
CLIENT-TIER VALIDATION OF DYNAMIC WEB APPLICATIONS

Hideo Tanida1, Masahiro Fujita2, Mukul Prasad3 and Sreeranga P. Rajan3

1Dept. of Electrical Engg. & Information Systems, The University of Tokyo, Tokyo, Japan
2VLSI Design & Education Center, The University of Tokyo, Tokyo, Japan

3Trusted Systems Innovation Group, Fujitsu Laboratories of America, Sunnyvale, CA, U.S.A.

Keywords: Dynamic analysis, Validation, Web application.

Abstract: Web applications pervade all aspects of human activity today. Rapid growth in the scope, penetration and
user-base of web applications, over the past decade, has meant that web applications are substantially bigger,
more complex and sophisticated than ever before. This places even more demands on the validation process
for web applications. This paper presents a case study of the validation of Ajax web Applications, where a
combination of dynamic crawling-based model generation and back-end model checking is used to compre-
hensively validate the client-tier of the web application. Our experience shows that such an approach is not
only practical in the context of applications of such size and complexity but can provide greater automation
and better coverage than current industrial validation practices based on testing. A couple of experimental
results are presented to show the effectiveness of the proposed approach.

1 INTRODUCTION

Web applications are ubiquitous today. The last
decade has witnessed rapid growth in both the scope
and the penetration of web applications. On one
hand, the wide-scale adoption of web applications in
all spheres of business activity has brought validation
and quality assurance of such applications into focus.
On the other hand, the use of WEB 2.0 technologies
such as AJAX (Asynchronous JavaScript and XML)
results in feature-rich and highly interactive web ap-
plications, thereby further complicating the task of
validating such applications.

Current industrial practice for the functional val-
idation of web applications still continues to largely
rely on manually written test cases which exercise
and check the application behavior one trace at a
time. There is a growing gap between the cover-
age, automation and scalability of traditional testing-
based validation methodologies and the validation re-
quirements of modern WEB 2.0 applications, which
has been acknowledged by validation researchers and
practitioners alike. Research on automated model
generation (Mesbah et al., 2008), model-based testing
(Mesbah and Deursen, 2009; Marchetto et al., 2008b;
Marchetto et al., 2008a; Benedikt et al., 2002), and
model checking (Alfaro, 2001) offers the promise to
address this gap. Specifically, there has a been re-

cent work on automated model generation (Mesbah
et al., 2008) and model-based testing (Mesbah and
Deursen, 2009) of AJAX applications that looks es-
pecially promising.

This paper addresses the problem of developing a
better and practical validation solution for WEB 2.0
application development. We propose a methodology
for functional validation of WEB 2.0 AJAX applica-
tions that is based on an efficacious combination of
some previously proposed techniques in the valida-
tion literature and our own novel extensions to these
techniques. We present case studies of applying this
methodology to the validation of a WEB 2.0 AJAX

web applications. The main objectives and contribu-
tions of this paper are as follows:
• We propose a solution for the validation of the

client-tier behavior of modern industrial-strength
dynamic web applications. This solution is a com-
bination of several previously proposed technolo-
gies as well as several novel extensions of our own
which we believe are critical to its applicability
in an industrial context. Further, this approach
is fairly complementary to current industrial prac-
tices of web application validation and at least in
some respects, superior to these approaches.

• We apply the proposed approach to the validation
of WEB 2.0 AJAX applications and report on both
the successes and short-comings of our proposed

86 Tanida H., Fujita M., Prasad M. and P. Rajan S..
CLIENT-TIER VALIDATION OF DYNAMIC WEB APPLICATIONS.
DOI: 10.5220/0003510500860095
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 86-95
ISBN: 978-989-8425-77-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

approach. We feel these lessons would be vital in
developing and delivering the next generation of
industrial practices for web application validation.

The rest of the paper is organized as follows. In
the next section we survey related works. Section 3
presents our proposed validation approach. In Sec-
tion 5 we describe the validation case study, including
s description of target applications, the experimental
setup, procedure and results. We summarize and con-
clude the paper in Section 6.

2 RELATED WORK

One of the key objectives of this paper is to serve as a
bridge between current industrial practice in web ap-
plication validation and the research literature on this
topic. Thus it is relevant to review related works in
these two broad areas. However, the following survey
will be restricted to works addressing validation of the
client-tier of web applications and specifically that of
the navigational aspects of the behavior (in contrast
to security or performance aspects). The vast body of
research on web application validation spans several
other interesting and important areas such as valida-
tion targeted at the server-tier(s) of web applications,
or the vast area of security validation. Nevertheless,
these areas are beyond the scope of this paper.

Current industrial practice for the functional vali-
dation of web applications, and specifically for val-
idating the client-tier of dynamic web applications
(such as those employing AJAX) primarily involves
the use of capture-replay tools such as Selenium1,
WebKing2 and Sahi3. Using these frameworks, users
manually exercise the application through various test
scenarios, one at a time. These actions are recorded
by the tool and can be replayed back at a later time,
usually with user-defined assertions regarding ex-
pected behavior, inserted at various steps. This mode
of validation, however, requires a substantial amount
of manual effort. Frameworks such as JsUnit4 , can
be used to perform unit testing of the JavaScript code
in the application. However, this kind of testing is by
its very nature very localized, language specific and
also manually intensive.

Our proposed method for client-tier validation of
dynamic web applications involves creating a state-
based model (in our case, a finite state machine) of

1http://seleniumhq.org/
2http://www.parasoft.com/jsp/solutions/soasolution.jsp?

itemId=86
3http://sahi.co.in/w/
4http://www.jsunit.net/

the client-tier behavior of the web application by au-
tomatically and dynamically crawling the deployed
web application. This model is then checked against
a temporal logic specification (represented as a set
of properties), using model checking (Clarke et al.,
1999). There are several works which overlap with
one or more aspects of our approach but differ in one
or more of the following respects.

2.1 The Target Applications

Many of these papers (Alfaro, 2001; Ricca and
Tonella, 2001; Benedikt et al., 2002; Andrews et al.,
2005) target traditional (WEB 1.0) web applications,
which differ substantially from the dynamic (e.g.
AJAX-based) WEB 2.0 applications we target, espe-
cially in terms of client-tier behavior and its valida-
tion. Specifically, (Ricca and Tonella, 2001; Benedikt
et al., 2002; Andrews et al., 2005) do use auto-
matic crawlers to extract a navigational model for val-
idation. However, we concur with the assessment
of (Mesbah and Deursen, 2009; Marchetto et al.,
2008b) among others that these crawlers would not
be applicable to WEB 2.0 applications. VeriWeb
(Benedikt et al., 2002) does claim to have some sup-
port for client-side scripts but there is not sufficient
detail in the paper to conclude if it would apply to
modern enterprise AJAX applications. VeriWeb also
uses a model checking based verification back-end
(VeriSoft) similar to us, but the paper is scant on ex-
perimental results on real applications. Another class
of relevant work, relevant in this context is the work
on GUI Application testing (Strecker and Memon,
2009) where they reverse engineer a model of the
desktop GUI application, with the objective of gen-
erating test cases. However, while modern dynamic
web applications share the rich user-interface and in-
teractivity of desktop GUI applications, they have
several unique features as well (such as asynchronous
client-server communication and a DOM-based user
interface). Thus GUI testing techniques cannot be ap-
plied as such to the problem at handi.e. the validation
of dynamic web applications.

2.2 The Model Generation Process

Several papers (e.g. (Marchetto et al., 2008b)) rely
on a completely or mostly manual specification of
the behavioral model being checked. We submit that
this would place unreasonable specification burden on
the designers and verification would not be practi-
cal, especially in an industrial setting. An automatic
crawler for AJAX application which we have used as
a basis for model extraction is developed (Mesbah

CLIENT-TIER VALIDATION OF DYNAMIC WEB APPLICATIONS

87

et al., 2008). However, as explained in Section 3.1
the crawler needed several enhancements to yield a
comprehensive model for industrial applications.

2.3 The Verification Methodology

Almost all previous papers rely on trace-by-trace
testing as the end means to validate the behavioral
model. The authors of (Mesbah and Deursen, 2009;
Marchetto et al., 2008b) automatically generate test-
benches which exercise one trace at a time from the
model. While this definitely increase the level of au-
tomation compared to the current industrial practice
of manually written test-cases, the underlying vali-
dation is still test-case driven and hence the require-
ments and their checking very trace-specific. We
submit that our approach, which is based on model
checking, is much more natural, given that we have
a pre-generated navigational model. Further, we can
pose and check more general and global properties of
the application. We present several instances of this
and the advantages it provides, in Section 5. The tool
MCWEB (Alfaro, 2001) is one of the few instances of
the direct application of model checking to web appli-
cation navigational behavior. However, the work was
targeted towards WEB 1.0 applications. Another key
difference is that in our approach the model genera-
tion step is distinctly separated from the subsequent
model checking (i.e. checking is not done on the fly).
Thus, while MCWEB relies oncontractive µ-calculus
we use considerably simpler specification formalisms
(a finite state machine for the navigational model and
temporal logic model checking).

3 PROPOSED METHOD

This paper deals with the validation of moderndy-
namic WEB 2.0 applications. Such applications
are characterized by a feature-rich, client-side user-
interface and have a high degree of user interactivity,
typically by the use of technologies such as AJAX and
Flash. Further, this work focuses on validating the be-
havior of theclient-tier of the web application, and
specifically the navigational aspects of the behavior.

Our overall approach is a two step process. The
first step is to extract a behavioral model of the client-
tier of the web application. This is done by dynam-
ically and automatically exercising the web applica-
tion through a process calledguided crawling, cap-
turing the resulting behavior and representing it as a
finite-state-machine model. Guided crawling is im-
plemented as extension to the CRAWLJAX tool (Mes-
bah et al., 2008) and is described in Section 3.1.2. The

second step is to usetemporal logic model checking
(Clarke et al., 1999) to validate various functional re-
quirements of the application against this model.

This two-step approach has several advantages.
First, it allows us to isolate the relatively expensive
dynamic crawling from the actual validation and do
the crawling once (or a few times) in a mostly require-
ment and validation independent manner. Second, it
allows us to extract a compact model of the naviga-
tional behavior, achieving compaction both by a ju-
dicious choice of the model representation as well as
by discarding irrelevant application-level details dur-
ing crawling. This accelerates both of the crawling
process and the downstream model checking. Third,
since all the requirements to be checked are often not
known when the first rounds of validation is done,
performing the validation offline obviates the need to
repeat the expensive model generation step.

3.1 Model Generation

This section describes generation of the model. As
mentioned earlier, the behavioral model of the web
application client-tier is generated by dynamically,
automatically and comprehensively executing the
web application and capturing the observed behavior
in a mathematical model.

3.1.1 The Navigational Model

The model extracted during the crawling process pri-
marily captures the navigational aspects of the web
application’s client-tier behavior (as opposed to, for
example, behavior specific to its security policies or
its performance). Hence we will refer to this model
as thenavigational modelin the sequel.

Navigational models take form of FSM (finite
state machine), with their internal states defined by
content of DHTML (Dynamic HTML) document
and transitions representing changes to content of
DHTML document before and after user operations.
DHTML documents which reflect dynamic changes
made by on-browser script and page reloading, repre-
sent views in AJAX-based web applications, and are
therefore suitable for defining states within our FSM
model to verify navigational aspects. The models in-
tended to represent navigational aspects of web appli-
cation, contain only inter-state transitions before and
after user operations. Further, while the web appli-
cation may theoretically allow for an infinite number
of differentscreens or web pages it is neither practical
nor particularly useful to attempt to capture, represent
or check these infinite screens. Thus we focus on au-
tomatically navigating (through our guided crawling)

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

88

a rich but finite number of screens within the web ap-
plication, while using innovative state representation
and abstraction mechanisms to represent this informa-
tion. Thus our navigational model can be summarized
as follows. We use a state representation to capture
the content of each DHTML page/screen visited by
the application and a finite state machine (FSM) to
represent the navigational behavior of the web appli-
cation.

Figure 1 shows a graphical representation for a
fragment of navigational model corresponding to a
simple web application. Each state (node) is an-
notated by reference to DHTML document it corre-
sponds to, and transition (edge) is annotated by input
which has triggered the transition. Note that the each
input may be an event on an element which is iden-
tified by index-number-based XPath or a sequence of
operations performed based on a guidance directive
(described in detail in Section 3.1.2). The edge la-
beled “user-guided crawling”, corresponds to a tran-
sition made by operations from a guidance directive.

3.1.2 Guided Crawling

The CRAWLJAX tool (Mesbah et al., 2008) proposes
a fully automated crawling of the web application un-
der test. The tool does allow for some customization
of the crawling to the given web application. For ex-
ample by specifying classes of DOM elements to ex-
ecute actions on (e.g. HTML <input/> or <a/> el-
ements) or the set of actions to execute (e.g. click,
mouseover). However, while this level of customiza-
tion is sufficient for automating a very basic level of
exploration, based on button-clicks and link naviga-
tion on simple web applications, it is usually not suf-
ficient to produce meaningful comprehensive models
on real-life enterprise web applications. Some typical
scenarios where the above kind of “automatic” crawl-
ing falls short are the following:

1. User Authentication: The most common situa-
tion is where the web application requires some
kind of user authentication (i.e. login) in order to
proceed to the next step. This may require, for
example, filling in specific, valid username and
password information into specific input boxes on
the current page and clicking a specific login but-
ton. Further, this authentication step may not oc-
cur as the first step of the navigation but at a later
point (e.g.some applications likeAmazon.com do
not require a login till the checkout stage). An-
other variant on this scenario is that applications
typically have different behaviors (privileges, fea-
tures, actions) for administrative versus regular
users and a good behavioral model should encom-

pass both these use-cases. Thus the tool should do
one set of exploration with an administrative login
and another with a regular user login.

2. Processing Forms with Several Sets of Data:
HTML forms are commonplace in modern web
applications (a user authentication panel is a
special instance of this) and typical exploration
would require exploring these forms with differ-
ent data-sets (for example one erroneous data set
and one correct one) for checking the response of
the application to correct and incorrect user in-
puts.

3. Excluding Behavior from the Model:In many in-
stances practical resource constraints dictate that
only specific actions on specific pages be exer-
cised when crawling the application. One reason
for doing this could be that the excluded features
and actions may be outside the scope of the ensu-
ing validation step and thus need not be included
in the model.

The above scenarios necessitate that the tool have
a mechanism for specifying and executing (during
crawling) aspecificsequence of actions, with specific
and possibly multiple sets of data, which are executed
atspecificstage in the application evolution,i.e. based
on the state of the web application. There could be
several such sequences, based on the different scenar-
ios exemplified above. Further, the behavior produced
by this kind ofcustomcrawling should be seamlessly
and correctly integrated into the other parts of the
model produced by the blind crawling (such as fully
automatic link navigation).

Our solution to the above requirement is the mech-
anism ofguided crawling. The guidance is based on a
set ofGuidance Directivesthat are specific to the tar-
get application and supplied as input to our crawler.

Definition 3.1 (Guidance Directive). A Guidance Di-
rectiveG = (p,A) is an ordered pair that consists of
a predicate p that is evaluated on the current web ap-
plication state and an action sequenceA . The action
sequenceA = (α1,α2 . . . ,αk) is a sequence of atomic
actionsαi . Each atomic actionα=(e,u,D) is a triple
consisting of a DOM element e, a user-action u and a
set of data-instancesD (potentially empty) associated
with u.

A guidance directiveG , as per Definition 3.1 in-
cludes the predicate that determines whenG should
be activated. The predicate is evaluated on the cur-
rent state of the web application during the crawl-
ing. In our case the state is essentially DHTML
document shown in current screen/web-page on the
browser. Therefore, predicatep can be supplied as
an expression which yields a binary value given a

CLIENT-TIER VALIDATION OF DYNAMIC WEB APPLICATIONS

89

index

s ta te_5

user-guided crawl ing onclick /HTML/BODY[1]/A[1] onclick /HTML/BODY[1]/INPUT[3] onclick /HTML/BODY[1]/A[1]

s ta te_6

onclick /HTML/BODY[1]/INPUT[1]

onclick /HTML/BODY[1]/A[1]

onclick /HTML/BODY[1]/INPUT[1]

Figure 1: Graphical view of a screen transition diagram.

DHTML document. The action sequenceA repre-
sents the sequence of user actions that must be ex-
ecuted on the web application upon activation ofG
(i.e. whenp is true in the current state/screen), along
with the associated data, if applicable. Each atomic
actionα in A is a simple (browser-based) user action
u on a particular DOM elemente on the current web-
page/screen. For example, a typical actionu would
be a click or mouse-over on a DOM element (such
as a link or button). Such actions have no associated
data. Hence theD component of the atomic action
would be the empty set/0. Another class of actions are
those that correspond to the choice or input of some
data string, for example selecting an option from a
<select/> element or assigning a string value to an
<input/> element etc. In these cases theD compo-
nent would represent the set of data values we would
like to test/exercise the element with. Upon activa-
tion of the guidance directive, the tool constructs a
concrete action sequence fromA by picking specific
data-values from the setD corresponding to eachα in
A and executes it on the web application. It does this
systematically, for each combination of data-values
represented inA .

Algorithms 1 and 2 present the pseudo code for
the overall model generation algorithm based on
guided crawling. The main procedure,GuidedCrawl
(Algorithm 1) is supplied a web application,W and
a set of associated guidance directives,G set. It ini-
tializes the navigational modelM, loads the web ap-
plication in the browser and invokes the inner pro-
cedure,GuidedCrawlFromState(Algorithm 2) on the
initial web-page(InitPage). GuidedCrawlFromState
does the actual crawling and recursively calls itself on
new successor states/screens. The various other func-
tions used in the algorithm are described as follows:
• IsVisited: Checks if the stateS has been visited

by a previous invocation ofGuidedCrawlFrom-
State. This check takes into account any state-
abstractions implemented for this step (explained
further in Section 3.1.3).

• MarkVisited: Marks stateSas visited to exclude
it from future guided crawls

• AddState: Records the stateS in the navigational
modelM as a newly discovered state

Algorithm 1 : GuidedCrawl(W,G set).

1: M = /0
2: InitPage← LoadBrowser(W)
3: GuidedCrawlFromState(InitPage)
3: return M

Algorithm 2 : GuidedCrawlFromState(S).

1: if IsVisited(S) then
1: return
2: end if
3: MarkVisited(S)
4: AddState(S,M)
5: Actions← FindActions(S)
6: for all G (p,A) ∈ G set do
7: if p(S) = true then
8: Actions ← Actions ∪

ComputeActionSequences(A)
9: end if

10: end for
11: for all a∈ Actionsdo
12: nextState← Execute(a,W,S)
13: AddTransition(nextState, S,M)
14: GuidedCrawlFromState(nextState)
15: UndoTransition(a,W,S)
16: end for

• FindActions: Computes the set of primitive (non-
guided) user actions (e.g. clicks, mouseovers etc.)
that can be executed on the current screenS.

• ComputeActionSequences:Computes concrete
sequences of actions from the guidance direc-
tive G by picking specific data values in its con-
stituent atomic actionsα. Computes all possible
sequences that can be created by various choices
of the specified data-values.

• Execute: Executes the action (or action se-
quence)a on the web applicationW, which is cur-
rently in state/screenS.

• AddTransition: Records the transition from state
S to statenextStatein the modelM.

• UndoTransition: Functionally reverses the tran-
sition S→ nextStateonW to restore it to stateS.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

90

3.1.3 Model Reduction

One of the principal advantages of our two-step ap-
proach, i.e. model generation followed by model
checking, is the ability to perform the validation on
a much more compact and abstracted model than the
full HTML content available at the browser-level dur-
ing model generation. This enables a much more effi-
cient check. There are several sources of compression
we utilize in generating the final model to be checked:

1. Validation-Directed Inclusion/Exclusion of
Events: It is obvious that not all of transitions
resulting from firing a certain kind of event on
a certain class of element would be of relevance
from a validation perspective. Therefore, we
specify to the crawler a list of tuples of HTML el-
ements set and event types, that should definitely
be included and those that should be definitely
beexcludedduring crawling. The specification is
done by the user on application-specific basis, as
an input to the model generation step. In each of
specifications above, set of HTML elements are
specified using XPath.

2. State Abstraction: In our proposed navigational
model, the determination of whether given two
states are equivalent or not is performed based on
content of DHTML document. While states corre-
sponding to DHTML documents with same con-
tent is considered to be equivalent in our naviga-
tional model, there are several instances of situa-
tions where two “similar-looking” DHTML pages
should be considered to be equivalent. The fol-
lowings are some of the scenarios where “exact”
determination of equivalence between DHTML
pages falls short.

(a) Current time (variable from run-time environ-
ment) included in page

(b) Server-side variables (which we do not explic-
itly reset), and are not of our interest exposed to
DHTML content

Therefore, we have introduced state abstraction
techniques which accepts user-given XPaths of el-
ements to be removed from DHTML documents
observed. When determining equivalence be-
tween two given states, document elements which
match the given XPaths and their descendants
are removed from DHTML document structures
corresponding to the states and thereafter com-
pared. This criteria forstate-equivalenceare im-
plemented within theIsVisited()function in Algo-
rithm 2.

3.2 Model Validation

As mentioned in Section 2 one of the key differences
between our approach and prior art in this area is that
while other approaches resort trace-by-trace check-
ing of the behavior a la traditional testing, we pro-
pose to check the navigational model as a whole us-
ing the formal technique of model checking (Clarke
et al., 1999). As pointed out in Section 3 the use of
a pre-generated navigational model, compactly rep-
resented as a finite state machine makes the applica-
tion of model checking both easy and very efficient.
We further claim that several navigational and other
types of requirements that are typically checked on
web applications can be quite naturally formulated as
properties in temporal logic (Clarke et al., 1999), the
input language of model checkers. In the following
we present a few examples of such classes of require-
ments and specific instances in each class.
1. Screen Transition Requirements:The simplest

and most common check on web applications is of
the form:A user input i with the web application
on ScreenA takes it to ScreenB. Here, screens
A andB may be screens or pages of the web ap-
plication, identified by the presence or absence of
certain features, widgets or DOM elements, while
input i may be a simple input like a mouseover or
button/link click or a more complicated sequence
of such actions interspersed with data inputs to
various widgets on the screen. This kind of re-
quirement may be further generalized in checking
(for example) that ScreenB follows A in one, all
or none of the valid execution sequences of the
web application. Some specific examples of this
class of requirements could be:

• In a web application with user authentication:
TheLOGOUT screen is always preceded by the
LOGIN screen

• On a utilities web-site under the bill-payment
section: If the CONFIRM button is clicked on
thePAYMENT-DETAILS screen then the next
screen is always theRECEIPT screen.

2. Navigation Structure/Usability Requirements:
This kind of requirement would apply checks to
the overall structure of the navigational model,
with the intent of checking the ease with which
the user can access various functionalities offered
by the application. This class of requirements is
by its very intent,global and hence ideally suited
for model checking on a pre-extracted model
(versus real-time or trace-by-trace checking).
Some examples of requirements in this class are:
• All features of are accessible within5 clicks,

starting from the home page

CLIENT-TIER VALIDATION OF DYNAMIC WEB APPLICATIONS

91

• The initial page is accessible from every screen

Since each screen of the web application and all
features/widgets or DOM elements on each screen are
captured as part of the state representation in our nav-
igational model, it is possible to formulate and check
the requirements above (and several other categories
of requirements typically checked on web applica-
tions) as properties in a temporal logic (Clarke et al.,
1999) (e.g.Computation Tree Logic (CTL) or Linear
Temporal Logic (LTL)) with the following steps.

3.2.1 Validation Scheme

First, we annotate each state within the navigational
model with values of “atomic propositions” used in
the properties. In our methodology, we allow atomic
propositions be any expression which hash same
DHTML document to same binary value. After the
annotation, there will be two kinds of variables within
the model: unique ID for each state and annotating
variables corresponding to value of atomic proposi-
tions in each state. Then we convert the FSM model
including annotating variables, into the format which
is accepted by external model checkers. While inter-
state transition relations are described using values of
ID variables, property can be described using any an-
notating variables containing values of atomic formu-
las which hashes equivalent state into same value.

Atomic propositions which are hash functions of
DHTML documents into binary output, can be given
by the user as a procedure in some programming lan-
guage. And they can take forms which are quite sim-
ilar to assertions used in existing automatic testing
tools for client-tier behavior of AJAX-based web ap-
plications such as Selenium. Therefore, it is quite
easy for developers in field to migrate to our method-
ology. Examples of atomic expressions include avail-
ability of a node with given type and attribute, and
availability of text content which matches a given reg-
ular expression.

3.2.2 Temporal Property Templates

Still, writing complex temporal logic formula based
on those atomic propositions is troublesome work
for developers. So we have decided to introduce
template-based approach which is based on a few
temporal classes of properties in property specifica-
tion. The idea is based on the notion from a study
that most verification requirements observed in prac-
tice, can be captured by properties in a limited number
of temporal classes (Dwyer et al., 1999). Temporal
classes of properties we have targeted in our frame-
work are shown in Figure 2, wherep,p1 and p2 are
atomic propositions which are evaluable in a given

'

&

$

%

1. G(p): Globally p is true

2. p1, i → p2: After transiting from a
state wherep1 is true, with an input or
a guidance-directive-driven input sequence
which matchesi, or with any input (i =nil),
p2 is always satisfied

3. p1→F p2: After transiting from a state where
p1 is true, eventually reaches a state wherep2
is true

4. p1→ Pp2: Need to reach a state wherep2 is
true, prior to reach a state wherep1 is true

Figure 2: Temporal property templates targeted.'

&

$

%

1. G(p): A stateSwherep is false

2. p1, i → p2: A tuple (S1,T,S2), whereS1 is a
state in whichp1 is true, S2 is a state in which
p2 is false, and T is a transition fromS1 to
S2 made by an input or a guidance-directive-
driven input sequence which matchesi

3. p1→ F p2: A tuple (S1,T ,S2), whereS1 is a
state in whichp1 is true, S2 is a state in which
p2 is false, andT is a non-empty sequence of
transitions fromS1 to S2

4. p1 → Pp2: A sequence of transitionsT ,
which reaches a state wherep1 is true from
initial state, without going through any state
wherep2 is true

Figure 3: Counter examples for the property templates.

single state, based on DHTML page contents corre-
sponding to the state. In the second class of proper-
ties, inputs ini are specified as a tuple of a unique
ID in each DHTML document, and event type or in-
put data. Forms of counter example for the temporal
property templates are shown in Figure 3.

4 TOOL IMPLEMENTATION

We have implemented our model-based testing ap-
proach, in a system which is comprised of two com-
ponents. One of the components of the system is
an extended version of open-source CRAWLJAX tool,
and the other is a custom model checker called GO-
LIATH , which is dedicated for checking requirements
on screen transitions explained in Section 3.2.

4.1 Model Generation

We have extended CRAWLJAX-1.7, to include the fol-

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

92

lowing features required for its application to our
flow.

1. Guided Crawling (Section 3.1.2): The feature
was implemented so that predicatep in Defini-
tion 3.1 can be supplied as a Java method which
accepts Document object and returns boolean
value. And each of actionsαn in A , can be spec-
ified as a tuple of XPath string specifying target
element (e), and event type string (u) or input data
string set (D).

2. On-The-Fly Model Reduction (Section 3.1.3):
The feature was implemented in such a way, that
user can specify a set of strings each correspond-
ing to XPath of elements to abstract out, and all
of elements matching the XPath and their descen-
dants are removed from the document structure
corresponding to the state.

4.2 Model Validation

We have implemented a custom model checker GO-
LIATH , which is dedicated for checking properties
with atomic propositions and temporal forms de-
scribed in Section 3.2.1 and 3.2.2 respectively.

GOLIATH is implemented using Ruby program-
ming language, and atomic propositions (p, p1 and
p2 in Figure 2 and 3) are expected to take form of
Ruby expressions and may refer to DHTML docu-
ment object with identifierdoc with Nokogiri5 HTML
parser API. The following is a very simple instance of
atomic proposition supported, which is trueiff there
is some<a/> element withid attribute valuelogin.
doc.xpath(’//a[@id="login"]’).any?

A little more complex and practical expression exam-
ple can be found in the following.
login_xpath = ’//a[@id="login"]’;
logout_xpath = ’//a[@id="logout"]’;
login_avail = doc.xpath(login_xpath);
logout_avail = doc.xpath(logout_xpath);
login_avail.any? != logout_avail.any?

The expression above (hereafter referred to as
pnot together) is true only in states where only one of
login/logout DOM object exists and they do not co-
exist (Note in Ruby, that sequences of expressions can
be evaluated as an expression which yields value of
their final expression). We can write the following
property withpnot together for example.

G(pnot together) (1)

The property can be used to make sure that there is no
state, where both oflogin/logout exist or do not ex-
ist, in the application behavior extracted to the model.

5http://nokogiri.org/

5 CASE STUDY

The proposed method has been implemented and
evaluated by applying them to examples including a
real industrial one. To assess the efficacy and utility
of our approach and the corresponding implemented
tool, we have conducted a number of case studies fol-
lowing guidelines from (Kitchenham et al., 1995).

5.1 The Examples Targeted

We used two examples, the first one (Example 1) is
taken from a textbook (Zammetti, 2006) on AJAX

based web application developments and the other
(Example 2) is a real industrial application.

• Example 1 has 8,004 lines of Java codes

• Example 2 is a business process manager com-
prised of 58,701 lines of Java code, 61,541 lines of
JavaScript codes, and 90,742 lines of JSP codes.
YUI6 is the AJAX library used.

Typical screen images of user interface for the two
examples are shown in Figure 4 and Figure 5, respec-
tively. All experiments are performed on Intel Core2
Duo CPU E8400@3.00GHz.

Figure 4: Typical screen image of Example 1.

Figure 5: Typical screen image of Example 2.

5.2 Model Generation

Appropriate guidance directives, which are the keys
for meaningful and relative quick model generations,

6http://developer.yahoo.com/yui/

CLIENT-TIER VALIDATION OF DYNAMIC WEB APPLICATIONS

93

are given to generate the corresponding screen tran-
sition diagrams for the two examples. The directives
include operations for logging in by providing user-
names and passwords whenever there is a screen im-
age having login prompts. Also, when generating the
screen transition diagrams, the maximum depth of op-
erations for each application is set to 9.

Table 1 shows the model (screen transition dia-
gram) generation results for the two examples. Please
note that although we also tried to generate tests using
the approach shown in (Mesbah and Deursen, 2009),
it did not finish generations for neither of the exam-
ples, simply because there are so many cases from its
exhaustive analysis even with the depth limit.

Table 1: Model generation results.

Example 1 Example 2
Time (sec) 3175 166114
#State 49 763
#Transition 360 4037
Avg. HTML size (kB) 11 2890

5.3 Properties for Model Checking

For Example 1, we extracted 7 properties, including
the one shown in Figure 6, from the textbook relating
to the manipulations of tabs shown in the top of Fig-
ure 4. The property in Figure 6 which is in the form
of p1, i → p2 in Figure 2 says, if the tab “Day At A
Glance” in Figure 4 is clicked, the orange area which
shows the current screen name must display “Day At
A Glance”. The other properties also check if a tab is
clicked, its corresponding screen must be shown.

For Example 2, 14 properties each of which corre-
sponds to each test case that the program developers
have used for their testing, are prepared. As Example
2 is a real industrial application, their details cannot
be shown here, but they are somehow similar to the
ones for Example 1 in the sense of manipulations.

5.4 Model Checking Results

All 7 properties for Example 1 have been model
checked within one second. Only one of the 7 prop-
erties shown in Figure 6 generates a counter example
shown in Figure 7. The counter example is automati-
cally converted to a test program which performs in-
puts required to reach and activate it, by a helper tool.
Invoking the test program obtained actually generates
an error shown in Figure 8 within a few seconds. Also
in the log of the Java server software, an error mes-
sage which indicates “Null Pointer Exception” is re-
ported as shown in Figure 9. This is a real bug in a
program shown in the textbook.

For Example 2, all properties have been checked
in 337 seconds, and all 14 properties have been
proved to be correct. As the time for model checking
is rather short, many more properties can be checked
within practical time.

As you can see from the above, once the model
is generated, model checking is relatively very quick,
and various properties can be examined with reason-
able time even for large industrial examples.

doc.xpath(’//img[@id="dayAtAGlance"]’).any? ,

/HTML/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/\

TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/IMG[2]:onclick

->

doc.xpath(’//img[@src="http://localhost:8080/\

theorganizer/img/head_dayAtAGlance.gif"]’).any?

Figure 6: One of properties used for Example 1.

State:["state_534-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/\

TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/\

TABLE[1]/TBODY[1]/TR[1]/TD[1]/IMG[2]:onclick"]

State:["state_536-raw.html"]

(a) A counter example for the property
(A transition which does not meet the property).

State:["index-raw.html"]

Transition: ["/HTML/BODY[1]/CENTER[1]/ ... /INPUT[1]:onclick"]

State:["state_5-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[1]:onclick"]

State:["state_6-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[1]:onclick"]

State:["state_9-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[1]:onclick"]

State:["state_13-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[1]:onclick"]

State:["state_18-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[1]:onclick"]

State:["state_24-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[6]:onclick"]

State:["state_398-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[2]:onclick"]

State:["state_400-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /IMG[1]:onclick"]

State:["state_466-raw.html"]

Transition: ["/HTML/BODY[1]/TABLE[1]/ ... /INPUT[1]:onclick"]

State:["state_534-raw.html"]

(b) A trace to reach the counter example from initial state.

Figure 7: Counter example for the property in Figure 6.

6 CONCLUSIONS & FUTURE
WORK

We have proposed a verification approach for AJAX

based web applications consisting of two steps:

• Generation of the models in terms of finite state

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

94

Figure 8: Screen of error message observed after playing
back an input sequence to exercise the counter example.

[ERROR] DispatcherUtils - Could not execute action

<java.lang.NullPointerException>java.lang....

at com.apress.ajaxprojects.theorganizer.actions.

DayAtAGlanceAction.execute ...

at sun.reflect.GeneratedMethodAccessor80.invoke ...

...

Figure 9: A part of server log observed after playing back
an input sequence to reach the counter example.

machines (FSMs) that correspond to the behavior
of the AJAX based web applications.

• Model checking the generated FSM based on the
user-given properties

Once the models are generated, various properties can
be checked very quickly. Also, for the model gener-
ations, the proposed technique can accept “guidance
directive” to target user-specific features and behav-
iors of the AJAX based web applications. These have
been confirmed through experiments. Industrial sized
applications can be processed within reasonable time.

Future works include more verification trials with
larger applications for more robust evaluations of the
proposed techniques as well as their extensions. On
verification trials with larger-scale applications, the
performance of model generation stage in our tech-
nique which is taking relatively long time, can be im-
proved with several strategies.

While we have introduced model reduction tech-
niques in Section 3.1.3 to reduce run time, use of the
state abstraction technique which removes DHTML
substructure unrelated to verification requirements,
was limited in the experiments. Although more ag-
gressive model reduction configuration based on ver-
ification requirements is expected to reduce time re-
quired for model generation stage, the prospect has to
be confirmed through case studies.

Most of time required for crawling-based model
generation stage is from communication latency be-
tween the crawler and the target application. As com-
putation burden of the process is relatively small, it
is desirable to introduce parallel crawling technique
used in conventional web crawler. There is an ongo-
ing work of parallelizing the process in CRAWLJAX

project, and the outcome is expected to be effective
for reducing run time of our verification flow.

REFERENCES

Alfaro, L. D. (2001). Model Checking the World Wide
Web. InComputer Aided Verification, pages 337–349.
Springer-Verlag.

Andrews, A. A., Offutt, J., and Alexander, R. T. (2005).
Testing Web Applications by Modeling with FSMs.
Software and Systems Modeling, 4:326–345.

Benedikt, M., Freire, J., and Godefroid, P. (2002). VeriWeb:
Automatically Testing Dynamic Web Sites. InPro-
ceedings of 11th International World Wide Web Con-
ference.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999).
Model Checking. The MIT Press.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999).
Patterns in Property Specifications for Finite-State
Verification. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering,
pages 411–420, New York, NY, USA. ACM.

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995).
Case Studies for Method and Tool Evaluation.IEEE
Softw., 12(4):52–62.

Marchetto, A., Ricca, F., and Tonella, P. (2008a). A Case-
Study Based Comparison of Web Testing Techniques
Applied to AJAX Web Applications. International
Journal on Software Tools for Technology Transfer
(STTT), 10(6):477–492.

Marchetto, A., Tonella, P., and Ricca, F. (2008b). State-
Based Testing of Ajax Web Applications. InICST ’08:
Proceedings of the 2008 International Conference on
Software Testing, Verification, and Validation, pages
121–130, Washington, DC, USA. IEEE Computer So-
ciety.

Mesbah, A., Bozdag, E., and Deursen, A. V. (2008). Crawl-
ing AJAX by Inferring User Interface State Changes.
In ICWE ’08: Proceedings of the 2008 Eighth Inter-
national Conference on Web Engineering, pages 122–
134, Washington, DC, USA. IEEE Computer Society.

Mesbah, A. and Deursen, A. V. (2009). Invariant-Based Au-
tomatic Testing of AJAX User Interfaces. InProceed-
ings of the31st International Conference on Software
Engineering (ICSE 2009).

Ricca, F. and Tonella, P. (2001). Analysis and Testing
of Web Applications. InProceedings of the 23rd
International Conference on Software Engineering
(ICSE’01), pages 25–34. IEEE Computer Society.

Strecker, J. and Memon, A. M. (2009). Testing Graphical
User Interfaces. InEncyclopedia of Information Sci-
ence and Technology, Second ed.IGI Global.

Zammetti, F. (2006). Practical Ajax Projects with Java
Technology. Apress.

CLIENT-TIER VALIDATION OF DYNAMIC WEB APPLICATIONS

95

