions in the development phase of projects and

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

288

could be related to some known design patterns. An
example is the situation (4) adopted by the company
B to solve problems caused by changes in the
specification of a service that fits the SOA patterns
classification proposed by (Erl, 2009) as a Service
Contract Design Pattern known as Concurrent
Contracts, which let us to direct this research
towards the development of a conceptual framework
of SOA practices.
Therefore, it is believed that the specification of a
framework is the most suitable at the moment, as a
better scientific contribution, and may serve as a
reference for the initial development of Service
Oriented Architectures in DSD environments,
enabling that in the future, further research could
develop the studies of modeling practices in SOA.
Thus, next section presents the set of practices in
SOA and the proposed framework.

5 SET OF PRACTICES IN SOA

The set of practices in SOA that is proposed in this
work is based on concepts extracted from a literature
review in Software Engineering and on practices
adopted by software architects working for the
companies involved in distributed software
development projects.

There were problems and solutions on SOA
programming, and some of these solutions are
reported in the literature related to SOA Design
Patterns, as defined by (Erl, 2009). According to
(Erl, 2008), the focus of a design pattern is to offer a
solution to a common problem, but that does not
mean that this will be the best solution for all
situations. Table 1 below connects the situations
described by architects in section 4.1 with SOA
design patterns, defined by (Erl, 2009), giving rise
to a set of practices proposed in this research.

Table 1: Mapping from situations to practices to SOA
Design Patterns.

Situations Practices SOA Design Patters
Situation 1 Practice 1 Capability Composition

Situation 2 Practice 2
Service Perimeter Guard

Protocol Bridging
Situation 3 Practice 3 Asynchronous Queuing
Situation 4 Practice 4 Concurrent Contracts
Situation 5 Practice 5
Situation 6 Practice 6
Situation 7 Practice 7 Event Driven Messaging
Situation 8 Practice 8

The table above shows the mapping from the
situations described by the software architects to
some SOA design patterns found in the literature.
Also, based on table 1 (section 4.1), we can see that
practices extracted from those situations can be
associated with none, one or more design patterns.
To highlight those practices, we describe below
some definitions of each, according to (Erl, 2009):

• Practice 1 (Capability Composition Design
Pattern): Defined as a service composition,
where a functionality encapsulated by a service
includes logic able to access functionality from
other services. Thus, a service is able to create a
composition between the features of one or
more services. This practice is related to
situation 1, described by company A.

• Practice 2 (Service Protocol Bridging and
Service Perimeter Guard Design Patterns): This
practice covers two types of patterns and is
related to the situation #2, described by
company A. Perimeter Guard Service, which
provides an intermediate service at the
perimeter of a private network, which plays the
role of a safe contact point with external
services that need to interact with internal
private network services, and the Protocol
Bridging, which allows two services to connect
to a broker instead of connecting directly. In
other words, a service responsible for
translating the communication protocols
between the service provider and consumer.

• Practice 3 (Situation 3 Queuing Asynchronous
design pattern): As the situation described by
the architect of Company A, this practice
implements a mechanism for asynchronous
requests and responses to ensure that service
consumers could not inhibit performance and
compromise system reliability.

• Practice 4 (Concurrent Contracts Design
Patterns): This includes the establishment of
multiple service contracts for a single service,
and each such contract is directed toward a
specific type of consumption, thereby
facilitating multi-consumer coupling
requirements and abstraction concerns at the
same time.

• Practice 5: This practice is related to the
situation 5 described by the architect from
company B, which we couldn’t relate it to a
similar position available in the literature so far.

SOA PRACTICES AND PATTERNS APPLIED IN GLOBAL SOFTWARE DEVELOPMENT

289

It is believed that this may be linked to the fact
that the situation mentioned is attached to a very
specific business rule.

• Practice 6: This practice is related to the
situation 6 described by company B, which we
couldn’t relate it to a similar position available
in the literature so far. It is believed that this
may be linked to the fact that the situation
referred to is on the use of proprietary software
components.

• Practice 7 (Event Driven Messaging Design
Pattern): Implements a pattern where a service
consumer requests to service provider to be
automatically notified about important events.
Thus, whenever the service provider receives
information updates it will notify all services
that had subscribed.

• Practice 8: This practice is related to the
situation 8 described by Company C, which we
couldn’t relate it to a similar position available
in the literature so far. It is believed that this
may be tied to a specific organizational
structure.

From this initial set of practices, we propose a
framework that will implement these practices to be
applied in designing DSD-based on SOA. In
addition, the purpose of this framework is not to be
the solution for SOA implementations in DSD
projects, but to serve as an initial reference to
support development task on scenarios of that kind.

Moreover, not all practices listed in Table 1 are part
of the framework, since some of them were specific
business solutions, or even, lack data that
characterize as a differential for DSD. To illustrate,
Figure 1 below, presents an overview of the
conceptual framework, divided in types of services
that in turn are related to groups of Design Patterns,
established by (Erl, 2009).

The layers of the framework are based on groups of
services patterns defined by (Erl, 2009), which
means it is possible to associate almost each type of
service to a practice. The following describes each
of those layers and practices that make them up.

• Service Security & Transformation Layer:
This part of the framework contains services
that reach vertically all other services in the
architecture and aims to implement a security
layer to services and further treatment and
conversion of messages. Implementation of

Figure 1: Framework conceptual view.

this layer was based on the second practice,
which falls in the Transformation and Service
Security Patterns groups, suggested by (Erl,
2009). Moreover, it is believed that the
implementation of this layer would be
beneficial to distributed teams of developers,
since the implementation of a comprehensive
security mechanism to the project may relieve
developers, letting them focus on the
implementations of the functional requirements
of the system.

• Service Contract Layer: Again, according to
(Erl, 2009), although there are efforts in the
phases of analysis and modeling services, those
services will still be subject to new situations
and new requirements that could force a change
to its original design. Therefore, patterns have
emerged to help upgrade a service without
compromising their original responsibilities.
One of these patterns is described by practice #4
and cataloged as Concurrent Contracts. This
kind of pattern can prevent distributed teams of
being constantly affected by changes in services
that are under development and holds essential
information requested by other services.

• Messaging Service Layer: According to (Erl,
2009), several factors may be involved in
service design to estimate the possible scenarios
that may occur at run time. Messaging Service
Layer, represented by the group called
Messaging Service Patterns, provides
processing and coordination techniques to the
exchange of data between services, as observed
in the case mentioned by the third practice,
where it is necessary to maintain isolation
between service bus and target services. This
situation is covered by the Asynchronous
Queuing Pattern, which includes the exchange
of messages between services via intermediate
buffer, preventing overloading of service
provider and stuck service consumer, which
may cause performance problems. Practice #7
fits this group of patterns, in which a service
has access control to basic information and

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

290

needs to broadcast changes on that information.
This pattern was defined as event-driven
messaging, characterized as services that
automatically send notifications to consumers
about some change in the information it holds.

• Service Support Layer: This framework’ layer
aims to group the services exemplified by
practice #8, where all sorts of service logging is
centralized in a dedicated logging service,
enabling specific QoS teams to take actions in
time. Despite not having been found in the
literature so far a pattern to this type of service,
we chose to include it within the framework by
understanding that distributed teams of
developers who work in the maintenance of the
software can be positively affected by this
approach.

As highlighted earlier, not all the practices described
in table 1 were part of the framework. In this
situation are: practice #1, practice #5 and #6. These
practices are not part of the framework because we
understood that they represent specific solutions and
may not have a relationship with DSD. In this sense
another possible design for the proposed framework
is depicted in Figure 2.

Figure 2: Practices over framework's layers.

In the above figure, Security Service &
Transformation layer is represented by practice #2,
Messaging Service layer is represented by practices
#3 and #7, Service Contract layer is represented by
practice #4 and the Service Support layer is
represented by practice #8.

6 FUTURE WORK

The contribution of this paper is a set of practices in
SOA for distributed software development projects,
as well as an initial version of a framework that will
implement these practices. The following items are
aspects that we are evaluating as next steps in this
research.
• Confirmation: allow to confirm with

interviewed architects whether this set practices
could improve developers task in a distributed
environment;

• Experimentation: allow to perform
experiments to evaluate the benefits, which in
practice may result from the use of the
framework implementing SOA practices in
DSD projects. It is intended in this experiment
to compare different parameters when an SOA
project in DSD is developed using the
framework and when it is developed as adhoc;

• Framework consolidation: After experiments,
refinement and evaluation of results is expected
to propose a final version of the SOA practices
framework to DSD projects.

With this paper we expect to bring important
benefits to both the theory and practice of software
development:
i) Design software architectures based on SOA to a
better management of development of distributed
software projects;
ii) Adopt design practices used in the DSD projects
to facilitate the coordination of software
development activities; and

ACKNOWLEDGEMENTS

The first three authors were supported by the PDTI
program, financed by Dell Computers of Brazil Ltd.
(Law 8.248/91). The third author was also supported
by CNPq (483125/2010-5, and 560037/2010-4). The
fourth and fifth authors were supported by the
Brazilian Government under grant CNPq
473220/2008-3 and by the Fundação de Amparo à
Pesquisa do Estado do Pará through “Edital
Universal N° 003/2008”. The fifth author conducted
this work while at Federal University of Pará.

REFERENCES

Cataldo, M. and Nambiar, S. 2009. On the relationship
between process maturity and geographic distribution:
an empirical analysis of their impact on software
quality. In Proceedings of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (Amsterdam, The Netherlands, August
24 - 28, 2009). ACM, New York, NY, 101-110

Cataldo, M., Nambiar, S., and Herbsleb, J. D. 2009 Socio-
Technical Design Patterns: A Closer Look at the
relationship between Product and Organizational
Structures. In 2nd International Workshop on Socio-
Technical Congruence (Vancouver, Canada, May 16-
24, 2009). ICSE Companion ’09. IEEE Computer
Society, Washington, DC, 476-477.

pr
ac

tic
e

2 practice 3 / practice 7

practice 4practice 8

SOA PRACTICES AND PATTERNS APPLIED IN GLOBAL SOFTWARE DEVELOPMENT

291

Conway, M. E. (1968). How Do Committees invent?
Datamation, 14(4), 28-31.

Erl, Thomas. Introducing SOA Design Patterns. SOA
World Magazine. 8,6 (June 2008). 2-7.

Erl, T. 2009 SOA Design Patterns. 1st. Prentice Hall PTR.
Garlan, D. 2000. Software architecture: a roadmap. In

Proceedings of the Conference on the Future of
Software Engineering (Limerick, Ireland, June 04 -
11, 2000). ICSE '00. ACM, New York, NY, 91-101.

Grinter, R. E. 1999. Systems architecture: product
designing and social engineering. SIGSOFT Softw.
Eng. Notes 24, 2 (Mar. 1999), 11-18.

Herbsleb, J. D. and Grinter, R. E. 1999. Architectures,
Coordination, and Distance: Conway's Law and
Beyond. IEEE Softw. 16, 5 (Sep. 1999), 63-70.

Herbsleb, J. D. and Moitra, D. 2001. Global software
development. IEEE Softw. 16,5 (Mar/Apr 2001), 16-
20.

Herbsleb, J. D. 2007. Global Software Engineering: The
Future of Socio-technical Coordination. In 2007
Future of Software Engineering (May 23 - 25, 2007).
International Conference on Software Engineering.
IEEE Computer Society, Washington, DC, 188-198.

Oates, B. J. 2006 Researching Information Systems and
Computing. Sage Publications Ltd.

Ovaska, P., Rossi, M., Marttin, P. (2004). Architecture as
a Coordination Tool in Multi-site Software
Development. Software Processes: Improvement and
Practices. 8,4 (Set 2004). 233-247.

Papazoglou, M. P. and Heuvel, W. 2007. Service oriented
architectures: approaches, technologies and research
issues. The VLDB Journal 16, 3 (Jul.2007), 389-415.

Pressman, R. S. 2000 Software Engineering: a
Practitioner's Approach. 5th. McGraw-Hill Higher
Education.

Sommerville, I. 2006 Software Engineering: (Update) (8th
Edition) (International Computer Science). Addison-
Wesley Longman Publishing Co., Inc.

De Souza, C. R., Redmiles, et al. 2004. Sometimes you
need to see through walls: a field study of application
programming interfaces. In Proceedings of the 2004
ACM Conference on Computer Supported
Cooperative Work (Chicago, Illinois, USA, November
06 - 10, 2004). ACM, New York, NY, 63-71.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

292

