
DISTRIBUTED THRESHOLD CRYPTOGRAPHY
CERTIFICATION WITH NO TRUSTED DEALER

Apostolos P. Fournaris
Electrical and Computer Engineering Department, University of Patras, Rio Campus, Patras, Greece

Keywords: Threshold Cryptography, Elliptic Curve Cryptography, Distributed system, Certificate Authority.

Abstract: Threshold cryptography offers an elegant approach in evenly sharing certificate responsibilities to all
participants of a distributed system through Shamir’s secret sharing scheme, where a secret (the Certificate
Authority’s (CA) private key) is split and shared among all participants. However, existing threshold
cryptography distributed key generation and certification systems still rely on a single, centralized, trusted
entity at some point during the certification process (usually during initialization) to split the secret and
distribute it to all distributed system participants. This centralized entity, denoted as trusted dealer, can
cancel participant equality and can become a single point of failure. In this paper, we deal with this problem
by extending the a key generation scheme of Noack and Spitz (2009) and by proposing a certification
scheme that has no need for a trusted dealer to create, split and distribute the proposed certification
scheme’s private-public key pair. The proposed scheme uses the participant addition-removal procedure
described in (Noack and Spitz, 2009) that does not affect the scheme’s public key (used for certificate
verification) and has small interference to the certification process as a whole. To reduce the computational
cost the proposed system employs Elliptic Curve Cryptography (ECC) principles.

1 INTRODUCTION

CAs are widely used in network security following
the client-server model. However, when using CAs
for authenticity on distributed environments, like
p2p, Ad-Hoc networks, and MANETs, the
centralization introduced by the CA comes in
contrast to the distributed nature of the network and
constitutes a single point of failure.

To solve this issue, the idea of distributed
certification schemes has risen. In such schemes, the
role of a centralized entity is minimized and each
participant of the scheme is assigned some task
related to the certification services that are provided
as a whole. Threshold cryptography for distributed
CAs is based on the work of A. Shamir (1979), who
proposed the concept of a (t,n) threshold scheme. In
such approach, a methodology is developed for
splitting a secret into n shares, so that, for a certain
threshold t < n, any t components-parts of the secret
can be combined to reconstitute the secret, whereas
any combination of t-1 or less shares is incapable of
reconstructing the secret. This idea, providing a way
to save a secret in a distributed manner, is very
attractive to systems where no centralized control is

administered. However, Shamir’s scheme, needs
some sort of trusted entity for generating the secret
value, splitting it into shares and distributing them to
all the remaining participants. This entity, usually
denoted as a trusted dealer, has enhanced
responsibilities compared to the remaining system
participants and most importantly it always needs to
be trusted as well as protected because it has full
knowledge of the secret.

Desmedt and Frankel (1989) as well as Frankel
et al. (1997) were among the first to use the idea of
Shamir’s secret share to design threshold
cryptosystems based on ElGamal. Pedersen (1991)
attempted to avoid the need for a trusted dealer was
made. His work was complemented by Shoup
(2000) and was further supported by Damgård et al
(2001) where the trusted dealer intervention was
minimized. In the above schemes significant
problems occur when new participants are added or
removed to the system as pointed by Noack and
Spitz (2009). So, Noack and Spitz (2009) proposed a
discrete logarithm key distribution scheme with no
trusted dealer that has a simple participant addition-
removal mechanism.

In this paper, the work of Noack and Spitz

400 P. Fournaris A..
DISTRIBUTED THRESHOLD CRYPTOGRAPHY CERTIFICATION WITH NO TRUSTED DEALER.
DOI: 10.5220/0003525304000404
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 400-404
ISBN: 978-989-8425-71-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

(2009) is extended and an ECC based distributed
certificate authority is proposed that has a public key
known to all participants but a private key known to
none. Since there is no single CA entity or trusted
dealer, the private key is always kept secret to all
involved parties. The associated public key is used
for certificate verification of any involved party and
remains unchanged regardless of possible addition
or removal of participants. As a result, the integrity
of the proposed certification scheme is always
retained while system compromise is very difficult
as long as less than t participants are susceptible to
secret information leakage.

The paper is organized as follows. In section 2
the proposed scheme is presented and analysed. In
section 3, certificate management is described. In
section 4, participant addition and removal is
outlined. Finally, section 5 concludes the paper.

2 PROPOSED SCHEME

We assume that a group ࢁ = ሼܷଵ, ܷଶ, . . ܷሽ of n
participants ܷ wish to establish a common Public
Key ܾܲݑ = ሼܶ, ܳሽ and a corresponding private key ݒ݅ݎ. To recover priv, at least t+1 participants need
to cooperate (threshold cryptography principle)
where ݐ < ݊. We also assume that all participants
have agreed on a set of EC public parameters ܶ = ሼ, ܽ, ܾ, ,ܩ ,ݍ ℎ, ሽ defining an Elliptic curve(ݔ)ܪ
E over a prime field ܨ.with base point ܩ: ,ீݔ) (ீݕ

Initially, all involved participants generate local
public-private key pairs (one for each participant)
and agree on a global public private key pair (ܾܲݑ –
priv). This stage is denoted as key generation,
establishment and distribution.

When all participants have contributed to the key
generation, they need to obtain legitimate certificates
for themselves. By proofing knowledge of their
private information as well as proofing their
contribution to the global key generation, the
participants issue a certificate request in order to
obtain a legitimate certificate of identity. When all
participants obtain such certificates, the certification
scheme reaches a stable state and is able to operate
fully offering certificate issuing, certificate reissuing
and certificate revocation. In a stable state, new
participants can be added or removed without any
additional overhead to the proposed scheme’s
functionality.

2.1 Key Generation, Establishment and
Distribution

Initially, each participant Ui generates a local public-
private key pair similar to the ElGamal Elliptic
Curve scheme by choosing randomly a pri ∈ andܨ
computing ܲݑ = ݎ ∙ ∋ ܩ (ܨ)ܧ

This local key pair constitutes, in the
initialization stage, Ui’s contribution to the master
secret generation i.e. the global public-private key
pair. Global keys can be produced using Shamir’s
secret sharing of creating a (t,n) threshold scheme:

1. Choose t random elements ሼݏଵ, ,ଶݏ … ௧ሽݏ ∈ ܨ
2. Construct a t degree secret polynomial ݂(ݔ) = ௧ݔ௧ݏ + ௧ିଵݔ௧ିଵݏ + ⋯ + ݔଵݏ + ݏ

where ݏ = ,ݒ݅ݎ = ݎ
3. Generate for all ܷ ∈ ,ݒ݅ݎ ,ܷ = ݂(݆) where ݆ ∈ ሼ0,1, … ݆ |ݐ ≠ ݅ሽ
4. ܳ = ,ݒ݅ݎ ∙ ܩ = ݎ ∙ = ܩ ݑܲ
5. Send to node ܷ 〈݊݁ܿ݊, ܳ, ,,ݒ݅ݎ)௨ೕୀொೕݎܿ݊ܧ ,ܳ)ܪ ,,ݒ݅ݎ 〈(݁ܿ݊݊

The above actions are performed for each
participant of the system. After all messages are sent
to all involved parties, each participant Ui calculates: ܳ = ܳ ୀଵ = ,ݒ݅ݎ ∙ ୀଵܩ = ݎ ∙ ୀଵܩ ݒ݅ݎ = ∑ ୀଵݎ and ݒ݅ݎ = ∑ ,ୀଵݒ݅ݎ = ∑ ݂(݅)ୀଵ
The point Q along with the EC parameters
constitutes the global public key ܾܲݑ = ሼܶ, ܳሽ, the
value ݒ݅ݎ is the global private key while ݒ݅ݎ is
the private key share.

2.2 Proof of Knowledge Stage

After key generation completion, each participant
knows the public key of the distributed CA, the
private key share ݒ݅ݎ, a portion of the CA’s
private key (ݒ݅ݎ,) and the corresponding partial
public key ܳ . However, each participant has to
obtain a certified identification from the CA through
a certificate. Each participant has already chosen a
local public-private key pair ܲݑ, that isݎ
identical at this point with the partial key pair ܳ, ,ݑܲ ,. This pairݒ݅ݎ can be used inݎ
identification as long as it’s certified by the
distributed CA. For simplicity reasons, we will
denote the local public-private key pair as ܳ,ݒ݅ݎ, and discuss the possible difference between
local key pair and partial key pair further in section
4. To avoid impersonation attacks, the CA must
verify that the requesting participant is the true
holder of the local private key and, most

DISTRIBUTED THRESHOLD CRYPTOGRAPHY CERTIFICATION WITH NO TRUSTED DEALER

401

importantly, that the participant was actively
involved in the global public-private key generation.
We propose a proof of knowledge protocol to verify
this information. When Participant Ui (denoted as
prover) issues a certification request, it initially
performs the following two independent operations:

Local private key proof of Knowledge
1. Choose two random numbers r, ଵ݁ܿ݊݊ ∈ ܨ
2. Calculate ܴ = ݎ ∙ ܩ
3. Use Hash Function H(x) and calculate ܿ (ܴ|ଵ|ܳ݁ܿ݊݊)ܪ=
4. Calculate ݏ = ܿ ∙ ,ݒ݅ݎ + ݎ
5. Broadcast to all other participants ܲ = ሾ݊݁ܿ݊ଵ, ,ݏ ܳ, ܴ ሿ

Key share proof of Knowledge
1. Choose a random numbers ݎ for at least t+1

different participants Uj and a ݊݁ܿ݊ଶ ∈ ܨ
2. Choose a random point ܸ ∈ (ܨ)ܧ
3. Calculate ܴ = ݎ ∙ ܸ for at least t+1 different

participants Uj
4. Use Hash Function H(x) and calculate ܿ |ܸ|ଶ݁ܿ݊൫݊ܪ= ܴ ൯ for all j
5. Calculate ݏ = ܿ ∙ ݂(݅) + ݎ
6. Transmit to at least t+1 random participants Uj,

a corresponding value ܲ = ,ଶ݁ܿ݊݊ൣ ,ݏ ܸ, ܴ ൧

The participants (denoted as verifiers) that are
involved in the certification process of prover Ui,
form the group ௦ܷ and receive two messages,
broadcasted message P that is common to all
verifiers and message Pj that is unique for each
verifier Uj. The proof of knowledge by the verifiers
is achieved by performing the following operations:

Local private key proof of Knowledge
1. Receive message ܲ = ሾ݊݁ܿ݊ଵ, ,ݏ ܳ, ܴ ሿ
2. Verify freshness of the ݊݁ܿ݊ଵ value
3. Use Hash Function H(x) and calculate ܿ́ (ܴ|ଵ|ܳ݁ܿ݊݊)ܪ=
4. Check the validity of the following equation: ݏ ∙ ܩ = ܿ́ ∙ ܳ + ܴ

Key share proof of Knowledge
1. Receive message ܲ = ,ଶ݁ܿ݊݊ൣ ,ݏ ܸ, ܴ ൧
2. Verify freshness of the ݊݁ܿ݊ଶ value
3. calculate ఫ́ܿ = |ܸ|ଶ݁ܿ݊൫݊ܪ ܴ ൯
4. Use secret polynomial ݂(ݔ) to calculate the

value ሖ݂(݅)
5. Check the validity of the following equation: ݏ ∙ ܸ = ఫ́ܿ ∙ ሖ݂(݅) ∙ ܸ + ܴ

If both the above validation tests produce true
answers then each verifier Uj is persuaded that
prover Ui has knowledge of its local private key ݒ݅ݎ, and knowledge of ݒ݅ݎ, , that the verifier
provided to the prover during key generation. If at
least k verifiers ݆, 1 ≤ ݆ ≤ ݊, ݆ ≠ ݅ provided with a

message Pj from prover i, are persuaded that i has
knowledge of the associated ݒ݅ݎ, value then
participant i has knowledge of the key share ݒ݅ݎ.
2.3 Certificate Generation Stage

Successful participant’s proof of knowledge
described in section 2.2, triggers the certificate
generation mechanism of the distributed certification
scheme. Goal of this mechanism is to provide each
Ui

 with a verifiable certificate of its local public key
as well as to assign a legitimate, unique identity
through an ID number and ID attributes.

At the initialization phase of the certification
mechanism, each participant Uj , 1 ≤ ݆ ≤ ݊, ݆ ≠ ݅,
acting as verifier, attains the role of signer and uses
the already acquired knowledge on the certification
candidate participant Ui to produce a certificate
share containing a digitally signed Qi and
identification share IDj. The identification share IDj

includes the ID number (ܦܫ) and a set of w
Identification attributes ܣ ܶ , where 1 ≤ ݉ ≤ .ݓ
More specifically, each signer participant Uj
performs the following actions:

1. Choose a random number ݇ ∈ ܨ
2. Calculate ܻଵ = ݇ ∙ ܩ
3. Generate ܦܫ = H(ܳ) ∙ ݇ + ݒ݅ݎ ∙ ݔ whereݔ = ∏ ቀ ି௧௧ିቁ௧∈ೞ,௧ஷ
4. Generate a set of ID attributes ܶܣ = ൛ܣ ܶ ∈ ห1ܨ ≤ ݉ ≤ ൟݓ
5. Calculate ݏ = ∑൫ܪ ܣ ܶ௪ୀଵ ൯ ∙ ݇ − ,ݒ݅ݎ
6. Send to Participant Ui ܯ = ቂܦܫ , ,ܶܣ ൣ ܻଵ, ൧ቃݏ

where ൣ ܻଵ, ൧ is the certificate share for signer Ujݏ

Upon receipt of the certificate shares of every
signer on the group ௦ܷ, the certificate requesting
participant Ui verifies the shares and generates the
certificate. Determination of the Identification
Attributes is achieved by performing a proposed
operation called random consultant advice. During
this operation, the certificate requesting participant
chooses randomly a signer participant as its
consultant ܷ௦ and adopts this consultant’s sent
Identification attribute vector ܶܣ௦

1. Choose a random number ݎ ∈ ܨ
2. Calculate ܻଶ = ݎ ∙ ܩ
3. Calculate ܻଵ = ∑ ܻଵ∈ೞ = ∑ ݇ ∙ ∈ೞܩ
4. Calculate ID number ܦܫ= ∑ ∈ೞܦܫ
5. Random Consultant Advice:

a. ݎݐܿ݁ݒ ݁ݐܽݎ݁݊݁ܩ ܸ = ൣ ܸ = ܻଵ + ܳห݂ݎ ݈݈ܽ ݆ ∈ ௦ܷ൧

SECRYPT 2011 - International Conference on Security and Cryptography

402

b. Generate vector ܥ = ܥൣ = ൫ܪ ܸ൯ ห݂ݎ ݈݈ܽ ݆ ∈ ௦ܷ൧
c. ܥ݊݃݅ݏ = ((ܥ)ℎܽ݅݊ܥℎݏܽܪ) ∙ r + ,ݒ݅ݎ
d. Find ܥ௦ = and choose associated ܷ as ܷ௦, (min(C) is the minimum value of C) (ܥ)݊݅݉
e. Verify ݏ ∙ ܩ = ∑൫ܪ ܣ ܶ௪ୀଵ ൯ ∙ ܻଵ − ܳ

for ܷ = ܷ௦ (j=cons)
f. If step 5e is valid then assign ܶܣ = ܣൣ ܶ ห݂1 ݈݈ܽ ݎ ≤ ݉ ≤ ,ݓ ݆ = ൧ ݏ݊ܿ
g. Generate Signing Vector: ܵ݅݃݊ܳ = ൣܳห݂ݎ ݈݈ܽ ݆ ∈ ௦ܷ ൧

6. Publish Certificate as: ݐݎ݁ܥ = ቊ ,ܦܫ ܳ, ,ܶܣ ܵ݅݃݊ܳ,൛ܻଵ , ܻଶ, ,ݏ ,ൟܥ݊݃݅ݏ ሼܳ௦, ܻ௦ଵ , ௦ሽቋݏ

The operation HashChain() provides a digest of
a value or a series of values as well as integrity
measure on the sequence series of values. In our
case, we define HashChain() as an iterative process
where ܪ = ିଵܥ)ܪ + ଵܪ ,(ିଵܪ = (ܥ)ℎܽ݅݊ܥℎݏܽܪ and (ଵܥ)ܪ = ௧ାଵ for all i in ܷܪ ∈ ௦ܷ.

The above operations are repeated for every
participant in the group U. Upon completion, each
participant of the proposed scheme has a legitimate
signed certificate of its characteristics
,ܦܫ) ܳ, ,ܶܣ ܵ݅݃݊ܳ). At this point the scheme has
reached a stable state.

The verification of the participant’s ID
characteristic using its certificate can be achieved by
performing the following operations:

1. Verify ܳ and ܦܫ by checking the validity of
equation ܦܫ ∙ ܩ = (ܳ)ܪ ∙ ܻଵ + ܳ

2. Verify choice of random consultant:
a. From vector SignQ generate vector ሖܸ = ൛ ఫܸሖ = ܻଵ + ܳ ห ݂ݎ ݈݈ܽ ݆ ∈ ௦ܷൟ
b. Generate vector ܥሖ = ൛ܥఫሖ = ൫ܪ ఫܸሖ ൯ ห ݂ݎ ݈݈ܽ ݆ ∈ ௦ܷൟ
c. Verify equation ܥ݊݃݅ݏ ∙ ܩ = ሖܥ)ℎܽ݅݊ܥℎݏܽܪ) ∙ ܻଶ + ܳ
d. Find ܥሖ௦ = ݉݅݊൫ܥሖ ൯ and verify if associated ܳ

is equal to ܳ௦
3. Verify ܶܣ by checking the validity of equation ݏ௦ ∙ ܩ = ∑)ܪ ܣ ܶ௦௪ୀଵ) ∙ ܻ௦ଵ − ܳ௦

The random consultant advice verification main
goal is to prove randomness of participant’s Ui
choice of consultant. Retracing the steps of this
choice by any certificate verifier should always lead
to the same participant and this participant should be
the participant Ucons included in the certificate. The
distributed generation of the EC point ܻଵ added to
the public key of each participant in ௦ܷ can
guarantee randomness of each Hash Function
outcome. As a result, the minimum value of the
Hashing results cannot be retraced (due to one way

function property) and is different in each issued
certificate resulting to different consultant advice.

3 CERTIFICATE MANAGEMENT

When a legitimate, fully functional, certificate
reaches its validity end, the certificate owner must
request a certificate reissuing or update before this
validity time limit is reached. During reissuing, the
requesting participant retains his local public -
private key pair and his ܦܫ as well as some of his
Identification attributes depending on the system at
hand. In the proposed scheme certificate reissuing is
done by broadcasting a reissue request from a
Participant accompanied by his existing certificate to
a signer set ሖܷ ௦. Each Participant ܷ of ሖܷ ௦
verify the existing certificate and generate a new ID
Attribute set ܣሖܶ , digitally signs it by performing ́ݏ = ∑൫ܪ ሖܶܣ ௪ୀଵ ൯ ∙ ሖ݇ − , using a randomݒ݅ݎ
number ሖ݇ and transmits to the requesting participant
the new ൛ܣሖܶ , ,ݏ́ ሖܻଵൟ where ሖܻଵ = ሖ݇ ∙ The .ܩ
requesting participant performs the Random
Consultant Advice operation using as random point ܻ௩ଵሖ = ∑ ሖܻଵ∈ೞ and publishes the new certificate

ݐݎ݁ܥ = ቊ ,ܦܫ ܳ, ሖܶܣ , ܵଓ݃݊ܳሖ ,൛ܻଵ , ܻ௩ଵ , ܻଶ, ,ݏ ሖܥଓ݃݊ݏ ൟ, ൛ ሖܳ ௦, ሖܻ௦ଵ , ௦ൟቋݏ́

where ܶܣ, ൛ ሖܳ ௦, ሖܻ௦ଵ , ௦ൟ are the Randomݏ́
Consultant Advice operation results. Note, that the
reissued certificate includes the value ܻ௩ଵ ,
indicating certificate reissuing. In future reissuing, ܻ௩ଵ value is compared to the original ܻଵ value. For
valid reissued certificates, ܻ௩ଵ ≠ ܻଵ .
The certificate reissuing process occurring after a
successful participant addition or removal is
different and is further discussed in subsection 4.1.

Certificate revocation must be performed in a
timely and efficient manner and cannot be
overlooked during certificate verification. Common
distributed revocation schemes are based on
participant voting on the credibility of a certificate
(Crépeau, C. & Davis, C.R., 2003), (Arboit, G. et al.,
2008) (Kyul Park et al., 2010). Each participant can
place an accusation vote for another participant’s
certificate. If the number of participants accusing a
particular entity exceeds a predefined threshold RT,
the accused participant’s certificate is revoked.

In the proposed scheme, based on threshold
cryptography, the use of Participant revocation
voting can be successfully included, since the
threshold mechanism infrastructure is already

DISTRIBUTED THRESHOLD CRYPTOGRAPHY CERTIFICATION WITH NO TRUSTED DEALER

403

present. We suggest using the scheme described by
Arboit, G. et al., (2008) where the certificate
revocation scheme requires that participants of the
system monitor the behavior of the other nodes.

4 PARTICIPANT
ADDITION-REMOVAL

One of the important benefits of the proposed
certification scheme is its ability to easily add and
remove Participants in the group U. To achieve that,
we adopt the participant addition-deletion
mechanism proposed by Noack and Spitz (2009).
We assume that the certification scheme has been
already established, that every participant has his
local public-private key pair, his partial public key
pair as well as his legitimate certificate and that he
has contributed successfully to the generation of the
global public-private key pair of the distributed CA.

We employ the share renewal technique of
Noack and Spitz (2009), based on the PSS scheme
of Herzberg, A. et al., (1995). PSS updates already
distributed shares of all n members to provide
proactive security. While adding a participant, ݐ + 1
members of U, forming a subset Usplt, split off a part
of their secret and share this part with the new
member. Removing a participant is done by
computing and redistributing the participant's secret
to some remaining U members.

4.1 Addition-Removal Certificate
Management

Addition - Removal of Participants has no effect in
the global public key of the distributed certification
scheme. So, certificates remain valid even after the
partial public-private key pairs change values and
can still be issued or verified. This happens due to
the fact that the local public private key pairs that
handle secure communication between participants
are different in principle from the partial public –
private key pairs. Local key pairs are only changing
in a certificate reissuing operation after a participant
addition –removal. In that case, the reissuing
certificate procedure is different than the one
described in 3. In certificate reissuing after
participant addition –removal, the partial key pair
replaces the local key pair of a requesting participant
and subsection 2.2, 2.3 processes are executed.

5 CONCLUSIONS

In this paper, an ECC based fully distributed
Threshold cryptography certification scheme was
proposed that eliminates the need for trusted dealer
for secret sharing. The certification infrastructure is
self-organized and fully decentralized. Also, using
the mechanism described by Noack and Spitz
(2009), addition and removal of participants is
achieved while keeping the global public key
unchanged..

ACKNOWLEDGEMENTS

The reported work is supported through the
SECRICOM FP7 FP7 SEC 218123European project

REFERENCES

Shamir, A. auth., 1979. How to share a secret.
Communications of the ACM, 22, σ.612–613.

Desmedt, Y& Frankel Y., 1989: Threshold Cryptosystems.
CRYPTO 1989:307-315

Frankel, Y. et al. auth., 1997. Optimal-resilience proactive
public-key cryptosystems. Proceedings of the 38th
Annual Symposium on Foundations of Computer
Science, pp.384–.

Pedersen, 1991: A Threshold cryptosystem without a
trusted third party, proc. of EuroCrypt 91, Springer
Verlag LNCS nr. 547.

Shoup, V. auth., Practical threshold signatures. , 1807
pages, pp.207-220.

Damgård, I. & Koprowski, M. auth., 2000. Practical
Threshold RSA Signatures Without a Trusted Dealer. ,
pp.152-165.

Andreas Noack, Stefan Spitz, 2009, Dynamic Threshold
Cryptosystem without Group Manager Network
Protocols and Algorithms 1: 1. pp 108-121

Crépeau, C. & Davis, C. R. auth., 2003. A certificate
revocation scheme for wireless ad hoc networks. in
Proceedings of the 1st ACM workshop on Security of
ad hoc and sensor networks. SASN ’03. New York,
NY, USA: ACM, pp 54–61.

Arboit, G. et al. auth., 2008. A localized certificate
revocation scheme for mobile ad hoc networks. Ad
Hoc Networks, 6, pp.17–31.

Kyul Park et al. auth., 2010. Certificate Revocation to
Cope with False Accusations in Mobile Ad Hoc
Networks. in Vehicular Technology Conference (VTC
2010-Spring), 2010 IEEE 71st. Vehicular Technology
Conference (VTC 2010-Spring),. pp 1-5.

Herzberg, A. et al. et al., 1995. Proactive Secret Sharing
Or: How to Cope With Perpetual Leakage. Lecture
Notes in Computer Science, 963:339, pp.339--352.

SECRYPT 2011 - International Conference on Security and Cryptography

404

