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Abstract: The Ripper algorithm is designed to generate rule sets for large datasets with many features. However, it 
was shown that the algorithm struggles with classification performance in the presence of missing data. The 
algorithm struggles to classify instances when the quality of the data deteriorates as a result of increasing 
missing data. In this paper, feature selection technique is used to help improve the classification 
performance of the Ripper algorithm. Principal component analysis and evidence automatic relevance 
determination techniques are chosen to improve the performance of the Ripper. A comparison is done to see 
which technique helps the algorithm improve the most. Training datasets with completely observable data 
were used to construct the algorithm, and testing datasets with missing values were used for measuring 
accuracy. The results showed that principal component analysis is a better feature selection for the Ripper. 
The results show that with principal component analysis, the classification performance improves 
significantly as well as increase in resilience in the presence of escalating missing data. 

1 INTRODUCTION 

Since the inception of the insurance industry in the 
late 17th hundred century, Insurance companies have 
played vital role in carrying risks on behalf of 
clients. These include the risk of covering the cost of 
a motor vehicle in case a client gets involved in a car 
accident. Another includes the risk of covering the 
hospital costs. However, a large number of people 
today are still without an insurance cover. There are 
a number of reasons: the first well-known reason is 
affordability (Howe, 2010). The premiums for a 
cover may be expensive, therefore a client is left 
with a choice of cancelling. The second well-known 
reason is termination by an insurer. Numerous 
claims or committing fraud by a client may result in 
their policy being ended by the insurer. The third 
reason is refusing to get an insurance cover (Howe, 
2010, Crump, 2009). Some people may feel that they 

can save enough money to cover the risk if 
something serious happens to them (Crump, 2009). 

In this paper, we present a solution to improve 
the Ripper algorithm as a predictive modelling 
technique in the insurance domain. The solution 
improves the way it predicts customer behaviour 
using past data. The algorithm learns using past data 
about customers who are likely to have insurance 
cover (the data consists of a large number of 
attributes). This information is then used to predict 
the future behaviour of a different customer. A 
different customer data in this case has attributes 
with missing data. This is due to it either not being 
supplied by the customer, or processing error by the 
system handling the data (Duma et al., 2010).  

In comparison with other supervised learning 
algorithms, the Ripper algorithm struggles with 
classification performance if new data contains 
attributes with missing data (Duma et al., 2010). The 
main reason is over-fitting. The algorithm learns too 
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much detail about the attributes of the customer data. 
The consequence of this was incorrect predictions of 
new customer data. The accuracy is further impacted 
when the quality of the new data decreases as a 
result of increasing missing data. The algorithm also 
showed less resilience in the presence of increasing 
missing data. This resulted in poor classification 
performance compared to other supervised 
algorithms such as the naïve Bayes, k-Nearest 
Neighbour, support vector machines and the logical 
discriminant analysis algorithm(Duma et al., 2010). 

We propose feature selection as a technique to 
improve the classification performance of the Ripper 
algorithm. Feature selection technique removes 
those attribute that are irrelevant. There are two 
feature selection techniques used in this paper, 
namely the principal component analysis and 
automatic relevance determination techniques. These 
techniques were selected primarily because they are 
effective data analysis and reduction techniques with 
data with high dimensions. 

Principal component analysis has been used in 
conjunction with classification algorithms to 
successfully identify cancer molecular patterns in 
micro-array data (Han, 2010). It has also been used 
as a feature selection technique in automatic 
classification of ultra-sound liver images 
(Balasubramanian et al., 2007) and in fault 
identification and analysis of vibration data 
(Marwala, 2001). Automatic relevance 
determination technique has been applied 
successfully in selecting the most relevant features 
for classifying ovarian tumors (van Calster et al., 
2006). It has also been utilised successfully in the 
classification of myo-cardinal ischaema (a heart 
problem that occurs when there is lack of oxygen 
and nutrients, which results in arrhythmias and 
myocardial infractions) events (Smyrnakis et al., 
2007). 

In this paper, feature selection technique 
removes those attribute that are irrelevant for 
classification. The remaining attributes are passed on 
to the Ripper algorithm to learn. This reduces over-
fitting and increases generalization because it has 
less attributes to learn from. The result is increase in 
resilience and in improved accuracy.   

The rest of this paper is organised as follows: 
Section 2 discusses the theoretical background on 
the Ripper, principal component analysis, automatic 
relevance determination and a discussion on missing 
data mechanisms. Section 3 is a discussion on the 
dataset and pre-processing, the PCA-Rip structure, 
as well as the ARD-Rip structure. Section 4 is a 

discussion on the experimental results. Section 5 
gives a conclusion to the paper. 

2 BACKGROUND 

2.1 Ripper Algorithm  

The Repeated Incremental Pruning to Produce Error 
Reduction (Ripper) is a classification algorithm 
designed to generate rules set directly from the 
training dataset. The name is drawn from the fact 
that the rules are learned incrementally. A new rule 
associated with a class value will cover various 
attributes of that class .The algorithm was designed 
to be fast and effective when dealing with large and 
noisy datasets compared to decision trees (Cohen, 
1995).   

Algorithm 1: Ripper Algorithm. 
Input    :  Training dataset S with n instances and m attributes 
 
Output :Ruleset 
 
begin 

sort classes in the order of least prevalent class to the most 
prevalent class. 
create a new rule set  

while iterating from the prevalent class to the most prevalent 
class 
split S into intoSpos and Sneg 

whileSposis not empty    
split  SPos and Sneginto Gpos and Gnegsubsets and  Pposand Pneg 
subsets. 
create and prune a new rule 

if the error rate of the new rule is very large then 
end while  

else 
add new rule to rule set 
the total description length l is computed 

if  l >d then 
end while 

end while 
end while 

end 

The Ripper algorithm is illustrated by Algorithm 
1 (adapted from (Cohen, 1995)): 

1. S = {X, C} represents the training set, where 
X = {x1, x2,…,xk}	∈ ℝௗrepresents the 
instances and C = {c1,c2,…,ck}	∈ 	ℤ	 
represents the class-label associated with each 
instance. 

2. The classes c1,…,ck are sorted in the order of 
least prevalent class to the most frequent class. 
This is done by counting the number instances 
associated with each class. The instances 
associated with the least prevalent class are 
separated into SPos subset whilst the remaining 
instances are grouped into Sneg subset. 

3. IREP is invoked (with SPos and Sneg subsets 
passed as parameters) to find the rule set that 
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splits least prevalent class from the other 
classes.  

4. An empty rule set R is initialized. 
5. SPos and Sneg are split into growing positive Gpos 

and growing negative Gneg subsets as well as 
pruning positive Ppos and negative Pneg subsets. 
Growing positive subsets contains instances 
that are associated with the least prevalent 
class. Growing negative subset contains 
instances associated with the remaining 
classes. This is similar to the Ppos and Pneg 
subsets. 

6. A new rule is created by growing Gpos and 
Gneg. This is done by iteratively adding 
conditions that maximize the information gain 
criterion until the rule cannot cover any 
negative instances from the growing dataset. 

7. The new rule is pruned for optimization of the 
function ݒ	 = 	 − ݊ + ݊ (1) 

using Ppos and Pneg subsets. p is number of 
rules to prune and n is the total number of 
rules. 

8. Check if the error rate of the new rule is very 
large, and then return the rule set. Otherwise, 
the new rule is added to the rule set and the 
total description length is computed. If the 
lengths exceeds a certain number d, then the 
algorithm stops, otherwise repeat from step 5. 

9. Iterate to the next least prevalent class and 
then repeat from step 3.  

During the growing phase of the algorithm, a 
greedy approach of learning is applied, i.e. each rule 
is learned one at a time. In datasets with very large 
dimensions, this causes over-fitting of the data. This 
in turn increases the classification error rate 
significantly if the algorithm is tested with data with 
missing values. 

The Ripper model is not as popular as the 
decision trees in the insurance domain, but it has 
been applied in financial risk analysis. It has been 
used in financial institutes to help find the best 
policy for credit products, increase revenue as well 
as decrease losses (Peng, 2008). 

2.2 Principal Component Analysis  

Principal component analysis (PCA) is a feature 
selection technique used for pattern recognition in 
data with high dimensions (Marwala, 2009). The 
data can be represented in ways that can be used to 
express similarities and differences. Furthermore, 

data can be compressed into lower dimensional 
spaces. 

In majority of cases, the objective of the 
principal component analysis is to reduce the 
dimensions of the data whilst preserving as much as 
possible the representation of the original data. To 
achieve this, the initial step is to calculate the mean 
of each dimension and then subtract from the data. 
Thereafter, the covariance matrix of the data set is 
calculated. The eigenvalues as well as the 
eigenvectors are calculated using the covariance 
matrix as a basis. At this point, any vector dimension 
or its mean can be expressed as a linear combination 
of the eigenvectors. The final step is to choose the 
highest eigenvalues that corresponds to the largest 
eigenvectors, known as the principal components. 
This step is where the idea of data compression 
comes into effect. The chosen eigenvalues along 
with their corresponding eigenvectors are used to 
reduce the dimensions without much loss of 
information (Marwala, 2009). This reduction can be 
expressed as 

[T] = [A] x [B] (2) 

where [T] is the transformed data set, [A] is the 
given data set and [B] is the principal component 
matrix. [T] represents a dataset that expresses the 
relationships between the data regardless of whether 
the data has equal or lower dimension.  The original 
data set can be calculated using the following 
equation 

[A’] = [T] x [B-1] (3) 
where [A’] is the re-transformed data set and [A’] ≈ 
[A] if all the data from [B-1] is used from the 
covariance matrix.  

2.3 Bayesian Artificial Neural Network 

Bayesian artificial neural network is a classifier that 
combines artificial neural network and Bayes 
theorem using probability distribution (Bishop, 
1995). Suppose we have a two-layered artificial 
neural network with x ∈ 	ℝࢊ	as input vectors in the 
input layer, n hidden layers, and a target value t ∈ 
{0,1} in the output layer. The network can be 
expressed in the form  

ݕ = ݂(ݓ݃(ݓݔ))ே
ୀ

ெ
ୀ  (4) 

where yk is the output of the artificial neural 
network, f is the activation function from the hidden 
layer to the output layer, wkj are the weights from the 
jth hidden input connected to the kth output unit. The 
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function ݃	is the sigmoid activation from the input 
layer to the output layer, wji are weights from the ith 
input unit connected to the jth hidden unit. The 
output yk is expressed as the posterior probability P(y 
=1| x) and P(y =0| x) = 1 - yk. 

The artificial neural network is trained using a 
dataset D={x, t} by iteratively adjusting the weights 
so as to minimize the log-likelihood error function 
(or the objective function)	ܧ(࢝).The minimization 
is based on the continuous re-evaluation of the 
gradient of ED using the back-propagation 
technique. If a weight decay function	ܧ௪ = 	 ଵଶ ∑ ଶݓ  
is added to	ܧ(࢝), the objective function changes to (࢝)ܨ = (࢝)ܧ−	 +  ௪ (5)ܧߙ	
where	ߙ is the alpha  hyper-parameter. The term ܧߙ௪ regularizes the weight vector by penalizing 
weights with larger values to keep the neural 
network from over-fitting. The evidence approach to 
Bayesian modeling is to find the optimal (or most 
probable) values for ߙ =  ெ rather thanߙ	
integrating over them. This can be obtained from the 
equation, (MacKay, 1995) ߙெ = 	1 ∑ ఊ࢝ಾು൘  (6) 

where	ߛ = ݇ −  is the total number of ݇ ,(ି)݁ܿܽݎݐ
parameters and ି isthe variance - covariance 
matrix that defines the error bars on ࢝ parameters. 

Using the hyper-parameter	ߙெ, the optimal 
weights ࢝ெ are determined by approximating the 
posterior ܲ(|ࡼࡹ࢝	ߙெ) by a Gaussian density 
expressed in the form ܲ(|ࡼࡹ࢝	ߙெ) = 1Ζ௦ exp	(−ܩ −  ௪) (7)ܧߙ	

where ܩ	is the cross-entropy function and Ζ௦ is the 
normalization constant. 

2.4 Automatic Relevance 
Determination 

Automatic Relevance Determination (ARD) is a 
technique that uses Bayes inference to identify and 
remove attributes that are not relevant to the 
prediction of the output variable (Mackay, 1995).  
This is achieved by assigning the hyper-parameter ߙto a group of weights that connect from the ith 
input variable. In a two-layered artificial neural 
network, each hyper-parameter is assigned to a 
group of weights connecting ith input to the hidden 
outputs, and from the jth hidden unit to the output 
units. 

The hyper-parameter becomes large if the inputs  
   

are irrelevant, preventing them from causing 
major over-fitting.  Using a Gaussian expression, the 
prior probability for each weight given ߙfor each 
class, can be expressed as   ܲ(ݓ|ߙ) = ߙߨ2√1 exp (−α୩( w୧ଶ 2ൗ୧∈୩୩ 	)) (8) 

Once the artificial neural network has been 
trained, the hyper-parameters are optimized using 
the evidence framework. The evidence finds the 
most probable value ߙො > 0 which must satisfy 
equation (6). 

2.5 Missing Data Mechanisms 

There are a number of reasons why data collected 
can have missing data. Well-known reasons include 
faulty processing by a system handling the data, 
different systems communicating with each other 
missing information or clients refusing to disclose 
all their information (Francis, 2005). It is imperative 
to know the reasons for data missing. When that 
reason is known, then appropriate methods for 
handling missing data are selected, which results in 
high prediction or classification accuracy. 

The missing data mechanisms found currently in 
literature are missing at random, missing completely 
at random, missing not at random and missing by 
natural design (Little et al, 1987, Marwala, 2009). 
Missing at random is a situation where the missing 
data is not related to the missing variables 
themselves but on other variables. Missing complete 
at random implies that the missing data is not 
dependent on any other existing data. Missing not at 
random implies a situation where the missing data 
depends on itself and not any other variables (Little 
et al, 1987, Marwala, 2009). Missing by natural 
design occurs when there is data missing because the 
variable is naturally deemed un-measurable, even 
though they are useful for analysis. In this case, the 
missing values are modelled using mathematical 
techniques (Marwala, 2009).  

In this paper, we presuppose that the data is 
missing completely at for the problem under 
discussion. It is chosen so that single and multiple 
imputations return unbiased estimates.  

3 METHODS 

3.1 Datasets and Pre-processing 

The experiment was conducted using two insurance 
datasets. The first insurance dataset was obtained 
from the University of California Irvine (UCI) 
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machine learning repository. The dataset is used to 
predict which customers are likely to have an 
interest in buying a caravan insurance policy. In this 
paper, we are interested in finding out customers 
who are likely to have a car insurance policy, 
provided there is missing information. 

The training dataset consists of over 5400 
instances of which 5000 were used for the 
experiment. The testing dataset consists of only 
4000 instances. Each set has a total of 86 attributes 
with completely observable data, 5 of which are 
categorical numeric values and 80 are continuous 
numeric values. The class attribute consists of only 
two values (0 to indicate a customer that is likely not 
to have insurance or 1 to indicate a customer that is 
likely to have an insurance cover).  

The second insurance dataset is the state of 
Texas insurance dataset which is used by the Texas 
government to draw up a Texas Liability Insurance 
Closed Claims Report. The report provides a 
summary of claims involving bodily injuries from 
insurance companies. These claims were either 
settled in court or disposed of, and the insurer 
performed all the compensations and expense 
payments on the claim. There are two types of 
claims expressed in the dataset, long and short form. 
Short form focuses on claims on bodily injuries that 
are not expensive to settle. Long form relates to 
claims on bodily injuries that are very expensive and 
can be settled in most cases via a medical insurance 
company. In this dataset, we classify instances based 
on whether they have medical insurance cover as a 
risk analysis exercise provided there is missing data. 

The Texas Insurance dataset consists of over 
9000 instances, trimmed manually to 5446 instances 
by removing all the short form claims. For 
consistency, the dataset was separated into training 
and testing datasets, 4000 and 1446 instances 
respectively. Both the training and testing sets have 
missing values initially. Each set consists of a total 
of over 220 attributes initially, but the attributes 
were trimmed to 185 attributes. This was done by 
manually removing those attributes that were clearly 
not significant for the experiment, like the unique 
identities, dates as well the type of claim attributes. 
The class attribute used also has two values (0 to 
indicate no medical insurance and 1 to indicate that 
the claimer has medical insurance). 

There are five levels of proportions of 
missingness on the testing dataset that were 
generated (10%, 25%, 30%, 40%, 50%). At each 
level, the missingness was arbitrarily generated 
across the entire dataset, then on half the attributes 
of the set. Therefore, in total, 12 testing datasets 

were created to test the strength of the Ripper 
algorithm using feature selection techniques. 

3.2 PCA-Rip Structure 

Figure 1 illustrates the structure followed in 
improving the Ripper classification performance 
using the PCA as a feature selection technique. We 
refer to the structure as the PCA-Rip. From the 
figure, the original data [A] is passed to the PCA. 
PCA reduces the dimensions of the data to give the 
output [T] expressed in equation (2). Attributes with 
eigenvalues > 1 were selected as a simple and 
effective approach to reduce the number of 
attributes. The Ripper algorithm builds a rule-based 
system using [T]. Once the Ripper algorithm is 
complete with learning the data, the PCA converts 
the data into its “original” data [A’] as expressed in 
equation (3). Data classification is performed using 
testing data. 

 
Figure 1: PCA-Rip structure. 

The software tools used for PCA-Rip were Weka 
3.6.2 library, C# 3.5 programming language and 
IKVM. Weka library has a built-in Principal 
Component analysis component. The component is 
used in conjunction with a Ranker search component 
to return the selected attributes in a chronological 
order from the most significant to the least 
significant attributes. IKVM is a software tool used 
to convert java code into C# code. The PCA-Rip 
illustrated in figure was built and tested using the C# 
programming language. 

Principal component analysis reduction 

Original data 

Ripper 

Principal component analysis original 

Data Classification 

… 

… 

… 

… 
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3.3 ARD-Rip Structure 

Figure 2 illustrates the structure followed in 
improving the Ripper classification performance 
using the ARD as a feature selection technique. We 
refer to the structure as the ARD-Rip. Using the 
training data, each instance is expressed as an input 
vector x ∈ 	ℝࢊ and supplied as original data as 
illustrated in figure 2. In some instances, the 
attributes for each instances were split into four 
groups where they are supplied separately as the 
original data to the Bayes artificial neural network. 
The reason for splitting the attributes is that the 
ARD performance is slow and memory intensive 
with extremely high dimensional datasets likes the 
Texas Insurance dataset.  

 
Figure 2: ARD-Rip structure. 

The number of input units to the artificial neural 
network is equivalent to the size of the input vector 
and the number of hidden values is determined using 
trial and error. There is only one single output. The 
training is done over 1000 epochs, with the back-
propagation algorithm as the learning algorithm. The 
output is evaluated using equation (2). The evidence 
framework re-evaluates the hyper-parameters and 
the prior probability of weights using equation (5), 
and is calculated before supplying the input into the 
artificial neural network. Attributes with weight 
values < 0.01 we removed. 

The ARD was built using Netlab and C# 3.5 
programing language. Netlab has a built-in evidence 

automatic relevance determination model. A C# was 
designed to remove those attributes defined as 
irrelevant by the ARD before supplying to the 
Ripper algorithm. 

4 EXPERIMENT RESULTS 

Table 1 illustrates the overall classification accuracy 
of the PCA-Rip and ARD-Rip compared to the 
Ripper algorithm. It can be noticed that both models 
performed with higher accuracies than the Ripper. 
PCA-Rip algorithm shows a significant improve-
ment in accuracy compared to ARD-Dip. The reason 
for this is that the reduction technique used by the 
automatic relevance struggled to find relevant 
attributes in the datasets. A large number of ߙ 
constants were either increasing or decreasing too 
quickly. Even in cases where the number of 
dimensions for the dataset was reduced significantly 
compared to PCA-Rip, ARD-Rip showed minimal 
improvement when compared to PCA-Rip.     

Table 1: Overall classification accuracy. 

 Accuracy (%) 
Ripper 87.85 

PCA-Rip 91.96 
ARD-Rip 88.87 

Figure 3 shows the overall average performance 
of the algorithms in a chronological order of 
missingness in the dataset. From the figure, PCA-
Rip performs better overall than the ARD-Rip. It 
shows more resilience and maintains high 
classification accuracies as the quality of data 
deteriorates. ARD-Rip struggles initially in 
performance compared to the Ripper. However, as 
the quality of data deteriorates, it shows more 
resilience and steadiness in performance.  

Figure 4 shows the performance of all the 
models with half or all attributes having missing 
data. It is clear that the models perform better with 
missing data on half the attributes. Furthermore, the 
models show resilience and steadiness with 
increasing missingness on the data. With all or most 
attributes having missing data, the performance of 
the models decrease significantly (almost linearly) 
with little or no resilience. 

The Ripper and ARD-Rip models are the major 
contributor of this sharp decrease in performance. 
This is illustrated in figure 5. From the figure, the 
performance of the Ripper model is poor when half 
or all attributes have missing data. This was 
expected as explained earlier in the paper. The PCA- 
   

 Original data 

Evidence Reduction 

Ripper 

Data classification 
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Figure 3: Overall average performance of the algorithms. 

 
Figure 4: Overall average performance of the algorithms. 
Matt (all) represents all or most attributes with missing 
values. Matt (half) represents half the attributes with 
missing values. 

 
Figure 5: Overall performance of each model. 

Rip model achieves high classification accuracies 
for datasets with half or all the attributes having 
missing data. ARD-Rip model performs as the 
Ripper with all attributes with missing data. 
However, it performs almost as well as the PCA-Rip 
model when half of the attributes have missing data. 
The reason for this is that in some cases, the 
automatic relevance determination technique 
reduced the dimensions of a dataset significantly. 
This in return allowed the Ripper model to generate 
a rule set that managed to classify most instances 
from test data correctly. 

5 CONCLUSIONS 

A study on the PCA and ARD as feature selection 
techniques to improve the classification performance 
of the Ripper algorithm was conducted. Ripper 
showed to overall improvement when both 
techniques were used. With PCA technique, the 
Ripper showed better results than with ARD. With 
PCA, the Ripper model achieved high classification 
accuracies and showed more resilience when data 
quality deteriorated. With ARD, the Ripper showed 
steadiness as the data quality deteriorated. However, 
it struggled to achieve high classification accuracies. 
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