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Abstract: Release Planning is an important and complex activity in software development. It involves several aspects 
related to which functionalities are going to be developed in each release of the system. Consistent planning 
must meet the customers’ needs and comply with existing constraints. Optimization techniques have been 
successfully applied to solve problems in the Software Engineering field, including the Software Release 
Planning Problem. In this context, this work presents an approach based on multiobjective optimization for 
the problem when the number of releases is not known a priori or when the number of releases is a value 
expected by stakeholders. The strategy regards on the stakeholders’ satisfaction, business value and risk 
management, as well as provides ways for handling requirements interdependencies. Experiments show the 
feasibility of the proposed approach. 

1 INTRODUCTION 

Software Release Planning consists of scheduling a 
set of requirements in a sequence of releases in order 
to meet customers’ needs and to attend the related 
constraints. In a development process based on small 
deliveries, the software is not fully developed at 
once, by the work being focused on small and 
frequent releases, and with each release, a subset of 
functionality is delivered. In this way, customers 
receive software features sooner rather than waiting 
a long time to get the complete system. This 
development model has several positive aspects, 
such as: earlier feedback from the stakeholders, 
higher risk management, and allows incremental 
tests execution (Colares et al., 2009). 

Deciding which requirements will be developed 
in each release is not an easy task and involves 
several aspects, sometimes conflicting. These 
aspects regard on balancing the customer 
satisfaction, business value, priority, involved risks, 
delivery time, available resources, and requirements 
interdependencies, among others. 

An important and difficult aspect in Release 
Planning is to decide how many releases will be 
necessary to deliver the functionalities. Also, the 
clients and stakeholders may ask for a number of 
releases, then this issue has also to be considered.  

This work addresses the Software Release 
Planning and presents an approach based on 
multiobjective optimization to assist project 
managers in an effective planning. The proposed 
method aim to determine the ideal number of 
releases required to develop the requirements 
considering important aspects of real projects.  

Search techniques have been successfully 
applied for solving complex Software Engineering 
problems. The model proposed in this paper belongs 
to this recent and promising research field called 
Search-Based Software Engineering – SBSE 
(Harman and Jones, 2001), which consists in solving 
Software Engineering problems mathematically 
modelled through use of optimization techniques. 
The SBSE approach is effective in providing better 
solutions to these problems, in comparison to human 
generated solutions (Souza et al., 2010). 

This paper presents the following contributions: 
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 Introduces a multiobjective formulation for the 
Software Release Planning when the number of 
releases is not determined in advance or it is an 
expectation among stakeholders. The method 
considers important aspects of the problem, such as: 
customer satisfaction, business value, risk 
management, available resources. The proposed 
approach deals with requirements interdependencies 
including technical precedence, coupling and 
business precedence; 
 Uses multiobjective metaheuristics based on 
genetic algorithms to solve problem instances; 
 Presents results of experiments conducted in 
order to demonstrate the feasibility and efficiency of 
the proposed formulation. 

This paper is organized as follows. Section 2 
discusses related works in the Requirements 
Prioritization and in the Software Release Planning. 
Section 3 presents important aspects and definitions 
considered in the problem and describes the 
requirements interdependencies addressed in this 
work. In Section 4, the proposed approach is 
explained and formally defined. Section 5 is devoted 
to explain some concepts of multiobjective 
optimization and describes the algorithms used in 
the experiments. Section 6 regards the experiments 
and provides a discussion about the results. Finally, 
Section 7 concludes and outlines future research. 

2 RELATED WORK 

Karlsson and Ryan (1997) develop an approach 
based on cost/value to prioritize requirements using 
the Analytic Hierarchy Process (Saaty, 1980) 
method to compare requirements pair wise based on 
their value and implementation cost. Jung (1998) 
presents a variant of the 0-1 knapsack problem to 
reduce the complexity in the cost/value approach. 

The requirements selection was initially 
addressed in (Bagnall, Rayward-Smith and Whittley, 
2001), the “The Next Release Problem” (NRP), 
which consists on the selection of which customers 
will be met in the next release. The approach 
prioritizes the most important customers and 
complies with the available resources and 
requirements precedence. Several techniques were 
employed, including Integer Programming, GRASP, 
Hill Climbing and Simulated Annealing. In this 
mono-objective formulation, the release planning is 
defined only for the next release and does not 
consider requirement value for customers. 

Later, Greer and Ruhe (2004) present an iterative  

approach based on genetic algorithms to the 
Software Release Planning. The method is called 
EVOLVE and provides decision support in a 
changing environment. The objective function is a 
linear combination of two functions, aimed to 
maximize the total benefit and minimize the total 
penalties. The number of releases is not decided a 
priori and re-planning future releases is allowed.  

Ruhe and Saliu (2005) propose a hybrid method 
that combines computational algorithms with human 
knowledge and experience. The objective function 
determines the value for the weighted average 
satisfaction according stakeholders priorities for all 
features. They solved the problem using Integer 
Linear Programming and the approach was 
implemented as part of a intelligent decision-support 
tool. Saliu and Ruhe (2005) present some technical 
and nontechnical factors affecting release planning, 
and evaluate methods based on these aspects. They 
also propose a framework considering the impact of 
existing systems characteristics to make decisions 
about release planning. 

A multiobjective formulation for NRP was 
presented by (Zhang, Harman and Mansouri, 2007). 
Customer satisfaction and project cost were the 
objectives to be optimized, when selecting the 
optimal requirements set. Four different 
multiobjective optimization techniques were used, 
including NSGA-II. However, their formulation 
does not include any requirement interdependence, 
which is uncommon in the context of real projects, 
since one requirement may depend on another in 
different ways (Carlshamre et al., 2001). 

(Saliu and Ruhe, 2007) present a technique for 
detecting coupling between features from the 
implementation perspective. The work focuses in the 
evaluation of the release plans from business 
perspective and based on relationships between the 
components that would realize the features.  

A multiobjective approach to the Software 
Release Planning is proposed in (Colares et al., 
2009). The formulation tries to be complete and 
aims to maximize customer satisfaction and 
minimize project risks, by selecting the requirements 
to be developed in a fixed number of releases. 
Customer satisfaction is achieved by implementing 
earlier the highest priority requirements and the 
project risks are minimized by implementing the 
requirements with higher risk first. NSGA-II is 
applied to solve the problem and the human-
competitiveness of the approach is also studied.  

An overview on requirements optimization is 
available in (Zhang, Finkelstein and Harman, 2008). 
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3 PROBLEM DEFINITION 

3.1 Important Aspects Considered 

This subsection describes important aspects related 
to the proposed approach. The requirements 
interdependencies are explained in a separated 
subsection. Numeric scales used are just a way to 
evaluate values for risk, importance, priority, time 
and cost to enable the mathematical modelling of the 
problem. Other scales can be used in other contexts.  

3.1.1 Requirements 

Let be ܴ = ݅ |ݎ} = 1, 2, … , ܰ} the set of 
functionalities to be developed and assigned to 
releases. System requirements include features, 
functions and attributes in the software system 
(Karlsson and Ryan, 1997). The implementation of 
each requirement ݎ demands a certain amount of 
cost and time denoted by ܿݐݏ and ݁݉݅ݐ, 
respectively. Each requirement ݎ has also an 
associated risk denoted by ݇ݏ݅ݎ, ranging on a scale 
of 1 (lower risk) to 5 (higher risk). 

3.1.2 Stakeholders 

Let be ܥ = {ܿ| ݉ = 1, 2, … ,  the set of {ܯ
stakeholders involved in the system development. 
Stakeholders play an important role in release 
planning, by influencing or are affecting the process. 
They may include customers and users, a software 
engineer, developers and so on. For each stakeholder ܿ  it is assigned a weight based on their relative 
importance to the company. Thus, ݓ defines the 
importance of a stakeholder to the software 
organization and is quantified on a scale from 1 
(lower importance) to 10 (higher importance). 

3.1.3 Releases 

Let be ܵ = ݇ |ݏ} = 1, 2, … } the set of releases. The 
total amount of releases is not initially defined. 
Instead it will be determined by the approach. For 
each release ݏ, it is given an interval for budget and 
duration, denoted by ܾ݊݅ܯ݁ݏ݈ܴܽ݁݁ݐ݁݃݀ݑand ܾݔܽܯ݁ݏ݈ܴܽ݁݁ݐ݁݃݀ݑ, and by ݊݅ܯ݁ݏ݈ܴܽ݁݁݁݉݅ݐ 
and ݔܽܯ݁ݏ݈ܴܽ݁݁݁݉݅ݐ, respectively.  

3.1.4 Project 

The whole project consists of all the releases that 
should be planned. Thus, the project has a maximum 
schedule (ݐ݆ܿ݁ݎܲ݁݉݅ݐ) and a total budget 

 .that should not be exceeded (ݐ݆ܿ݁ݎܲݐ݁݃݀ݑܾ)
These values are used to select, during the 
prioritization, the requirements to be implemented. 

3.1.5 Requirements versus Stakeholders 

Different stakeholders may have different interests 
in the implementation of each requirement. Just as in 
(Greer and Ruhe, 2004) and in (Ruhe and Saliu, 
2005), the concepts of priority, in terms of urgency, 
and value, in terms of business value-added, are 
used in this work. These concepts are analyzed from 
the stakeholders’ perspective. Thus, ݁ݑ݈ܽݒ(݉, ݅) 
quantifies the perceived importance that a 
stakeholder ܿ associates to a requirement ݎ by 
assigning a value ranging from 0 (no importance) to 
10 (highest importance), and ݕݐ݅ݎ݅ݎ(݉, ݅) denotes 
the urgency that a stakeholder ܿ has for the 
implementation of requirement ݎ, ranging from 0 
(no urgency) to 10 (highest urgency). 

3.2 Requirements Interdependencies 

According to a study in (Carlshamre et al., 2001), 
75% of interdependencies come from approximately 
20% of the requirements. The set of requirements 
interdependencies addressed in this work are: 
 Coupling (T1) – It is DESIRABLE that a 
requirement ݎ be implemented together with a 
requirement ݎ, i.e. in the same release. 

 Business Precedence (T2) – It is DESIRABLE 
that requirement ݎ be implemented before ݎ. In this 
case, ݎ can be implemented in a previous or the 
same release of requirement ݎ. 

 Technical Precedence (T3) – A requirement ݎ 
MUST BE implemented before a ݎ. The 
requirement ݎ must be implemented in a previous or 
the same release of requirement ݎ. 

For example, when two requirements have a 
Technical Precedence relationship to each other, the 
interdependence between ݎ and ݎ is denoted by ݎܦ, ݎ = ܶ3. The same applies to the other forms. 

T1 and T2 relationships are objectives to be 
optimized in the proposed approach. Reducing or 
minimizing the coupling between releases means 
implementing requirements with similar 
characteristics in the same release. In fact, the 
detection of coupling and implementation of 
requirements with similar characteristics bring 
benefits, as reuse and resources saving (time and 
effort) (Saliu and Ruhe, 2007). T2 expresses 
relationships from the business viewpoint according 
to stakeholders’ perspectives. 
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4 MATHEMATICAL DEFINITION 

The approach proposed in this paper for release 
planning is divided into two methods. The first one 
is used when the number of releases is not initially 
defined and the approach will try to determine this 
number. In the second one, the number of releases is 
also undetermined a priori, but exist a consensual 
value expected by the stakeholders and the approach 
will try to reach this value. Each of these methods is 
performed in two phases, where the first phase is 
common for both. 

4.1 Release Planning with Undefined 
Number of Releases 

4.1.1 Phase 1: Requirements Prioritization 

In this phase, the requirements will be prioritized 
according to the goals of value, priority and risk, 
while respecting technical precedence and available 
resources (overall time and budget). Due to 
constraints of budget and time of the project, it is 
possible that not all requirements from the initial set 
of requirements are selected.  

Therefore, the first phase for software release 
planning can be mathematically formulated with the 
following objective and constraint functions: 

(ݕ)݂ா ݔܽܯ =  .݁ݎܿݏ ேݕ
ୀଵ  (1)

,ݔ)݂ோூைோூ் ݔܽܯ  =(ݕ   .ݎ݅ݎ (ܰ − )ேݔ 
ୀଵ .  (2)ݕ

൯ݔோ݂ூௌ൫ ݊݅ܯ  =   .݇ݏ݅ݎ ேݔ
ୀଵ  (3)

Subject to: 

 .ݐݏܿ ݕ  ≤ ேݐ݆ܿ݁ݎܲݐ݁݃݀ݑܾ
ୀଵ  (4)

 .݁݉݅ݐ ݕ  ≤ ேݐ݆ܿ݁ݎܲ݁݉݅ݐ
ୀଵ  (5)

ݔ  < ,ݔ  ,ݎܦ ݂݅ =ݎ ܶ3 (ܶ݁ܿℎ݈݊݅ܿܽ ܲ݁ܿ݊݁݀݁ܿ݁ݎ) (6)

The variable ݔ indicates the position of the 
requirement ݎ in the established prioritization. It is a 
value in {0, 1, 2, . . . ܰ} for ݅ = 1, 2, . . . ܰ. The 
variable ݕ indicates if the requirement ݎ will be 
implemented (ݕ = 1) or not (ݕ = 0), for ݅ = 1, 2,. . . ܰ. If ݔ > ݕ ,0 = ݕ ;1 = 0, otherwise. 

Function 1 – This objective function expresses 
the stakeholders’ satisfaction by implementing the 
most important requirements, where ݁ݎܿݏ = ∑ .ݓ ,݉)݁ݑ݈ܽݒ ݅)ெୀଵ  means the weighted 
business-value added by the development of 
requirement ݎ.  

Function 2 – This objective function expresses, 
in a weighted way, the customer satisfaction for the 
early implementation of the highest priority 
requirements (ݎ݅ݎ =  ∑ .ݓ ,݉)ݕݐ݅ݎ݅ݎ ݅)ெୀଵ ). 

Function 3 – This objective function expresses 
the project risk management as a whole. 
Requirements with a high risk associated are more 
likely to give problems in development 
(Sommerville and Sawyer, 1997). Thus, in the same 
way that (Colares et al., 2009), requirements at 
higher risk should be implemented earlier.  

The constraints of this phase are expressed in 4, 
5 and 6. Thus, (4) is the restriction that limits the 
cost of implementing to the overall project budget. 
And (5) is the restriction that limits the time 
necessary of implementation to the overall project 
duration. The constraint (6) expresses technical 
precedence between requirements. If a requirement ݎ technically precedes a requirement ݎ, then ݎ 
should be implemented before ݎ (ݔ <   .(ݔ 

4.1.2 Phase 2: Scheduling in Releases 

The phase 2 will allocate the requirements (selected 
and prioritized in the first phase) in releases. The 
approach tries to put in the same release the 
requirements with a coupling interdependency. It 
also tries to maintain the established prioritization 
and respect the existing business precedence. The 
mathematical formulation follows:   ݊݅ܯ ݂ைூேீ(ݔோ) = (7) (ோݔ)ோܥ

݊݅ܯ  ݂ோூைோூ்ூ்ூைே_ைோாோூேீ (ݔ, =(ோݔ ,ݔ)ܱܲ  (ோݔ
(8)

݊݅ܯ  ݂ௌூோௌௌ_ோாாாோ(ݔோ)=   ,ோݔ)ܲܤ ோ)ேୀଵேୀଵݔ  (9)

Subject to: ܾ݊݅ܯ݁ݏ݈ܴܽ݁݁ݐ݁݃݀ݑ ≤  .ݐݏܿ ,ݒ  ே
ୀଵ≤ ݔܽܯ݁ݏ݈ܴܽ݁݁ݐ݁݃݀ݑܾ , ∀݇ ∈ {1, 2, … } 

(10)

݊݅ܯ݁ݏ݈ܴܽ݁݁݁݉݅ݐ  ≤  .݁݉݅ݐ ,ݒ  ே
ୀଵ≤ , ݔܽܯ݁ݏ݈ܴܽ݁݁݁݉݅ݐ ∀݇ ∈ {1, 2, … } 

(11)
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ோݔ  ≤ ,ோݔ  ,ݎܦ ݂݅ =ݎ ܶ3 (ܶ݁ܿℎ݈݊݅ܿܽ ܲ݁ܿ݊݁݀݁ܿ݁ݎ) 
(12)

The variable ݔ indicates the position of ݎ in the 
prioritization. The variable ݔோ denotes the release 
for implementation of the requirement ݎ, and is a 
value in {1, 2, … } for ݅ = 1, 2, … ܰ. The variable ݒ, 
indicates if the requirement ݎ is implemented in the 
release ݏ (ݒ, = 1) or not (ݒ, = 0). 

Function 1 – This objective function aims to 
minimize the coupling between releases, according 
to the strategy presented in (Carlshamre et al., 2001). ܥோ(ݔோ) =  ቈ12 .   ,ோݔ൫ܥ ோ൯ேୀଵேୀଵݔ  ൗܫ  (13)

,ோݔ൫ܥ  =ோ൯ݔ  ൜1,   ݂݅ ݎܦ, ݎ = ோݔ ݀݊ܽ 1ܶ ≠  ݁ݏ݅ݓݎℎ݁ݐ                                         ,ோ0ݔ 
(14)

ܫ  =  12 .   ,ݎோ൫ܥ ൯ேୀଵேୀଵݎ  (15)
,ݎோ൫ܥ  ൯ݎ =  ൜1,      ݂݅ ,ݎܦ ݎ = ܶ10,      ݂݅ ,ݎܦ ݎ ≠ ܶ1 (16)

Function 2 – This function tries to maintain the 
prioritization ordering obtained in the phase 1 and 
counts negatively when this sequence is broken: ܱܲ(ݔ, =(ோݔ    ,[݅]ݖ)݊݅ݐ݈ܸܽ݅ ିଵୀଵேୀଶ([݆]ݖ  (17)

,[݅]ݖ)݊݅ݐ݈ܸܽ݅  =([݆]ݖ  ൜1, ൧[݅]ݖோൣݔ ݂݅ < (18) ݁ݏ݅ݓݎℎ݁ݐ                         ,൧0[݆]ݖோൣݔ

[݅]ݖ  = ,ܣ ℎܿܽ݁ ݎ݂ [ܣ]ݔ = [݆]ݖ ݅ = ,ܣ ℎܿܽ݁ ݎ݂ [ܣ]ݔ = ݆ 
(19)

The vector z is an auxiliary vector to sort the 
requirements according to the prioritization and to 
compare their elements with the release 
implementation of each requirement to verify if the 
ordering obtained in the phase 1 was not followed. 

Function 3 – This function tries to minimize the 
amount of Business Precedence that was not 
fulfilled. This situation occurs when a requirement ݎ 
is prerequisite, from the business perspective, for a 
requirement ݎ but is allocated in a later release. ܲܤ൫ݔோ, ோ൯ݔ ==  ൜1, ,ݎܦ ݂݅ ݎ = ܶ2 ܽ݊݀ ோݔ > (20)  ݁ݏ݅ݓݎℎ݁ݐ                                    ,ோ0ݔ 

Equations 10, 11 and 12 are the constraints. 
Restriction (10) limits the implementation cost in a 
release to the interval of budget available for this 
release. Restriction (11) limits the implementation 
time in a release to the interval of schedule available 
for this release. Restriction (12) is the same as in 

phase 1. But in this case if ݎ technically precedes ݎ, 
then ݎ should be implemented in a release prior to 
the release of ݎ, or both should be implemented in 
the same release (ݔோ  ≤  .(ோݔ 

4.2 Release Planning with Expected 
Number of Releases 

This approach is very similar to the first one. The 
overall formulation remains the same (it is executed 
in two phases and has the same objectives and 
constraints) and one more objective function is 
added, as below:  ݊݅ܯ ்݂ ோீா்_ூௌ்ோ(ܭ) = ܭ|  − ܴܶ| (21)

Function 7 – This function tries to reach the number 
of releases wanted by the stakeholders (the target 
release). K is the number of releases obtained by the 
approach and ݐ݁݃ݎܽݐ is the number of releases 
expected by the stakeholder ܿ. The expected 
number of releases is obtained in a weighted form, 
according to: ܴܶ = ∑ .ݓ) )ெୀଵݐ݁݃ݎܽݐ ∑ ⁄ெୀଵݓ   (22)

5 MULTIOBJECTIVE 
OPTIMIZATION 

Since the problem addressed in this paper is 
modeled as a multiobjective optimization problem, 
this section presents some concepts related to 
multiobjective optimization and describes the 
algorithms, NSGA-II (Deb et al., 2002) and MOCell 
(Nebro et al., 2009), used in the experiments. 

5.1 Pareto Front 

In multiobjective optimization problems, two or 
more functions must be optimized, the solutions are 
partially ordered and the search is done by a set of 
solutions. Often, many real world optimization 
problems have conflicting goals and involve the 
minimization and/or maximization of more than one 
function. When trying to optimize multiple 
objectives simultaneously, the search space becomes 
partially ordered and is based on the concept of 
dominance. The search is not restricted to find a 
single solution. Instead, it returns a set of solutions 
called non-dominated solutions (solutions that are 
not dominated by any other solution). A solution ଵܵ 
dominates a solution ܵଶ if ଵܵ is better or equal to ܵଶ 
in all objectives and strictly better in at least one of 
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them. Each solution in the set of non-dominated 
solutions is said to be Pareto optimal. The collective 
representation of all these solutions is called Pareto 
front. 

5.2 NSGA-II 

NSGA-II – Non-dominated Sorting Genetic 
Algorithm II (Deb et al., 2002) is a metaheuristic 
based on genetic algorithms for multiobjective 
optimization, which implements the concepts of 
dominance and elitism, classifying the population 
into different quality categories (fronts) according to 
dominance degree. It is implemented in two phases, 
using the algorithms: Non-dominated Sorting 
Algorithm (performs a search for solutions near the 
Pareto front) and Crowding Distance (performs a 
search for solutions with a good distribution in 
space). The execution begins with an entire 
population not yet classified. Next, each individual 
is assigned with a degree of dominance over all 
other individuals from this population, through the 
comparison between individuals. Following, the 
individuals are classified into fronts according to 
their dominance value.  Thus, in the first front will 
be ranked the best individuals and in the last front, 
the worst. This process continues until all 
individuals are classified into a front. In the next 
phase, the individuals are classified according to the 
diversity operator (crowding distance). This operator 
orders each individual according their distance to 
neighboring points of the same front, related to each 
goal. The greater the distance, greater the probability 
of being selected. This mechanism enables a better 
spread of solutions. 

5.3 MOCell 

MOCell (Nebro et al., 2009) is an adaptation of a 
cellular model of genetic algorithm (cGA - cellular 
genetic algorithm) canonical for multiobjective 
optimization. The algorithm uses an external file to 
store non-dominated solutions found during the 
search and applies a feedback mechanism in which 
the solutions in this file replace, randomly, existing 
individuals in population after each iteration. To 
manage the insertion of solutions in the Pareto front, 
for a diverse set, a density estimator (based on 
crowding distance method) is used. This mechanism 
is also used to remove solutions from the archive 
when it becomes full (the external file has a 
maximum size). The algorithm starts by creating an 
empty Pareto front. Individuals are organized into a 
two-dimensional grid and genetic operators are 

successively applied to them until a stop condition is 
reached. For each individual, the algorithm selects 
two parents from their neighborhood, makes a 
recombination between them in order to obtain a 
descendant, executes a mutation and evaluates the 
resulting individual. This individual is inserted both 
in helping population (if not dominated by the 
current individual) as in the Pareto front. After each 
iteration, the old population is replaced by an 
assistant and a feedback procedure is triggered to 
replace a fixed number of individuals in the 
population, randomly selected, for solutions from 
the file. It is an elitist algorithm useful for obtaining 
competitive results in terms of both convergence and 
diversity of solutions along the Pareto front. 

5.4 Metrics for Comparison 

At least two performance metrics must be used when 
comparing algorithms for multiobjective 
optimization: one to evaluate the spread of solutions 
and another to assess the progress toward the Pareto-
optimal front (Deb, 2009). In this work, the metrics 
Spread and Hypervolume were used for comparing 
the performance of algorithms.  

Spread (Deb, 2009) is used for evaluating 
diversity among non-dominated solutions. An ideal 
distribution has zero value for this metric. The first 
condition for this is there exists the true extreme 
Pareto-optimal solutions in the obtained set of non-
dominated solutions. And the second is that the 
intermediate solutions are uniformly distributed. The 
closer to zero, better the distribution. An algorithm 
that achieves a smaller value for Spread can get a 
better diverse set of non-dominated solutions.  

Hypervolume (Deb, 2009) provides a qualitative 
measure of convergence and diversity. In problems 
of minimization (all objectives must be minimized), 
it calculates the volume covered by members of the 
set of non-dominated solutions in the objective 
space. An algorithm finding a large value of this 
metric is desirable. 

5.5 Present Results 

In a multiobjective problem with two objectives, a 
two-dimensional objective space plot is used to 
show the performance achieved by the 
metaheuristics by illustrating the obtained non-
dominated solutions. In the multiobjective problem 
modeled in this work, there are more than two 
objectives, for each approach, for each phase.  

In a situation like that, when number of 
objectives is greater than two, a representation in a 
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two-dimensional space is difficult and the obtained 
non-dominated solutions can be represented through 
several illustration techniques (Deb, 2009). In this 
work, the scatter-plot matrix method (Deb, 2009) 
was applied. 

6 EXPERIMENTS, RESULTS AND 
ANALYSIS 

This section describes the experiments and presents 
the results of a preliminary evaluation conducted to 
demonstrate the feasibility of the proposed approach.  

6.1 Experiments 

6.1.1 Description of the Instances 

Three different instances of problems were 
randomly generated and used to analyze the 
proposed approach in different contexts. The 
datasets are used as a mean of simulating a generic 
context. Therefore, without loss of generality, the 
instances represent a practical application scenario, 
and its use with the aiming of analysis of the 
proposed approach is valid. 

The values for ݇ݏ݅ݎ,݁ݑ݈ܽݒ(݉, ,݉)ݕݐ݅ݎ݅ݎ ,(݅ ݅) 
were generated according to the scales defined. The 
values for ܿݐݏ, ݁݉݅ݐ and ݓ were randomly 
generated using scales from 10 to 20, 10 to 20 and 1 
to 10, respectively. The values for ݐ݆ܿ݁ݎܲ݁݉݅ݐ and ܾݐ݆ܿ݁ݎܲݐ݁݃݀ݑ were considered as 70% of the 
necessary resources to implement all requirements. 
The other values (range of resources necessary for 
each release) were also randomly obtained. Matrices 
of interdependencies were randomly generated 
according to the kinds of relationships defined in 
subsection 3.2, with 10% of interdependencies. 
Table 1 shows the attributes of each instance.  

Table 1: Features of the Instances. 

Instance Requirements Stakeholders 
Releases 
(Consensual 

value)

Inst. A 30 3 5 
Inst. B 50 5 10 
Inst. C 80 8 6 

6.1.2 Parameter Settings 

To solve the problem formulated, the metaheuristics 
NSGA-II and MOCell were applied. The parameters 
used for each method were set from execution of 
preliminary tests and are showed in table 2 below. 

Table 2: Parameter Settings. 

Metaheuristic NSGA-II MOCell 
Population Size 250 256 

Stopping Criteria (evaluations) 32,000 32,768 
Crossover Rate 0.9 0.9 

Mutation Rate (N – requirements) 1 ܰൗ  1 ܰൗ  

6.1.3 Framework jMetal 

The implementation for the proposed approach was 
performed using a known framework, called jMetal 
(Durillo et al., 2006), which provides metaheuristics 
for multiobjective optimization, including NSGA-II 
and MOCell. 

6.2 Results 

In this work, the average and the standard deviation 
of two executions of the algorithms in each instance 
and in each approach were calculated. In addition to 
the Spread and Hypervolume metrics, the execution 
time was also computed (in milliseconds). 

The results obtained in each instance for each 
approach are presented below. Because of space 
limitations, only some important graphics are 
presented. 

6.2.1 Results for Release Planning with 
Undefined Number of Releases 

The tables 3, 4 and 5 show the results for 
performance of the two algorithms for each instance 
using the metrics.  

Table 3: Spread. 

Instance Name NSGA-II MOCell 
Inst. A 1.875096 0.261888 
Inst. B 1.027938 0.275178 
Inst. C 0.488216 0.337055 

Table 4: Hypervolume. 

Instance Name NSGA-II MOCell 
Inst. A 0.320515 0.288779 
Inst. B 0.335314 0.291431 
Inst. C 0.407802 0.400079 

Table 5: Execution time (in milliseconds). 

Instance Name NSGA-II MOCell 
Inst. A 6247.755725 1415.790476 
Inst. B 4463.549180 3264.715517 
Inst. C 8721.25 6798.402515 

 
The graphs below show the results for the execu- 
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tion of the two algorithms in the instances. The 
Figure 1 presents the results for the smallest 
instance, where we can see that the two algorithms 
have found solution in different areas of the search 
space. This has also happened in the two others 
instances, B and C, which have their results for this 
approach respectively shown in Figure 2 and Figure 
3, as presented below. 

 

 

Figure 1: Results for instance A. 

 

 

Figure 2: Results for instance B. 

 

 

Figure 3: Results for instance C. 

6.2.2 Results for Release Planning with 
Expected Number of Releases 

The tables 6, 7 and 8 show the results for 
performance of the three algorithms for each 
instance using the metrics. 

Table 6: Spread. 

Instance Name NSGA-II MOCell 
Inst. A 1.876102 0.243523 
Inst. B 1.695456 0.441614 
Inst. C 1.612609 0.432743 

Table 7: Hypervolume. 

Instance Name NSGA-II MOCell 
Inst. A 0.224599 0.248997 
Inst. B 0.339315 0.535095 
Inst. C 0.302255 0.381188 

Table 8: Execution time (in milliseconds). 

Instance Name NSGA-II MOCell 
Inst. A 2893.175438 1473.625 
Inst. B 4539.538461 3933.222543 
Inst. C 6524.685393 6729.600798 

 

The figures 4 and 5 show the results for the 
execution of both algorithms for instances B and C. 
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6.3 Analysis 

The figures 1, 2 and 3 show the solutions generated 
by the NSGA-II and MOCell metaheuristics in the 
instances A, B and C, respectively, for the first 
approach. As a result from the experiments, we can 
indicate that the use of both techniques is desired for 
this problem since the algorithms have found 
solutions in different areas. The plots also indicate 
that it is possible to choose a solution taking in 
account, for instance, the business-precedence 
wanted for the decision maker. By each possible 
value in this objective, there is a set of solutions 
optimized to the others objectives. 

 

 

 

 

 

Figure 4: Results for instance B. 

Additionally, we show next, in figures 4 and 5 
the solutions to the second approach, which deals 
with expected number of releases. The formulation 
to this approach has four objectives. In order to be 
able to show the results in an effective way, we have 
decomposed the four-dimensional solution space in 
four tridimensional graphics. These graphics allow a 
better visualization of the solutions, regarding 
different combinations of the objectives. In addition, 
information in the graphs is combined referent to the 
original solutions. 

 
 

 

 

 

Figure 5: Results for instance C. 
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For this approach, few solutions were found, 
which demonstrates the complexity of the problem 
and thus an indication that your resolution manually 
would be inappropriate and inefficient. The results 
from the metrics in the metaheuristics indicate that 
both MOCell and NSGA-II have good results. This 
is confirmed by the better spread value in all 
instances for the MOCell, and the better value of 
hypervolume for NSGA-II. The execution time of 
MOCell has been show generally better. 

7 CONCLUSIONS 

According to Greer and Ruhe (2004), three things 
must be taken into consideration when planning 
releases: the technical precedence intrinsic to 
requirements, the conflicting priorities established 
by the most important stakeholders and the balance 
between the necessary and available resources. 

In this study, the Software Release Planning 
problem was addressed as completely as possible, 
considering different aspects in a way closer to real 
practice environment. Thus, the proposed approach 
has a broader applicability.  

The problem was solved using elitist 
multiobjective evolutionary algorithms on artificial 
data. Since search techniques have been successfully 
applied to solve problems in Software Engineering, 
the alternative release plans generated provide better 
support for decision making.   

One negative aspect of this work was the amount 
and size of the instances used. Although the 
approach has proved feasible in the context used, 
more experiments are necessary in order to 
generalize it. Thus, future work includes further 
analysis of these preliminary results and definition 
and evaluation of other instances and studies using 
real-world data sets. 

REFERENCES 

Bagnall, A. J., Rayward-Smith, V. J., Whittley, I. M., 
2001. The Next Release Problem. Information and 
Software Technology, 43(14):883–890. 

Carlshamre, P., Sandahl , K., Lindvall, M., Regnell, B., 
Dag, J. N., 2001. An Industrial Survey of 
Requirements Interdependencies in Software Product 
Release Planning. In Proceedings of the Fifth IEEE 
International Symposium on Requirements 
Engineering, pages 84-91, Toronto, Canada. IEEE 
Computer Society. 

Colares, F., Souza, J., Carmo, R., Padua, C., Mateus, G. 
R., 2009. A New Approach to the Software Release 
Planning. In Proceedings of the XXIII Brazilian 
Symposium on Software Engineering, 2009 (SBES 
'09), pages 207-215, Fortaleza, Ceará, Brazil. IEEE 
Computer Society. 

Deb, K., 2009. Multi-Objective Optimization Using 
Evolutionary Algorithms. Wiley. 

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A 
fast and elitist multiobjective genetic algorithm: 
NSGA-II, Evolutionary Computation, IEEE 
Transactions on, 6(2):182–197. 

Durillo, J. J., Nebro, A. J., Luna, F., Dorronsoro, B., Alba, 
E., 2006.  jMetal: a Java Framework for Developing 
Multi-Objective Optimization Metaheuristics. 
Technical Report: ITI 2006-10, University of Málaga. 

Greer, D., Ruhe , G., 2004. Software Release Planning: An 
Evolutionary and Iterative Approach. Information & 
Software Technology, 46(4):243–253. 

Harman, M., Jones, B. F., 2001. Search-Based Software 
Engineering. Information & Software Technology, 
43(14):833-839. 

Jung, H.-W., 1998. Optimizing Value and Cost in 
Requirements Analysis. IEEE Software, 15(4): 74-78. 

Karlsson, J., Ryan, K., 1997. A Cost-Value Approach for 
Prioritizing Requirements. IEEE Software, 14(5): 67-
74. 

Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., Alba, 
E., 2009. MOCell: A Cellular Genetic Algorithm for 
Multiobjective Optimization. International Journal of 
Intelligent Systems, 24:726-746. 

Ruhe, G., Saliu, M. O., 2005. The Art and Science of 
Software Release Planning. IEEE Software, 22(6): 
47–53. 

Saaty, T. L., 1980. The Analytic Hierarchy Process. 
McGraw-Hill. 

Saliu, O., Ruhe, G., 2005. Supporting Software Release 
Planning Decisions for Evolving Systems. In 
Proceedings of 29th Annual IEEE/NASA on Software 
Engineering Workshop (SEW ’05), pages 14-26. 
IEEE Computer Society. 

Saliu, M. O., Ruhe, G., 2007. Bi-Objective Release 
Planning for Evolving Software Systems. In 
Proceedings of the 6th joint meeting of the European 
Software Engineering Conference and the ACM 
SIGSOFT Symposium on the Foundations of Software 
Engineering, pages 105–114, Dubrovnik, Croatia. 
ACM. 

Sommerville, I., Sawyer, P., 1997. Requirements 
Engineering: A Good Practice Guide. John Wiley & 
Sons. 

Souza, J. T., Maia, C. L., Freitas, F. G., Coutinho, D. P., 
2010. The Human Competitiveness of Search Based 
Software Engineering. In Proceedings of the 2nd 
International Symposium on Search Based Software 

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

106



 

Engineering (SSBSE '10), pages 143-152, Benevento, 
Italy. IEEE. 

Zhang, Y., Finkelstein, A., Harman, M., 2008. Search 
Based Requirements Optimisation: Existing Work 
and Challenges. Requirements Engineering: 
Foundation for Software Quality. Lecture Notes in 
Computer Science. Springer Berlin / Heidelberg. 
Pages 88-94. Volume 5025.   

Zhang Y., Harman, M., Mansouri, S. A., 2007, The Multi-
Objective Next Release Problem. In Proceedings of 
the 9th annual Conference on Genetic and 
Evolutionary Computation (GECCO ’07), pages 
1129–1137, London, UK. ACM. 

MULTIOBJECTIVE SOFTWARE RELEASE PLANNING WITH DEPENDENT REQUIREMENTS AND UNDEFINED
NUMBER OF RELEASES

107


