WASABIBEANS
Web Application Services and Business Integration

Jonas Schulte
Heinz-Nixdorf-Institute, University of Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany

Keywords:

Abstract:

Cooperation, Framework, Integration, Knowledge, Management, Services, SOA, WasabiBeans.

Albert Einstein, a German physicist borne in 1879, said: “Progress requires exchange of knowledge”. This

sentence is more relevant than ever, since projects in economy and research become increasingly complex. Due
to the information flood and the growing complexity scientists all over the world do research on knowledge
management and organization. This article outlines the particular position of CSCW systems for knowledge
organization, since involving people in the process of data structuring and organization is crucial to support
(work) process and information retrieval. Furthermore, a framework will be presented to demonstrate some
innovative concepts for collaborative knowledge organization and work. The focus is on presenting the pow-
erful authentication and authorization infrastructure and means of flexible user-driven repository integration

to build up complex knowledge networks.

1 INTRODUCTION

Business data of a company, latest research results
of an university or learning content in education —
these are just some of many possible examples to il-
lustrate that knowledge is the key factor in modern
society. Knowledge is created by people, managed
and shared. One contribution of computer science to
support these knowledge processes is the research on
computer supported cooperative work (CSCW) and
knowledge management (KM). Both, CSCW and KM
are very interdisciplinary and novel fields of research.
CSCW has been substantially shaped by Paul Cash-
man and Irene Greif through the first conference on
CSCW in 1986 (Greif, 1988). In the same year the
term knowledge management was mentioned for the
first time by Karl Wiig (Liebowitz, 1999).
Collaborative work environments are supposed to
support the coordination as well as the teamwork of
people in different places. This is mandatory to work
efficient on common projects in spatially divided
teams. In (Hampel, 2001) basic (media) functions for
collaborative work environments are given. Further-
more, the author presents a basic structure to estab-
lish work environments in the digital media: the vir-
tual knowledge spaces (VKS). Using the metaphor of
a space in which knowledge is stored, structured, and
cooperatively generated, virtual knowledge spaces are
not only an implementation of the basic functions, but

348 Schulte J..

WASABIBEANS - Web Application Services and Business Integration.
DOI: 10.5220/0003509903480357

also an intuitive understanding and use of the collab-
orative work environment by the user. Hence, virtual
knowledge spaces are a central concept for building
collaborative work environments for everyday use.

The concept of virtual knowledge spaces is most
helpful to the organization of knowledge in dis-
tributed environments and whenever knowledge ex-
change takes place in asynchronous work processes.
Since, asynchronous work processes can effectively
be supported by a CSCW system, it is important to
design flexible cooperation support systems that ad-
dress both collaboration among people and knowl-
edge management. When considering these two re-
search fields, it is important to distinguish between
data and knowledge. Data does not make any state-
ment about its interpretation, but knowledge is the
ability to interpret the data correct (Dengel, 1994).
Justin Hibbard gave the following definition of KM
in 1997: “Knowledge Management is the process of
capturing a company’s collective expertise wherever
it resides — in databases, on paper, or in people’s
heads — and distributing it to wherever it can help pro-
duce the biggest payoff.” (Hibbard, 1997).

However, classic CSCW focus on working with
data instead of knowledge. The intention of the Wa-
saibBeans framework, presented in this article, is to
support collaborative knowledge and information or-
ganization in distributed environments. This is rel-
evant to the fact that people are knowledge carriers

In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 348-357

ISBN: 978-989-8425-56-0

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

WASABIBEANS - Web Application Services and Business Integration

and new knowledge is mainly produced in team work.
WasabiBeans is an implementation of the concept of
virtual knowledge spaces and bases on latest Java EE*
technologies. Furthermore, the framework considers
the deep influences of the Web 2.0 on CSCW. Wasabi-
Beans does not offer a complete cooperative work en-
vironment, instead it provides functions to work with
virtual knowledge spaces. As a service-oriented ar-
chitecture (SOA) with a micro-kernel, WasabiBeans is
highly expendable and can be customized to different
fields of application. Thereby, knowledge processes
and especially the externalization of knowledge (see
Figure 1) can be facilitated. Problematic is the trans-
formation of explicit to tacit knowledge, since tacit
knowledge can not be digitalized and made persistent.

To
tacit explicit

tacit Socialization Externalization

From (™ S

explicit Internalization

Combination

Figure 1: Knowledge Processes by Nonaka and Takeuchi.

To prevent this transformation of knowledge com-
puter science particularly develops solutions to sup-
port the externalization of knowledge. Externaliza-
tion means that the knowledge is extracted from the
peoples’ head and permanently stored in databases,
knowledge management systems or the like. The “de-
struction” of explicit knowledge occurs when autom-
atizing (work) processes. For example step-by-step
instructions may be unnecessary after an automatiza-
tion. The intention of the WasabiBeans framework is
to integrate various systems and applications to em-
bed efficient KM into existing workflows.

In practice, there are numerous systems for knowl-
edge management. Often these systems are mono-
lithic and require a fundamentally restructuring of the
business processes and they are not optimized for col-
laboration and team work. The WasabiBeans frame-
work tries to fill the gap between cooperation support
and knowledge organization by providing functions
for cooperation support as well as solutions for flex-
ible integration of “arbitrary” (knowledge) databases
and repositories.

This article is structures as follows. In Section 2
the concept of virtual knowledge spaces is introduced.

LJava Enterprise Edition, a widely used platform for
server programming in the Java programming language.
Online available: http://www.oracle.com/technetwork/java/
javaee/overview/index.html

Based on this concept the architecture of the Wasabi-
Beans framework is described in section 3. To dis-
cuss the framework more detailed section 4 will focus
on the authentication and authorization infrastructure
of WasabiBeans and section 5 explains WasabiPipes.
WasabiPipes is a pipes and filter (PaF) architecture
to connect different repositories and web applications
with the framework. This is very important for co-
operative work, since it allows the integration of all
necessary knowledge and data repositories. Finally,
the results are summarized and discussed in section 6.

2 KNOWLEDGE SPACES

Virtual knowledge spaces are a key concept to create
dynamic and flexible cooperative work and learning
environments. It allows to structure the data unre-
strictedly and provides means for generating multiple
views on the same data collection (see section 2.2).
Thus, it is possible to adjust the environment exactly
to the users’ needs, without having redundancy of the
underlying data. The concept of virtual knowledge
spaces has been proven for several years and in vari-
ous fields of application (ERmann et al., 2006). The
following section 2.1 describes the class hierarchy for
setting up virtual knowledge spaces. After that we
show how to create different views of a data collec-
tion (section 2.2).

2.1 Data Model of Knowledge Spaces

Knowledge spaces are our concept for the represen-
tation and the structuring of information within a co-
operative work process. This the concept has been
applied to various fields of application and is well-
proven due to almost ten years experience of soft-
ware development in the scope of CSCW.(Hampel
and Keil-Slawik, 2001)

The basic object structure of virtual knowl-
edge spaces is quite easy. We distinguish between
the following objects: Room?, Container, Document,
Attribute, Link, Group and User. A Room is the rep-
resentation of a real room, whereas Container can
be compared with a folder. The intention behind the
Room-object is having an object, that stands for a place
where uses can meet each other and cooperate with
each other. Furthermore spaces are intended to as-
sure awareness. Awareness is indispensable for suc-
cessful CSCW applications (Licht et al., 2003; Prinz
and Gross, 2001). Besides, the Container-object is

2In the object model a Room stands for a virtual knowl-
edge space.

349

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

a lightweight construct to organize information and
correlate data. Objects of the type Document are used
as a wrapper around the real content (e.g. a picture,
a PDF file, ...). There is a fundamental difference
between on the one hand storing content and link-
ing it with additional information and on the other
hand combined data object that wrap content, anno-
tations, comments, access rights, and further informa-
tion. The first option links different data to each other,
whereas the second and preferred option builds up
a common space of action. Working with combined
data object might have different advantages. For in-
stance, when creating versions of an object it is a lot
easier to generate a coherent version object of a com-
bined data object instead of creating equivalent ver-
sions of all related objects that match the combined
data object. The data model of WasabiBeans allows
free attributes at any type of object, thus the model
is highly customizable to the requirements of the cur-
rent application area. Group-, User- and Link-objects
are self-explanatory. It is mentionable, that we use
Group-objects not. only for grouping users, but also
to describe roles. The concept of virtual knowledge
spaces allows to group and structure combined data
objects on a higher level. Our model allows free at-
tributes at any type of object; in this way users keep
track of their information. The WasabiBeans frame-
work is a modern service-oriented architecture imple-
menting the concept of virtual knowledge spaces.

2.2 Multiple Views on a Data Collection

Different applications require different types of data
representation. Often each application comes with its
own repository containing the related data. In this ar-
ticle the understanding of handling information in co-
operative work environments is different. An ideal
concept would be to work with one data repository
and make these data available in different field of ap-
plication. Several reasons argue for the use of one
data collection instead of creating data redundancies.
In order to avoid problems as updating different data
collections or the distribution of changes among var-
ious repositories, the use of a common data space is
essential. When setting up an uniform data collection,
it is important to provide different interfaces. There-
fore, the concept of virtual knowledge spaces is com-
plemented with free attributes. Free attributes may be
used to store application specific values, e.g. the ob-
jects’ positions for a shared whiteboard application.
Unique and creative concepts, e.g. the pyramid
discussion for decision-making processes desire to-
tally different views and representation types (Ham-
pel and Heckmann, 2005). But even the presentation

350

of miscellaneous file formats benefit from different
views. Image files might be displayed as a picture
gallery, whereas documents are listed alphabetically.
There are boundless possibilities to display a data col-
lection or a set of a data collection. It is obvious, that
different views are meaningful. Making one data col-
lection available in different applications requires a
sophisticated rights management (see section 4).

WasabiBeans, as an implementation of the con-
cept of VKS, intends to be a flexible and adjustable
framework. In addition, it provides various interfaces
as Remote Method Invocation (RMI) or Web services
to access the data. In the following these interfaces
and the famework’s architecture are discussed.

3 ARCHITECTURAL CONCEPT

In this section the framework’s architecture is de-
scribed in general. Afterwards, section 4 describes the
authentication and authorization infrastructure and
section 5 describes WasabiBeans’ extension Wasabi-
Pipes to integrate multiple repositories.

,Sa Service-Consumer
Uy |l 1_1
L bservices/RMI % Modules

Remote &
Local Interfaces

L

Internal Methods

Internal Core

5

sadidigesepm

J Wasabi

MySQL Database

JRC Repository

Figure 2: Overview of WasabiBeans’ Architecture

Figure 2 gives an overview of WasabiBeans’ ar-
chitecture, which consists of four consecutive layers:
internal core, internal methods, services, and the re-
mote and local interfaces.

1. The internal core consists of an implementation
of the Java Content Repository (JCR)3. Accord-
ingly, the core provides all functions specified by
JCR and is responsible for data storage. Each

3http://jcp.orglen/jsr/detail?id=283

WASABIBEANS - Web Application Services and Business Integration

Wasabi object is represented by a specific JCR
node (compare section 2.1).

2. The internal methods are implemented as static
methods have two tasks. For one thing they are
responsible for basic manipulation of the Wasabi
objects, and for another thing for the integration
of alternative data sources. More specifically, in-
ternal methods work on JCR nodes of the inter-
nal core. In addition to the internal methods for
retrieval, creation, deletion, and modification of
Wasabi objects, there are methods for the trans-
action management, (section 3.2), the event man-
agement (section 3.3) and the version control.

3. The services layer consist of stateless session
beans. Methods of these stateless session beans
supply functions for clients to work with Wasabi
objects. For that purpose they use and combine
internal methods.

4. The fourth layer remote & local interfaces pro-
vides interfaces of stateless session beans of the
service layer. Thereby, the distinction between lo-
cal clients* and remote clients can be made.

The WasabiBeans framework is an implementation of
the concept of virtual knowledge spaces, hence a hi-
erarchical data model is necessary. In consequence of
this requirement WasabiBeans uses a JCR implemen-
tation rather than the Java Persistence API (JPA)®. In
this implementation Apache Jackrabbit® was the first
choice, since it is an open source implementation and
fully support the JCR standard.

The technology used for managing distributed
systems with the WasabiBeans framework server is
the JBoss Application Server (JBoss AS)’, which is
an open-source technology for building, deploying,
and hosting enterprise Java applications and services.
Since the JBoss AS provides extended enterprise ser-
vices including clustering, caching, and persistence,
it forms a good base for managing distributed sys-
tems. In particular the clustering enables to use mul-
tiple WasabiBeans framework for one collaborative
system and accordingly to perform load-balancing.
JBoss AS is founded on a service-oriented micro-
kernel architecture that ensures all services are ac-
cessed, managed, and integrated in a unified and con-
sistent manner. This functionality is essential for the
WasabiBeans framework in order to fulfill the design
paradigm of service-oriented architectures and thus
being adaptable for various field of application.

4Local clients are deployed together with the the
WasabiBeans framework in one runtime environment.
Shttp:/www.jcp.org/en/jsr/detail ?id=317
Bhttp://jackrabbit.apache.org/
"http://www.jboss.org/jbossas

3.1 Main Service Methods

The main service methods provide all functions for
clients to operate on the data model. More precisely,
these methods allow to work with Data Transfer Ob-
jects (DTOs). WasabiBeans has four types of DTOs:
object, value, version, and pipeline DTOs. Obiject
DTOs represent Wasabi objects. Value DTOs rep-
resent the attributes as well as links. These DTOs
are also important for optimistic locking (see sec-
tion 3.2). Version DTOs stand for a version of a
version-able Wasabi object. Pipeline DTOs represent
WasabiPipelines (see section 5). Roughly, main ser-
vice methods can be divided into read and write meth-
ods. The structure of write methods is more complex,
since they have to consider locks, events, and concur-
rent writing operations that may lead to failures. The
following method invocation of the create method
of the AttributeService shows exemplary how to
generate a DTO.

WasabiAttributeDTO attributeDTO =

attributeProxy.create(<"name'>, <"value'>,
<dtoOfAffiliation>);

A main service method (in this example create) can
be invoked via a proxy object of the actual service. In
the sample above the proxy object is attributeProxy
of the AttributeService. This proxy object can be
created by means of a JNDI® lookup.

3.2 Transactions

Transactions are absolutely necessary for multi-user
systems. Thus, each service method is executed
by default within a Container Managed Transac-
tion (CMT). To avoid excessive transaction handling,
WasabiBeans can re-use transactions when calling a
service method within an already existing transaction.
Thereby, existing transactions can be re-used and sev-
eral service methods may be combined to a single
transaction. The following code sample illustrates
how a user can combine three method invocations to
a single transaction.
UserTransaction utx = (UserTransaction)
jndiContext. lookup(*'UserTransaction™);
utx.beginQ);
try {
documentService.create(*'docl"”, roomDTO);
documentService.create(*'doc2", roomDTO);
documentService.create(*'doc3", roomDTO);
utx.commit();
} catch (Exception e) {
utx.rollback();
}

8Java Naming and Directory Interface (JNDI).

351

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

The object to control the transactions has to be re-
quested from the Java EE server via a JNDI lookup.
By means of this object the Java EE server can be in-
structed to begin, commit, or rollback a transaction.
All invocations of service methods are performed as
part of a single transaction. It should be mentioned
that WasabiBeans supports both optimistic and pes-
simistic locking mechanisms. By default it uses opti-
mistic locking.

3.3 Events

Another key feature of WasabiBeans is the event sys-
tem. A flexible event system is very important for col-
laboration and cooperative knowledge management.
Users may request a notification if a team member
changes a certain file or creates a new document. To
create, send, and receive events WasabiBeans uses an
Enterprise Message Service (EMS). The current im-
plementation allows the following events:

REMOVED: A Wasabi object was deleted.
CREATED: A Wasabi object was created.

MOVED: An existing Wasabi object was moved
within the hierarchical structure.

PROPERTY_CHANGED: An
changed.

ROOM _ENTERED: An user entered a room.
ROOM_LEFT: An user left a room.

MEMBER_ADDED: An user joined a group.
MEMBER_REMOQOVED: An user left a group.

WasabiBeans uses JBoss HornetQ® as EMS respec-
tively as Message-oriented Middleware (MoM). The
main challenge was to ensure data privacy for the
event system. JMS lack in possibilities to define user
specific filters on global JMS queues or topics, yet
this is mandatory to prevent users from reading events
of others. The obvious solution might be the defini-
tion of individual queues for each user. Actually, this
would be a secure option, but when specifying event
queues for all users (even though they are not logged
in), the application server has to manage too many
queues. This will definitely lead to performance prob-
lems. Figure 3 shows the event system of Wasabi-
Beans. Instead of defining individual queues for each
user, there is a MessageDispatcher in WasabiBeans,
which divides the messages from a global queue to
temporal queues (TempDest). To receive change no-
tifications of an object three logical steps are neces-
sary. Firstly, a temporal JMS destination has to be
created. Secondly, the new JMS destination has to be

attribute was

9http://www.jboss.org/hornetq

352

WasabiBeans Framework

!

. Client |
Services

Client n

Figure 3: Structure of the Event System in WasabiBeans.

registered in the WasabiBeans framework. Thirdly,
the user has to be registered as receiver of events for
a given Wasabi object. The second and third step are
done by means of a stateless session bean.

The advantage of this implementation is that the
number of JMS queues can be reduced to a minimum
without loosing security. Temporal queues are created
if a user logs in and subscribes to events of at least one
Wasabi object.

4 AAI-INFRASTRUCTURE

Especially for applications in the area of Computer
Supported Cooperative Work it is essential to ensure
data security. This aspect becomes even more impor-
tant if the CSCW application is used for safety critical
business areas, e.g. knowledge management.

4.1 Characteristics of Access Rights

There exist seven different kinds of permissions in
WasabiBeans: VIEW, READ, EXECUTE, COM-
MENT, INSERT, WRITE, and GRANT. A permis-
sion alone does not have any impact, instead it is a
property of a complete right. Due to this fact, Wasabi-
Beans uses discretionary access control lists. Every
right should have at least the following properties:

allocation to a specific subject;
kind of permission;
allocation to a specific object'?;

This basic structure may be extended. As an addi-
tional property, we can consider the following one:

type of right (allowance or forbiddance);

Here a forbiddance is defined to be more powerful
than an allowance. Resulting from this, a forbid-
dance may overlap an allowance, since more than
one relevant right for a specific relation of Subject—
Permission—-Object can be defined. This may occur

101n WasahiBeans, the rights are stored directly in the ob-
jects they are allocated to.

WASABIBEANS - Web Application Services and Business Integration

when setting group rights. In this manner, the prop-
erty

status of hierarchy;

is also important. If the authorization function dis-
covers more than one relevant right, the system has to
decide which right is preferred.

There is the rule that a forbiddance is preferred to
an allowance when belonging to the same hierarchy
level. Assuming the levels forbiddance and allowance
constitute their own hierarchy, this implicates the ef-
fective number of hierarchy levels is twice compared
to the number of explicit ones. It should be obvious,
that without forbiddance the generation of different
hierarchy levels is needless. Resulting a right may
have three different conditions: It can be either an al-
lowance, a forbiddance, or not specified.

As an additional property a time interval can be
specified for rights in WasabiBeans. Section 4.4 ex-
plains the consequences to the authorization infras-
tructure that are accompanied by temporal access
rights. In the following, different criteria that have
to be interpreted for the validation of an access right
are discusses.

4.2 User Access Rights

An access right always refers to a specific WasabiUser
object. It assesses an operation for which the user is
authorised on the specific data object or for which he
is forbidden. Because of the fact that a WasabiBeans
environment may contain plenty of different users, it
is not practicable to allocate each conceivable right as
a user right. To simplify the right allocation, Wasabi-
Beans offers to specify group rights (see section 4.3).

4.3 Group Access Rights

Within its function, a group right is similar to a user
right, with the difference that it is not granted to a
specific user, but a whole group of users. Because of
this fact, it is sufficient to be a member of the spe-
cific group or the corresponding subgroups to gain
all associated allowances and forbiddances. Further-
more, there must be a mechanism or rules, that specify
which access right is prioritized. This problem may
happen in various situations, e.g. if a user is member
of two different groups. As a member of group A the
user may get an allowance for a certain document, but
as member of group B the user may get a forbiddance
for the same document. To solve this problem there
is a hierarchy (or rules) that specify which right type
has to be prioritized. Figure 4 illustrated the eight dif-
ferent right types in WasabiBeans.

Period of Validity Realm Right Type Ancestry

High ance

Low Unlimited Right Allowance

Group Right

Figure 4: Hierarchy of Access Rights.

By the concept of group rights it is possible to de-
fine special fields of responsibility. For example, a
group can be created whose members may access on
special parts of the object tree to perform well defined
operations there. If we want to allocate some users
for this field of responsibility, we only need to assign
them to this group. A declaration of additional user
rights is not necessary.

4.4 Time-based Access Rights

As a difference to the common infinite rights, a time
based right is only valid for a certain interval. This
means, it is similar to a common right which is ex-
panded by a starting point and an ending point. These
two points in time are expressed in the number of mil-
liseconds, which are elapsed since the first January
1970. Referring to this, a time right gets in use if
the actual computer time is inside this interval. In a
regular case, interferences with other time rights are
always avoided by the system. This means, if a new
time right is granted, whose interval overlaps at least
one of another relevant time right, this interval may
be shortened. In an extreme case, it may also be split
in two other time rights or totally annulled.

If we abstain from the concept of time rights,
a temporary allowance or forbiddance must always
be initiated by the administrator to the designated
point of time and annulled at another point of time.
Thereby, the administrative effort would be elevated
and the flexibility of the system would be decreased.

4.4.1 Overlapping Access Rights

As it was already mentioned in this section 4.4, by
the initiation of new time rights, there may occur in-
consistencies to other time rights which already ex-
ist. These inconsistencies are dissolved by preferring
the new time right. This means, it may overlap ex-
isting rights. To ensure this, before the initiation the
system must check every available time right which
contains the same user or group name and the same
allocated object. Now the interval of the new right
becomes compared with the one of the old right. It
is N = (N1;N2) the interval of the new time right
and O = (01;0y) the interval of the old time right.
There is the condition Ny N and O; 0O,. Now

353

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

we can divide between the following cases (the above
cases exclude the below cases, the system works in
sequence during the check):

1. N <O5 or N; > O, ¥ There are no difficulties
because the two intervals do not interfere.

2.N; Opand N, O2 ¥ The old time right be-
comes replaced by the new one.

3. N; Oz and N <O, ¥ The old time right is
shortened on (N2 +1;0y).

4. N; > 07 and N, <O, ¥ The old time right has
to be split in two sub-rights with the intervals
(O1;N1 1) and (N2 +1;02).

5. Ny >0 and N, O ¥ The old time right be-
comes shortened on (O1;N1 1).

4.5 Unlimited Access Rights

An unlimited right has got the same function as a time
right with the difference, that there is given no inter-
val, Of course there is the possibility to abstain from
unlimited rights and to generate each right as a time
right. By this case, an unlimited right would be a time
right with the highest possible interval. But such a de-
cision leads to a problem: If we generate a new time
right, an old, virtual unlimited right which collides
with it, has to be split in two sub-rights (see 4.4.1).
From this, the following disadvantages result:

The old, once unlimited right should be deleted ¥
Now we have to delete two sub-rights.

The new time right should be deleted ¥ This re-
sults in a gap.

As a consequence, we generate two different layers
for the differentiation of time rights and clearly un-
limited rights. The time based layer should be above
the unlimited one, because it can be considered as
more special. The figure 5 should illustrate this con-
cept. Another advantage of it results from the fact that
we always have the possibility of a clearly abdication

from time based rights.
LTITTIT]

Figure 5: Time-based Access Rights.

Time graded access trials

354

4.6 Inherited Access Rights

The adjustment of data inside a tree structure suggests
that access rights may be passed from a high into a ju-
nior instance, which can be considered as inheritance.
If we abstain from this possibility, it is necessary to
grant explicit rights for each single data object which
increases the administrative effort. In addition to this,
on ordinary scenarios we often have got the case, that
all objects inside a junior structure have the same or
at least very similar rights. The possibility of inheri-
tance should support this.

Basically, we have got the principle that with two
or more relevant rights within the same triple relation-
ship (subject, permission, object), always the right
which is nearer to the target object has got priority.
This means, if there are for example two containers
above a WasabiDocument, in which is in each case
indicated a right for the same user, the right of the
lower container is preferred. If there is even a colli-
sion of an inherited right with an explicit right, the in-
heritance may not occur. For time rights, there again
is the principle that the rights with the shorter distance
to the specific object may shorten, occlude or divide
the intervals of the rights with the larger distance.

The concept of inheritance together with hierarchy
for access rights allows to modify rights without high
administrative effort.

5 WASABIPIPES: A PIPELINE
EDITOR FOR WASABIBEANS

This section describes WasabiPipes, a dynamic and
adjustable solution to integrate various repositories.
WasabiPipes bases an the Pipes and Filter (PaF) ar-
chitectural pattern that divides the tasks of a system
into several sequential processing steps. A common
definition for this pattern is given by Buschmann et al.
“The Pipes and Filter architectural pattern provides
a structure for systems that process a stream of data.
Each processing step is encapsulated in a filter com-
ponent. Data is passed through pipes between ad-
jacent filters. Recombining filters allows you to
build families of related systems.” (Buschmann et al.,
1996).

Inspired by Yahoo Pipes, a service that is normally
used to assemble RSS! feeds, WasabiPipes is imple-
mented as an extension of the WasabiBeans frame-
work. Nevertheless, this concept to integrate differ-
ent repositories is not limited to WasabiBeans and

11RSS 2.0 Specification: http://www.rssboard.org/rss-
specification

WASABIBEANS - Web Application Services and Business Integration

can easily be adapted to other purposes and infras-
tructures. Yahoo Pipes allows to handle (information)
sources, mix them up, and modify the data using fil-
ters. It does not only support the connection of fil-
ter modules but also the connection of single fields of
filter modules. Therefore, very complex and flexible
pipelines can be assembled. Thus, Yahoo Pipes is a
powerful composition tool to aggregate, manipulate,
and mashup content from around the web (Yahoo!,
2010). Exactly this understanding of aggregating and
connecting information goes along with the intention
to integrate different repositories in a complex IT in-
frastructure to set up a powerful cooperative work and
learning environment. Similar to the Web 2.0 mashup
concept!?, the intention is to aggregate various repos-
itories to a new high-level collection of information.

The current implementation of WasabiPipes in-
cludes the binding of seven different repository types.
So far Apache Jackrabbit, Amazon web services™,
Google Dacs, Flickr, YouTube, common file systems,
and databases can be connected using via the PaF ar-
chitecture. Basically, filters are mapped in Wasabi-
Pipes through the abstract class Filter, the interfaces
Source, Sink, ContentStore, and the classes Wire,
Sink.Input, Source.Output.

Source: All filters that deliver data have to im-
plement the Source interface, which procures
the method void connect (Source.Output output,
Sink.Input input).

Sink: All classes that define inputs; have to im-
plement the Sink interface. The method filter will
be invoked by the previous filter and is responsi-
ble for the processing logic.

ContentStore: A ContentStore offers a method
to retrieve stored data.

Sink.Input: An input of a filter is defined by the
Sink.Input class. This class contains a reference
to both, the filter and the name of the input.

Source.Output: Analog to the class Sink.Input,
the class Source.Output procures an output.

Wire: The class Wire connects an output with an
input.

Filter: The abstract class Filter includes basic
functions. The method forward can be invoked
by any subclass. Afterwards it invokes all de-
pendent filters that are connected with the out-
put specified via the parameter. This class is also

12 Web 2.0 mashup is a (re-)combination of existing
services to an aggregated new service that provides ad-
ditional functions by combining the functionalities of the
original services.

checks whether the execution is synchronous or
asynchronous.

ConcreteSource: This class has an output and
invokes the method fillPipeline, thus the pipeline
can be filled data. After completion this method
invokes the forward method of the superclass to
forward the data within the pipeline.

ConcreteFilter: This class defines two inputs and
two outputs. Within the filter method data are for-
warded from inputl to output2 and from input2
to outputl. The inputs and outputs are crossover
connected.

ConcreteSink: Finally, this class dumps the data
of both inputs. Additionally, it reports which input
passed the data.

For the implementation of WasabiPipes the JavaScript
library Wirelt'® was used. Wirelt allows to store
the wiring states in the JavaScript Object Notation
(JSON)* format. A sample JSON description of a
MIME type filter is given in section 5.3.

5.1 Concrete Filter Implementations

To create a better understanding of filter implemen-
tations, the MimeFilter and the YouTubeSink are dis-
cussed exemplarily below.

The MimeFilter consists of one input, two outputs
(MATCH and NOMATCH), and a field to specify the
MIME type. The method filter compares the MIME
type of the document and the one defined as filter pa-
rameter. In case of a matching MIME type the data
are forwarded to the MATCH output, otherwise to the
NOMATCH output. Afterwards, the method forward
of the super class Filter is invoked to notify all depen-
dent filters about the result.

The YouTubeSink allows uploading videos directly
from WasabiBeans to YouTube. However, the upload
isn’t straightforward and needs some special param-
eters. For authentication purpose YouTube requires
a developerKey, a consumerKey, and a correspond-
ing consumerSecret (a private key). The keys can
be requested on the Google website. In addition an
accessToken with a matching accessTokenSecret for
the user is mandatory. YouTube provides an OAuth
service to afford this token. Unfortunately, YouTube
offers read access only; hence the content is not di-
rectly accessible through WasabiBeans. Accordingly,
the getContent method is not implemented yet. Other
repositories, such as the Amazon web services™,
don’t lack of a method to retrieve the content. In that

3http:/fjavascript.neyric.com/wireit
14JSON is a lightweight data-interchange format. Online
available: http://www.json.org/

355

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

SizeFilter OUTPUT

FimpegFilter

GZipFilter
MimeFilter
DelayFilter

INPUT

JCRSink

DocumentSink

user [ROOM_CREATOR)
asynchronous

YouTubeSink FimpegFilter
FlickrSink
FileSystemSink

AmazonS3Sink

wertzu

MyAmazonSink
YouFlickrSink

StartlEnd =

NamedSource

DocumentSource

,.___
|

|

Q©

|

{

Figure 6: The Pipeline-Editor.

case we can request the data directly from the inte-
grated repository and show it within WasabiBeans’
GUL.

5.2 A Graphical User Interface to
Connect Repositories

WasabiPipes is accessible via the WasabiBeans ad-
ministration GUI. Figure 5.2 shows the editor, that al-
lows creating and managing pipes for specifying the
data flow. The WasabiPipes editor consists of five
main parts.

1. A toolbar to create, load, save, and delete pipes.
Additionally the interface supports a help button
for unpracticed users.

2. Inthe left area the modules are available. Modules
are filters, data storages, embedded, and start/end
components. Users can reuse these modules via
simple drag-and-drop action. It should be men-
tioned, that it is possible to save pre-defined pipes
as embedded modules and use them in more com-
plex configurations. Thereby, different pipes can
be nested and a clear overview of the entire con-
figuration can be guaranteed.

3. This is the main working area to arrange the com-
ponents and specify the sources, filters, and sinks.

4. In this area users can add some additional meta
data, e.g. title and description to the designed

pipe.

356

5. To ensure a clear overview of large pipes we also
offer a mini map, marked with 5.

5.3 JSON Description of MimeFilter

"name": "MimeFilter",

"category": null,

"container": {
"xtype":"Wirelt. InOutFormContainer",
"inputs":[{"name":"INPUT"}],
"outputs": [{"name" :"MATCH"},

{""name" :""NOMATCH"}]1,
"field":[{"type":"string"”,
"inputParams":{
"label™:"mimeType",
"name’:"mimeType",
"required":true,
"value":null
334
"type":"boolean",
"inputParams™:{
"label":"asynchronous™,
"name' : ""asynchronous",
"required”:false,
"value":false
3}
1
}
}

WASABIBEANS - Web Application Services and Business Integration

6 CONCLUSIONS

Since collaborative activities are very similar in var-
ious fields of application, a CSCW system should
be flexible and adaptable for the usage in differ-
ent fields of application. Although there are com-
mon CSCW tools (e.g. Blackboard™® and Moodle6)
there is a demand for integrating existing applica-
tions to achieve system convergences (Papazoglou
and van den Heuvel, 2007). WasabiBeans is a flexible
framework to maintain the implementation of cooper-
ation support environments by integrating existing ap-
plicaitons. In addition, WasabiBeans provides func-
tions to work efficient in virtual knowledge spaces.
Due to the flexible SOA, WasabiBeans is ready for
the next generation of CSCW applications. The ob-
ject model with free annotations is optimized for ad-
justable knowledge management.

Web 2.0 evolutions have placed a new focus on
current CSCW developments. New technologies (e.g.
RSS feeds, tagging, etc.) have to be integrated in an
existing architecture to serve the demands of semantic
knowledge structuring. The presented WasabiBeans
framework is able to adapt multiple Web 2.0 services
and systems in flexible and scalable manner. Beyond,
the extension WasabiPipes, a pipes and filter architec-
ture, allows the integration of heterogeneous reposito-
ries. By means of encapsulated functionality and iso-
lated filters it was possible to provide highly parallel
operations and data transfer. In particular, when in-
tegrating external services this is beneficial. Thereby,
the execution of further filters is enabled, even if the
system is waiting for the completion of an upload.
During the Web 2.0 era more and more services were
offered and APIs are ubiquitous in the Internet. The
most prominent sample is Google with its services
(YouTube, Google Docs, ...), which can interact by
way of using the common interface gdata. Coopera-
tion and knowledge management supporting systems
have to meet the challenge of integrating this wide
range of different repositories, since knowledge man-
agement bases on information sharing and a common
persistent data repository.

REFERENCES

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern-oriented Software Archi-
tecture - A System of Patterns. John Wiley & Sons,
Chichester.

Bhitp://www.blackboard.com/
BMoodle is a Learning Management System (LMS),
http://moodle.org/.

Dengel, A. (1994). Kunstliche Intelligenz - Allgemeine
Prinzipien und Modelle. Bl-Taschenbuchverlag,
Mannheim.

ERmann, B., Hampel, T., Goetz, F., and Elsner, A. (2006).
Embedding collaborative visualizations into virtual
knowledge spaces. In 7th International Conference
on the Design of Cooperative Systems, page 3340,
France, Provence.

Greif, 1. (1988). Computer-Supported Cooperative Work:
A Book of Readings. Morgan Kaufmann Publishers,
Inc., Santa Mateo, CA, USA.

Hampel, T. (2001). Virtuelle Wissensraume - Ein Ansatz
fur die kooperative Wissensorganisation. Dissertation,
Universitat Paderborn.

Hampel, T. and Heckmann, P. (2005). Deliberative han-
dling of knowledge diversity the pyramid discussion
and position-comentary-response methods as specific
views of collaborative virtual knowledge spaces. In
Proceedings of Society for Information Technology
and Teacher Education, 16th International Confer-
ence Annual, SITE 2005, Arizona, USA.

Hampel, T. and Keil-Slawik, R. (2001). sTeam - designing
an integrative infrastructure for web-based computer-
supported cooperative learning. In Proceedings of the
10th International Conference on World Wide Web,
pages 76-85.

Hibbard, J. (1997). Knowing What We Know. Information-
Week - The Business Value of Technology.

Licht, T., Schmidt, L., and Luczak, H. (2003). Goal
awareness in distributed cooperative work settings. In
Luczak, H. and Zink, K. J., editors, Human Factors in
Organizational Design and Management VII (Aachen
2003), pages 329-334, Santa Monica. IEA Press.

Liebowitz, J., editor (1999). Knowledge Management
Handbook. Boca Raton, Adelphi, USA.

Papazoglou, M. P. and van den Heuvel, W.-J. (2007). Ser-
vice oriented architectures: Approaches, technolo-
gies and research issues. Very Large Data Bases,
16(3):389-415.

Prinz, W. and Gross, T. (2001). Ubiquitous awareness of co-
operative activities in a theatre of work. In Bode, A.
and Karl, W., editors, Fachtagung Arbeitsplatzcom-
puter: Pervasive Ubiquitous Computing, pages 135-
144. APC.

Yahoo! (2010). Yahoo! pipes — http://pipes.yahoo.com/
pipes.

357

