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Abstract: Algebraic specification languages have been successfully used for the formal specification of abstract data 
types (ADTs) and software components, and there are several approaches to automatically derive test cases 
that check the conformity between the implementation and the algebraic specification of a software 
component. However, existing approaches do not assure the coverage of conditional axioms and conditions 
embedded in complex axioms. In this paper, we present a novel approach and a tool to automatically derive 
test cases from bounded algebraic specifications of ADTs, assuring axiom coverage and of all minterms in 
its full disjunctive normal form (FDNF). The algebraic specification is first translated into the Alloy 
modelling language, and the Alloy Analyzer tool is used to find model instances for each test goal (axiom 
and minterm to cover), from which test cases in JUnit are extracted. 

1 INTRODUCTION 

Our society is increasingly dependent on the correct 
functioning of software systems, so the software 
industry should strive to deliver essentially defect 
free software, by using more effective and efficient 
defect prevention and detection techniques than are 
in common use today. The automatic generation of 
test cases from formal specifications should play an 
important role in that effort, because of the higher 
rigor, automation and thoroughness that is 
introduced in the testing process, when compared to 
manual test case generation (Bo et al., 2008, Chen et 
al., 1998, Hughes and Stotts, 1996).  

Amongst the existing formal specification 
languages, algebraic ones are particularly well suited 
for the generation of black-box tests, because the 
syntax and semantics of the operations provided by a 
software component are specified irrespective of 
how its state is represented and manipulated 
internally, contrarily to what happens with other 
formal specification languages. A simple example of 
an algebraic specification of an abstract data type 

(ADT) (Guttag, 2002) is shown in Figure 1. The 
semantics of operations is defined through axioms 

that relate different operations, without any 
assumption about how the state is represented 
internally. 

However, this very-high level of abstraction also 
poses additional challenges for test case generation. 
In fact, several approaches exist to automatically 
derive test cases from algebraic specifications (Bo et 
al., 2008, Chen et al., 2001, Chen et al., 1998, Dan 
and Aichernig, 2005, Bernot et al., 1991, Kong et 
al., 2007, Doong and Frankl, 1994), but they do not 
assure the coverage of conditional axioms and 
conditions that are part of complex Boolean 
expressions, as explained in more detail in the state 
of the art section of this paper. 

To overcome such limitations, we use the Alloy 
Analyzer tool and its constraint satisfaction 

1: Sort 
2:    Stack 
3: Operations 
4:    newStack: ‐> Stack 
5:    push: Stack  Int ‐> Stack 
6:    pop: Stack ‐> Stack 
7:    ... 
8: Axioms 
9:    Stack S, Int E: S.push(E).pop() = S 
10:    ... 

Figure 1: Excerpt of the Stack algebraic specification. 
*Work supported by FCT under contract 
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capabilities (Jackson, 2011b, Jackson, 2011a, 
Cunha, 2009, Anastasakis et al., 2008). The main 
idea is to translate the algebraic specification into a 
satisfiable Alloy model, according to a set of rules. 
Then, the Alloy Analyzer is used to find model 
instances that exercise specified axiom cases, from 
which test cases are finally extracted using a 
refinement mapping to the target implementation 
language.  

With this method, it is possible to generate tests 
that guarantee coverage of all the minterms in the 
axiom’s full disjunctive normal form (FDNF). The 
method also allows checking the consistency of the 
algebraic specification by examining the model 
instances found by Alloy Analyzer. 

The work presented in this paper is part of a 
larger project aimed at improving the reliability of 
software components (FCT, 2009), using ConGu 
(Abreu et al., 2007b, Reis, 2007, Nunes et al., 2009) 
as the algebraic specification language and Java as a 
target implementation language.  

The rest of the paper is organised as follows. 
Section 2 presents the state of the art. Section 3 
gives an overview of the test case generation 
approach. Section 4 gives an overview of the 
algebraic specification language used and the 
refinement mapping to Java types. In section 5, the 
translation rules and decisions made to convert the 
algebraic specification modules into Alloy 
specifications are explained. Section 6 describes 
how test cases can be produced from the model 
instances. Section 7 presents some conclusions and 
future work. A simple running example is used to 
illustrate the approach. 

2 STATE OF THE ART 

Three main techniques were found in the literature 
to generate test cases based on algebraic 
specifications (Mcmullin, 1982, Hughes and Stotts, 
1996, Doong and Frankl, 1994, Bo et al., 2008, Chen 
et al., 2001, Chen et al., 1998, Dan and Aichernig, 
2005, Bernot et al., 1991, Kong et al., 2007): manual 
scripting, term rewriting and variable substitution.  

2.1 Manual Scripting 

In manual scripting (Mcmullin, 1982, Hughes and 
Stotts, 1996) the user supplies the values and terms 
to exercise for each free variable, and a tool 
substitutes each possible combination of values in 
the axioms. This approach involves too much 
manual  work, is prone to errors and omissions, and  

may cause a combinatorial explosion of test cases. 

2.2 Term Rewriting 

Term rewriting proposes that permissible term 
expressions be generated at random using the 
methods and operations of an algebraic 
specification, and then rewritten into their 
necessarily unique normal form, using the algebraic 
specification’s axioms as rewriting rules (Doong and 
Frankl, 1994). This way, one may build test cases by 
checking if the legal terms generated and the normal 
form terms are equivalent. Considering the push and 
pop operations and the axiom in Figure 1, the three 
steps involved are illustrated in Figure 2. 

Step 1: Generate term expression 
   newStack.push(3).push(7).pop() 

Step  2:  Reduce  to  normal  form  using  axioms  as 
rewriting rules 
   newStack.push(3).push(7).pop()  
newStack.push(3) 

Step 3: Produce assertion 
   newStack.push(3).push(7).pop()  = 
newStack.push(3) 

Figure 2: Test case generation using term rewriting. 

One of the problems to overcome with this 
method is how to generate the initial term 
expressions in an automated way, when operation 
domains and conditional axioms are present. 
Another problem, which is put up by the author of 
(Doong and Frankl, 1994), is how to deal with these 
initial term expressions when they do not hold a 
unique normal form equivalent – in a set you may 
have the axiom set1.insert(a).insert(b) = 
set1.insert(b).insert(a). A possible solution to this 
problem may be to generate several test assertions. 

2.3 Variable Substitution 

Variable substitution suggests going through each 
axiom and substituting its variables with randomly 
generated type instances and term expressions made 
up of constructive operations only – the same as 
saying normal form term expressions (Bo et al., 
2008, Chen et al., 2001, Chen et al., 1998, Dan and 
Aichernig, 2005, Bernot et al., 1991, Kong et al., 
2007). Figure 3 shows an example considering the 
same algebraic specification excerpts as in Figure 1. 

TEST GENERATION FROM BOUNDED ALGEBRAIC SPECIFICATIONS USING ALLOY

193



 

Although this method has  the advantage that each  test 
case  generated  exercises  a well  identifiedStep  1:  Pick 
axiom 
   Stack S, Int E: S.push(E).pop() = S 

Step  2:  Generate  expressions  and  primitives  for 
variables 
   S = newStack.push(7) 
   E = 3 

Step 3: Produce assertion 
   newStack.push(7).push(3).pop()= newStack.push(7) 

Figure 3: Test case generation using variable substitution. 

axiom, the random generation process may be 
unable to generate combinations of values that 
satisfy conditions in conditional axioms, multi-
conditional axioms (if-then-else and if-and-only-if), 
and complex Boolean expressions. 

2.4 Automatic Test Case Generation 
with Alloy 

TestEra (Khurshid and Marinov, 2003, Khurshid and 
Marinov, 2004) is a tool which generates input 
values to test Java programs from pre-conditions 
given as first-order relational formulas in the Alloy 
modelling language. First, it generates all non-
isomorphic instances to find the possible inputs for a 
Java method, using the available Alloy 
pre-conditions for a given bound, and converts these 
inputs to Java – concretisation translation. 
Afterwards, it runs the Java method with these input 
values and converts the outputs obtained back to 
Alloy – abstraction translation – to verify the 
correctness of each input/output pair by evaluating a 
formula that represents the method post-condition. 

Although the concretisation translation is quite 
interesting, and quite similar to the problem to tackle 
in this paper, the goal is to translate the whole 
instances found by Alloy to Java as test cases – 
sequences of operations with corresponding input 
values – and not only input variables. 

3 METHOD AND TOOL 
OVERVIEW 

This section gives an overview of the approach 
proposed in this paper. The workflow diagram is 
shown in Figure 4. 

First of all, the ConGu algebraic specification 
and the refinement mapping file – explained later on 

in section 4 – are inputs of the ConGu’s Parser 
which creates an in-memory object representation of 
the algebraic specification and refinement mapping. 
This representation is translated into Alloy by the 
new Alloy Translator tool, according to a set of 
translating rules. A set of run commands are 
automatically generated by the tool to exercise all 
minterms in the full disjunctive normal form 
(FDNF) of each axiom. More detail is provided in 
section 5. 

Afterwards, Alloy Analyzer reads the outputted 
Alloy specification and executes each of the run 
commands at a time. Each model instance found by 
Alloy Analyzer satisfying a run command is 
exported into a XML format. The test generator tool 
receives the XML representation of the model 
instances found and the in-memory representation of 
the refinement mapping as input, and generates 
corresponding JUnit test cases. More in-depth 
explanation of this step can be found in section 6. 

Figure 4: Overview of the test generation process.  

4 ALGEBRAIC SPECIFICATION 
AND REFINEMENT MAPPING 
WITH CONGU 

This section explains how the algebraic specification 
and the refinement mapping to Java classes, and 
interfaces, are organised in ConGu (Nunes et al., 
2009).  

ConGu supports sub-sorting, i.e., the 
specification of sorts that extend other sorts. 
Implicitly,  all sorts are ultimately a sub-sort of the  
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implicitly existent ConGu sort Element.  
In a ConGu specification there are three types of 

operations (Abreu et al., 2007a): constructors, 
observers and others. Constructors consist of a 
minimal number of operations needed to build any 
possible value of the sort, while observer operations 
are operations used to analyze the value of a sort. As 
for other operations, these are defined as being 
derived from the first two previously defined 
operations or comparing operations. The 
constructors can also be divided into two types: the 
creators, that do not have parameters of the sort 
type they instantiate, and transformers, that are the 
remaining constructors that have at least the first 
parameter of the same sort type as its output, called 
self argument. All non-constructor operations have 
the self argument. 

After the declaration of the several types of 
operations, there is a section called “domains” to 
restrict the domain of partial operations. 

An example of a ConGu specification for a 
bounded stack of integers (with limited size) is 
shown in Figure 5. The size limitation makes the 
corresponding Alloy model satisfiable by finite 
instances. 

1: specification BStackInt 
2:    sorts 
3:       BStackInt 
4:    constructors 
5:       make: int ‐‐> BStackInt; //Creator 
6:       push:  BStackInt int ‐‐> BStackInt; //Transformer 
7:    observers 
8:       peek:    BStackInt ‐‐>? int; 
9:       pop:     BStackInt ‐‐>? BStackInt; 
10:       size:    BStackInt ‐‐> int; 
11:       maxSize: BStackInt ‐‐> int; 
12:    others 
13:       empty: BStackInt; 
14:    domains 
15:       S: BStackInt;  
16:       E: int; 
17:       peek(S) if not empty(S); 
18:       pop(S)  if not empty(S); 
19:       push(S, E) if size(S) < maxSize(S); 
20:    axioms 
21:       S: BStackInt; 
22:       E, N: int; 
23:       peek(push(S, E)) = E  if size(S) < maxSize(S); 
24:       pop(push(S, E)) = S if size(S) < maxSize(S); 
25:       size(make(N)) = 0; 
26:       size(push(S, E)) = 1+size(S) if size(S)<maxSize(S); 
27:       empty(S) iff size(S) = 0; 
28:       maxSize(make(N))  = N; 
29:       maxSize(push(S,E)) = maxSize(S)  
30:             if size(S) < maxSize(S); 
31: end specification 

Figure 5: ConGu algebraic specification of a bounded 
stack of integers. 

For mapping sorts to Java classes, there are files 
called refinement mapping files, in charge of 
associating each sort and its predicates and 
operations to the respective Java class and methods. 
Figure 6 is the possible Java class – StackInt – the 
BStackInt sort would correspond to. 

So, having the ConGu specification and knowing 
the corresponding types desired, the refinement 
mapping would be the one represented in Figure 7. 

1: public class StackInt{ 
2:    public StackInt(int max){...} 
3:    public void push(int e){...} 
4:    public int peek(){...} 
5:    public void pop(){...}  
1:    public int size(){...} 
2:    public int maxSize(){...} 
3:    public boolean isEmpty(){...} 
4:    ... 
5: } 

Figure 6: Skeleton of a Java implementation of a Stack of 
integers. 

1: refinement 
2:   BStackInt is StackInt { 
3:    make: n:int ‐‐> BStackInt is StackInt(int n); 
4:    push:BStackInt  e:int‐‐>BStackInt  is  void 

push(int e);  
5:    peek: BStackInt ‐‐>? int is int peek(); 
6:    pop: BStackInt ‐‐>? BStackInt is void pop(); 
7:    size: BStackInt ‐‐> int is int size(); 
8:    maxSize: BStackInt ‐‐> int is int maxSize(); 
9:    empty: BStackInt is boolean isEmpty(); 
10:   } 

Figure 7: Stack of integers’ refinement mapping. 

5 TRANSLATION TO ALLOY 

This section presents the rules followed by the 
developed tool to translate algebraic specifications, 
written in ConGu, to Alloy specifications. We 
assume the reader is familiar with Alloy. For an 
introduction please see (Jackson, 2011b). 

Requirements to take into consideration before 
going further are: 
• The resulting Alloy specification should be 

satisfiable by finite models in order to enable 
Alloy Analyzer to find model instances; 

• The resulting Alloy specification should be 
consistent with the algebraic specification;  

• Sorts should include, at least, two constructors: 
one creator and one transformer. These 
constructors should exist in order to extract state 
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transitions of the sort type from the Alloy model 
instances and generate test cases. 

The first two points may conflict with each 
other. The first one requires the manipulation of the 
algebraic specification in order to generate finite 
Alloy specifications. This was performed for the 
stack of integers by imposing a limit on its size. 
Additional constraints introduced in the Alloy 
specification will be described later on. 

In the sequel it will be described how sorts, 
operation domains and axioms are translated from 
the algebraic specification to Alloy, and how the test 
goals are specified as run commands in Alloy. 

5.1 Signatures 

Each sort of the algebraic specification is translated 
into a signature in Alloy, with its operations and 
predicates as relations, according to a set of rules 
summarized in Table 1, found in the appendix, and 
illustrated in this section through the examples. 
Figure 8 presents the translation to Alloy of the 
syntactic part of the algebraic specification of the 
bounded Stack of integers, according to the rules in 
Table 1. 

 
Figure 8: Alloy signatures generated for the bounded stack 
of integers. 

Sorts. All non-primitive signatures extend the 
Element signature, represented in line 1 in Figure 8, 
which has no relations and represents the Element 
sort in ConGu (see rules R1, R2 and R3 in Table 1). 

Operations (except creator constructors). All 
operations (except creator constructors) are 
represented as fields (relations) of the signature 
corresponding to the original sort. Since the self 

argument represents the sort the operation is applied 
to, it does not appear as an argument.  

An operation that only has the self argument as 
an argument, in Alloy, becomes a single relation to 
an instance of the signature that represents the 
output sort of the operation (R4 in Table 1). An 
example of this case, in the bounded Stack of 
Integers example, is the ¯¤¤ª operation. 

An operation that has more arguments than the 
self argument requires a multirelational field, 
relating the signature instances of the arguments of 
the operation with its output parameter (R4 in Table 
1). 
Predicates. Predicates obey these same rules except 
that the outputs of the resulting relations are always 
a Boolean signature instance (R5 in Table 1). An 
example, in the Stack example, is the empty 
predicate. 

Partial Operations and Predicates. Relations 
translated from operations or predicates that have a 
restricted domain, create lone (one or none) type 
relations (R6 in Table 1). The reason to generate 
lone type relations from an operation with a 
restricted domain is to only allow relations to exist 
within that domain. An example of an operation with 
a restricted domain is pop. 

Creator Constructors. Creator constructors 
generate a lone relation in the signature named start, 
which has one instance of itself in every model 
instance generated and is the source of all the 
signature instances (R7 and R8 in Table 1). An 
example of a creator constructor is make. 

Argument Sorts of Constructor Operations. In  
order to guarantee that the Alloy specification is 
satisfiable by finite model instances, the domain of 
each argument of each constructor (except the self 
argument) is constrained to belong to a finite set. 
Those sets are declared as fields of the start 
signature (rule R9 in Table 1), and facts are added to 
restrict the arguments’ domains to those sets. 
Domain restriction conditions are implicitly applied 
to all the axioms that refer those constructors (to be 
described in the sequel). Examples for the push and 
make constructors are shown in lines 14-15 in 
Figure 8. 

5.2 Signature Restraining Facts 

Next, basic signature restraining facts to ensure that 
model instances are consistent with the original 
algebraic specification will be described. 

In the algebraic specification, the instances of the  

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

196



 

sorts are implicitly constrained to the ones that may 
be constructed by a constructor term expression, 
starting with a creator constructor operation. When 
translating the algebraic specification to Alloy, this 
assumption must be made explicit by defining 
signature binding facts to avoid generating 
inconsistent instances wrt the original algebraic 
specification. For example, the instances of the core 
signature – signature correspondent to the sort to be 
tested – reached only by using at least one observer 
operation – like the pop operation – could turn the 
model instance inconsistent wrt the original 
algebraic specification. So, starting from the start 
signature instance, all instances of core signatures 
must be reached through constructor relations. 

The fact to impose this constraint, in the case of 
the bounded stack of integers, is shown in lines 1-5 
in Figure 9, following the rule in Table  in the 
appendix. This fact imposes that all instances of the 
stack are generated by using the creator constructor 
make, followed by 0 or more applications of the 
transformer constructor push. 

 
1: fact BStackIntConstruction{ 
2:    BStackInt in  
3:       (start.make[Int]).* 
4:          {x:BStackInt, y:x.push[Int]} 
5: } 
6:  
7: fact ElementUsedVariables { 
8:     Element in (BStackInt) 
9: } 

Figure 9: Signature restraining facts generated for the 
bounded stack of integers. 

In order to remove from the equation model 
instances with unrelated instances of non-core 
signatures – Element in the example –, another fact 
is written. In this fact, either a non-core signature 
instance is being used as the input or output of a core 
signature’s relation or the instance at hand is an 
instance of a sub-signature of this signature, as can 
be seen in Table , in the appendix. Lines 7-9 in 
Figure 9 show the fact generated for the Element 
signature. 

5.3 Axioms and Domains 

Now we will explain the translation of the semantic 
part of the algebraic specification, i.e., axioms and 
domains, to facts. 

Axioms. Each axiom is translated to a fact in Alloy. 
First, the free variables used in the axiom originate 
universally quantified variables over the 

corresponding signatures in Alloy. Then, if the 
axiom expression involves constructors with 
non-self arguments, pre-conditions are introduced to 
restrict their domains to the finite sets declared in the 
start signature (see section 5.1). Done this, the 
axiom expression is laid down. The rule is described 
in Table , in the appendix, and an example is 
presented in Figure 10. 

1: fact axiomBStackInt1{ 
2:    all E:Int, S:BStackInt | 
3:       (E in start.pushInt0) implies ( 
4:           (S.size < S.maxSize) implies (S.push[E].pop = 

S)) 
5: } 

Figure 10: Alloy fact generated for the axiom in line 24 of 
Figure 5. 

As can be seen, conditional axioms are treated as 
implications. As for the else and iff tokens, of the 
ternary conditional and biconditional axioms, they 
remain unaltered in Alloy since these tokens exist in 
Alloy and mean the same as they do in ConGu. 

Domains. Each domain restriction (for a partial 
operation) is translated also to a fact in Alloy. The 
variables used in a domain fact are declared in the 
same manner as with axioms. When the declared 
pre-condition in the domain declaration evaluates to 
false, or the non-self arguments of the constructors 
appearing in that pre-condition are outside the 
domain declared in the start signature, the 
corresponding lone relation in Alloy becomes 
nonexistent. Otherwise, the relation must exist. 

The rule is described in Table  and an example is 
presented in Figure 11.  

 
1: fact domainBStackInt2{ 
2:    all E:Int, S:BStackInt | 
3:       (S.size < S.maxSize and E in start.pushInt0) 
4:          implies one S.push[E] else no S.push[E] 
5: } 

Figure 11: Alloy fact generated for the domain restriction 
in line 19 of Figure 5. 

5.4 Generation of Run Commands for 
Exercising Axioms 

Our default test coverage criterion is to generate a 
test case for each minterm in the FDNF 
representation of each axiom (see Table 5 in the 
appendix). Although not all minterms are necessarily 
satisfiable, at least one minterm should be satisfiable 
for each axiom.  
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For each axiom and minterm, in order to find 
bindings of the axiom’s free variables that satisfy the 
minterm, a run command is generated in a 
straightforward way as illustrated in Figure 12. 

There is one configurable complexity variable 
that may be defined when performing a run 
command with the developed tool. This variable, 
called max, defines the maximum allowed number 
of instances for each signature in a model instance. 
In this example, this variable was set to 7 (seven). 

1: run run_axiomBStackInt4_0{ 
2:    some S: BStackInt | 
3:       (S.empty = BOOLEAN/True) and  (S.size = 0) 
4: } for 7 
5:  
6: run run_axiomBStackInt4_1{ 
7:    some S: BStackInt | 
8:       (S.empty = BOOLEAN/False) and (S.size != 0) 
9: } for 7 

Figure 12: Run commands generated for exercising 
axiomBStackInt4 (see line 27 of Figure 5).  

A graphical representation of a model instance 
found by Alloy Analyzer when a run command is 
executed is shown in Figure 13. The diagram shows 
clearly how the free variables are instantiated (S in 
this example) and how the axiom is exercised.  

 

 

Figure 13: Model instance found by Alloy Analyzer when 
the run_axiomBStackInt4_1 command is executed.  

6 EXTRACTION OF JUNIT TEST 
CASES FROM ALLOY 

This section describes how test cases in JUnit (Beck 
et al.) are extracted from the model instances found 
by Alloy Analyzer. 

As explained before, for each minterm of each 
axiom, it is generated a run command that, when 
executed by Alloy Analyzer, will find a model 
instance and bindings for the axiom’s free variables 
that satisfy the minterm. The model instance found 
is exported to XML and subsequently interpreted (as 
a Finite State Machine) by the test extractor tool, to 
find shortest paths for constructing the axiom 
variables. 

The refinement mapping from the algebraic 
specification to Java (see section 4) is used to 
produce a proper encoding of the test cases in Java.  

An example of a test case extracted from the 
model instance in Figure 13 is shown in Figure 14. 

The test code generated has two parts: a setup 
part, where the variables involved in the axiom are 
constructed (according to the model instance found 
by Alloy Analyzer), and an axiom verification part, 
where the specific minterm of the axiom is checked 
(as specified in the run command). To construct each 
variable, it is followed a shortest path in the model 
instance, from the start  signature instance to the 
node bound to that variable. In the axiom 
verification part, it is generated a separate assertion 
for each operand of the minterm (conjunction) being 
exercised, for better fault localization. 

1: @Test 
2: public void test_axiomBStackInt4_1() { 
3:   // setup 
4:    StackInt BStackInt1 = new StackInt(1); 
5:    StackInt BStackInt2 = BStackInt1.push(‐8); 
6:    StackInt S = BStackInt2; 
7:    // axiom verification 
8:    assertTrue(!S.isEmpty()); 
9:    assertTrue(S.size() != 0); 
10: } 

Figure 14: JUnit test case corresponding to the second run 
command of Fig. 12 and the model instance in Fig. 13, 
using the refinement mapping in Figure 7. 

Equality axioms, such as pop(push(S,E))=S, are 
checked with assertEquals, which in turn uses the 
equals method in Java, so the approach relies on the 
correct implementation of equals.  

7 CONCLUSIONS 

An approach was described to automatically 
generate JUnit test cases from algebraic 
specifications of ADTs, using an intermediate 
translation to Alloy. In this approach, a test case is 
generated for each minterm of the FDNF 

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

198



 

representation of each axiom. Reasoning about the 
Alloy model allows also checking the consistency of 
the algebraic specification itself. Although, for space 
constraints, the example presented in the paper is 
very simple, the method has been successfully 
applied to several other ADTs, such as the Sorted 
Set and Priority Queue.  

A common limitation of Alloy Analyzer is 
scalability, because of the time required to find 
model instances in complex cases. However, we did 
not found this to be a problem for testing ADTs in 
our approach. On a 32 bit Intel Core 2 Duo T6600 @ 
2.2 GHz with 3 GB of RAM, running Windows 7, 
Alloy Analyzer took around 100 seconds to run the 
17 axiom cases of the bounded stack. Times of the 
same magnitude were obtained for other ADTs.  

As future work, we intend to consolidate the test 
case extractor tool, integrate the complete tool suite 
into the ConGu’s plug-in for Eclipse (Eclipse 
Foundation, 2010, Vasconcelos et al., 2008), 
experiment the approach with more ADTs, 
demonstrate the adequacy of the test cases generated 
by mutation testing, and support unbounded ADTs 
by finding automatically safe bounds applicable.  
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APPENDIX 

Table 1: Translation rules from ConGu (syntax) to Alloy. 

Rule  Algebraic Spec 
(ConGu) 

Alloy 

R1. Root type (implicit)  sig Element { } 
R2. Type sorts S  sig S extends 

Element  
R3. Subtype sorts S < S’  sig S extends S’  
R4. Total 
operation 
(except creator 
constructors) 

o: S ‐‐> t’ 
o: S x t1 x…x tn‐‐
>t’ 

o: one t’ 
o: (t1‐>...‐> tn)‐>one 
t’ 
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Table 1: Translation rules from ConGu (syntax) to 
Alloy(Cont.). 

R5. Total 
predicate 

p : S  
p : S x t1 x ... x tn 

p: one 
BOOLEAN/Bool  
p: (t1 ‐> ... ‐> tn) ‐> 
one BOOLEAN/Bool 

R6. Partial 
operation or 
predicate 
(except creator 
constructors) 

(with domain 
restriction) 

Same as R4 and R5, 
with lone instead of 
one  

R7. Start 
instance 

(not defined)  one sig start 

R8. Creator 
constructor 

c : t1 x ... x tn ‐‐>S   c: (t1‐>...‐> tn)‐>lone 
S  
(inside sig start) 

R9. Non‐self 
arguments of 
constructor 
operations 

Transformer: 
  c: S x t0 x ... x tn ‐‐
>S 
Creator: 
   c : t0 x ... x tn ‐‐
>S 

ct1: set t0  
...  
ctn: set tn 
(inside sig start) 

Table 2: Rule for the construction fact. 

Algebraic specification 
Core sort S with creator constructors 

ci: si1 x ... x si ki ‐‐> S    (i=1, …, n) 

and transformer constructors  
tj: S x s'j1 x ... x s'jwj ‐‐> S  (j=1,…, m). 

Alloy construction fact  
fact SConstruction { 
    S in (start.c1[s11] … [s1k1] + … + start.cn[sn1] … [snkn]).* 
           {x:  S,  y:  x.t1[s’11]  …  [s’1w1]  +  …  +  x.tm[s’m1]  … 
[s’mwm]} 
} 

Table 3: Rule for usage fact. 

Algebraic specification 
Non‐core  sort  S  (including  root  sort  Element)  with  n 
occurrences as input or output parameter of operations of core 
signatures 

  fi: si1 x … x si wi‐1 ‐‐> siwi  defined in sort Si (i=1, …, n) 
where  S  or  a  supertype  of  S  occurs  in  position  ki  of  the 
input/output parameter list, with 1≤ki≤wi. 

Additionally, the non‐core S sort may have direct subtypes T1, 
…, Tm. 

Predicates  are  treated  as  operations  with  output  type 
BOOLEAN/Bool. 

Alloy usage fact 
fact SUsedVariables { 
   S in (S1.f1[s11] … [s1 k1‐1].s1w1.s1 w1‐1. … .s1 k1+1    + … + 
           Sn.fn[sn1] … [sn kn‐1].snwn.sn wn‐1. … .sn kn+1 
           + T1 + … + Tm) 
} 

Table 4: Rules for axiom and domain facts. 

Constraint (ConGu) Fact (Alloy) 
kth axiom in sort S:  
   v1: S1; ... ; vn: Sn;  
   formula(v1, ..., vn); 

fact axiomSk { 
all v1: S1, ... , vn: Sn | 
   argTesting(formula’)) 
   implies formula’(v1, ..., vn) 
} 

kth domain in sort S: 
  v1: S1; ... ; vn: Sn;  
  op(v1, ..., vn) if   
        cond(v1, ..., vn);  

fact domainSk { 
  all v1: S1, ... , vn: Sn | 
     (cond’(v1, ..., vn) and 
          argTesting(op’)) 
     implies one op’(v1, ..., vn) 
     else no op’(v1, ..., vn) 
} 

Table 5: Cases to exercise in conditional axioms and 
constituent Boolean expressions. 

Axiom or constituent 
Boolean expression

Cases to exercise 
(minterms of the FDNF)

Conditional axiom: 
B if A 

A and B 
not A and B 

not A and not B 
Logical disjunction: 
A or B 

A and B 
A and not B 
not A and B 

Biconditional axiom: 
A iff B 

A and B 
not A and not B 

Ternary conditional: 
X = Y when A else Z 

Previous rules for the pair: 
X = Y if A 

X = Z if not A 
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