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Abstract: Using a widely linear (WL) processing, a prediction algorithm has been designed for WL transfer function
models in terms of an infinite number of past observations. This algorithm leads to a suboptimum infinite
past predictor which approximates the optimal predictor based on a finite past information when the size of
the series goes to infinite. Hence, the applicability of our solution lies in those situations where the predictor
based on a finite past is difficult to obtain.

1 INTRODUCTION

Prediction based upon an infinite number of past ob-
servations is a problem of great relevance in statistical
communication theory. Specifically, in those situa-
tions where the predictor based on finite past is diffi-
cult to obtain because of the number of available ob-
servations is extremely large, infinite past prediction
problems provide feasible recursive algorithms for the
computation of a suboptimum estimate which approx-
imates the finite past predictor optimally [see, for ex-
ample, (Brockwell and Davis, 1991)].

In particular, this strategy has been widely used
in transfer function models (Box and Jenkins, 1970;
Brockwell and Davis, 1991). Transfer function mod-
els, also called dynamic regression models, are exten-
sions of familiar linear regression models which in-
clude not only information related to the past of the
time series of interest but also the present and past
values of other time series. Thus, the prediction of
the first time series may be considerably improved by
using information coming from the second.

On the other hand, the widely linear (WL) pro-
cessing has provided a new perspective for solving
several problems concerned with noncircular or im-
proper complex-valued time series. This approach,
based on the information supplied by both the sig-
nal and its conjugate, has shown its efficiency against
the conventional or strictly linear (SL) processing in
many areas of statistical signal processing such as
modeling and estimation, among others [see, e.g.,
(Mandic and Goh, 2009; Navarro-Moreno, 2008;
Navarro-Moreno et al., 2009; Picinbono and Cheva-
lier, 1995; Picinbono and Bondon, 1997)]. Indeed,

in the modeling field, WL systems appear to be more
suitable than SL systems in the representation of this
type of signal. In this framework, the WL finite past
prediction problem for WL ARMA models has been
studied in (Navarro-Moreno, 2008).

This paper tackles the WL infinite past prediction
problem for a more general WL system than the one
considered in (Navarro-Moreno, 2008). Specifically,
the time series of interest is assumed to be modeled
by a WL transfer function system and thus, following
a WL processing, a recursive prediction algorithm is
devised from the infinite past information supplied by
both the input and output of such a model. This al-
gorithm becomes an alternative approach to the WL
finite past prediction problem of this type of system
which, in general, is difficult to address. For this pur-
pose, we first introduce WL transfer function models
in Section 2. Next, the WL infinite past prediction
problem is addressed in Section 3. Finally, an illus-
trative example is developed in Section 4.

2 WL TRANSFER FUNCTION
MODELS

To start with, we introduce some important notations
that will be used throughout the paper.

The real part of a complex number will be denoted
by ℜ{·}, the transpose of a vector by(·)′, the complex
conjugate by(·)∗ and the conjugate transpose by(·)H.
In general, we will consider the augmented version
Xt = [Xt ,X∗

t ]
′ of the complex-valued random process

Xt .
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Moreover,M 2 represents the set of 2×2 complex-
valued matrices1

A j =

(

a1 j a2 j
a∗2 j a∗1 j

)

Now, to attain the WL infinite past prediction
problem, we consider a more general WL model than
those previously suggested in (Picinbono and Bon-
don, 1997; Navarro-Moreno, 2008; Box and Jenkins,
1970). Specifically, let a processYt which is the out-
put of the transfer function model

Yt =
∞

∑
j=0

(

t1 jXt− j + t2 jX
∗
t− j

)

+Nt (1)

which satisfies the following characteristics:

• The input processXt satisfies the WL ARMA sys-
tem (Navarro-Moreno, 2008)

Xt =
p1

∑
j=1

(

g1 jXt− j +g2 jX
∗
t− j

)

+

q1

∑
j=0

(

h1 jZt− j +h2 jZ
∗
t− j

)

(2)

whereZt is a centered doubly white noise with
correlation functionE[ZiZ∗

j ] = d1δ(i − j) and
complementary functionE[ZiZ j ] = d2δi j , with
|d2|< d1 andδi j the Kronecker delta function.

• The noiseNt is supposed to be generated by a WL
system

Nt =
p2

∑
j=1

(

m1 jNt− j +m2 jN
∗
t− j

)

+
q2

∑
j=0

(

l1 jWt− j + l2 jW
∗
t− j

)

(3)

with E[WiW∗
j ] = e1δ(i− j), E[WiWj ] = e2δ(i− j),

|e2|< e1 and the augmented noisesZt andWt are
uncorrelated.

As it is usual in the prediction process for transfer
function models, the predictor ofYt based on a fi-
nite past is, in general, difficult to obtain and the
only simple way to compute the predictor is by us-
ing the infinite past (Box and Jenkins, 1970; Brock-
well and Davis, 1991). Thus, our aim here is to
predict the processYn+s based on the infinite joint
past{[Yt ,Xt ]

′,−∞ < t ≤ n} under a WL processing.
Specifically, expressions for computing this WL in-
finite past predictor, denoted bŷYWL

n+s, as well as its

1
M 2 constitutes a matrix algebra which is closed un-

der addition, multiplication, inversion (when inverses ex-
ist), and multiplication with a real, but not with a complex
scalar.

associated mean square error are provided in the next
section. The proofs and further details about these
results here can be found in (Navarro-Moreno et al.,
2011).

3 WL INFINITE PAST
PREDICTION

First of all, we must note that the WL infinite past pre-
dictor ŶWL

n+s is the projection ofYn+s onto the space2

H∞ = sp{[Yt ,Xt ]
′,−∞ < t ≤ n}.

Then, introducing the following three types of ma-
trix operators

G−
p (B) := I−

p

∑
i=1

GiB
i

Hq(B) :=
q

∑
j=0

H jB
j

T(B) :=
∞

∑
k=0

TkB
k

with I the identity matrix,B j the backward shift oper-
ator (B jXt = Xt− j ) andGi ,H j ,Tk ∈ M 2, i = 1, . . . , p,
j = 0,1, . . . ,q, k= 0,1, . . . , equations (1), (2) and (3)
can be rewritten in terms of the augmented processes
Yt , Xt , Zt , Nt andWt as

Yt = T(B)Xt +Nt

G−
p1
(B)Xt = Hq1(B)Zt

M−
p2
(B)Nt = Lq2(B)Wt

and hence, it is clear thatH∞ = sp{[Zt ,Wt ]
′,−∞ <

t ≤ n}. This fact leads to the following expressions
for the WL infinite past predictorYn+s as well as its
mean square error

Theorem 1. The WL infinite past predictor̂YWL
n+s of

the process Yt given by(1), has the following form

ŶWL
n+s =

∞

∑
j=s

(

a1 jZn+s− j +a2 jZ
∗
n+s− j

)

+
∞

∑
j=s

(

f1 jWn+s− j + f2 jW
∗
n+s− j

)

(4)

where the coefficients a1 j , a2 j , f1 j , f2 j are obtained
from the equations

∞

∑
j=0

A jB
j = T(B)(G−

p1
)−1(B)Hq1(B)

∞

∑
j=0

F jB
j = (M−

p2
)−1(B)Lq2(B)

(5)

2sp{[Yt ,Xt ]
′,−∞ < t ≤ n} denotes the closed span of

the vectors set{[Yt ,Xt ]
′,−∞ < t ≤ n}.
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with A j ,F j ∈ M 2, j = 0,1, . . . Also the error ofŶWL
n+s

is

Error(ŶWL
n+s) = E

[

∣

∣Yn+s− ŶWL
n+s

∣

∣

2
]

=
s−1

∑
j=0

(

2ℜ{a1 jd2a∗2 j}+a1 jd1a∗1 j +a2 jd1a∗2 j

)

+
s−1

∑
j=0

(

2ℜ{ f1 je2 f ∗2 j}+ f1 je1 f ∗1 j + f2 je1 f ∗2 j

)

(6)

Representation (4) is not convenient from the
computational point of view since it depends on an
infinite number of past observations and thus another
expression is necessary. For this purpose, using oper-
ators of the form (Box and Jenkins, 1970)

T(B) := (V−
p3
)−1(B)Rq3(B)B

b

with Vi ,R j ∈ M 2, i = 1, . . . , p3 and j = 0,1, . . . ,q3,
a recursive expression for computing the WL infinite
past predictorYn+s is derived in next theorem

Theorem 2. The WL infinite past predictor̂YWL
n+s of the

process Yt given by(1), can be computed as follows:

ŶWL
n+s =

p3

∑
j=1

(

v1 jŶ
WL
n+s− j + v2 jŶ

WL∗
n+s− j

)

+
q3

∑
j=0

(

r1 j X̂
WL
n+s−b− j + r2 j X̂

WL∗
n+s−b− j

)

+
p4

∑
j=s

(

c1 jWn+s− j + c2 jW
∗
n+s− j

)

(7)

with ŶWL
j =Yj andX̂WL

j = Xj , j = 1, . . . ,n and where

X̂WL
j is the WL predictor of Xj calculated throughout

the expressions

X̂WL
n+1 =−

∞

∑
j=1

(

k̄1 jXn+1− j + k̄2 jX
∗
n+1− j

)

X̂WL
n+2 =−k̄1,1X̂WL

n+1− k̄2,1X̂WL∗
n+1

−
∞

∑
j=2

(

k̄1 jXn+2− j + k̄2 jX
∗
n+2− j

)

...

(8)

Moreover, for s≤ p4, the coefficients c1 j , c2 j are
the elements ofC j , obtained from the equation

p4

∑
j=0

C jB
j = V−

p3
(B)(M−

p2
)−1(B)Lq2(B)

with C j ∈ M 2, j = 0, . . . , p4 and, for s> p4, the last
term in(7) vanishes.

Remark 1. For large n, we can define a WL subop-
timum predictor by truncating(8) at n terms and re-
placing in(7), the predictorsX̂WL

j by the approximate

predictorsX̃WL
j given by the expressions

X̃WL
n+1 =−

n

∑
j=1

(

k̄1 jXn+1− j + k̄2 jX
∗
n+1− j

)

X̃WL
n+2 =−k̄1,1X̃WL

n+1− k̄2,1X̃
WL∗
n+1

−
n+1

∑
j=2

(

k̄1 jXn+2− j + k̄2 jX
∗
n+2− j

)

...

X̃WL
n+s=−

n+s−1

∑
j=1

(

k̄1 j X̃
WL
n+s− j + k̄2 j X̃

WL∗
n+s− j

)

with X̃WL
j = Xj , j = 1, . . . ,n.

The performance of the resultant finite past pre-
dictor can be assessed by comparing its error with
the lower bound found in(6).

4 NUMERICAL EXAMPLE

Consider the WL transfer function model

Yt = Xt +exp{5j}X∗
t +Nt

where j=
√
−1 andXt andNt are the following WL

MA(1) and MA(2) models respectively

Xt = Zt +Zt−1

Nt =Wt +0.5Wt−1+2W∗
t−1+3W∗

t−2

with E[ZiZ∗
j ] = δ(i − j), E[ZiZ j ] = d2δ(i − j),

E[WiW∗
j ] = δ(i − j) andE[WiWj ] = e2δ(i − j).

We carry out an analysis of prediction fors= 1,2
in function of d2 ande2, with d2 ande2 varying be-
tween 0 and 0.99. Denote the errors associated with
the WL and with SL predictors for every valued2 and
e2 by Error(ŶWL

n+s(d2,e2)) and Error(ŶSL
n+s(d2,e2)), re-

spectively. From (6) it can be shown that

Error(ŶWL
n+1(d2,e2)) = 2ℜ{exp{−5j}d2}+3

Error(ŶWL
n+2(d2,e2)) = 4ℜ{exp{−5j}d2}+2e2+9.25

Figures 1 and 2 depict the following error dif-
ferences: Error(ŶSL

n+1(d2,e2)) − Error(ŶWL
n+1(d2,e2))

and Error(YSL
n+2(d2,e2))−Error(YWL

n+2(d2,e2)), respec-
tively. We can observe that the WL predictor has a
slight better performance in the case of one-stage pre-
diction than in the case of two-stage prediction, that
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is, the WL one-ahead predictor attains a greater differ-
ence with respect to the SL one-ahead predictor than
that achieved by the WL two-ahead predictor in rela-
tion to the SL. Moreover, the noiseNt has a greater
influence on the difference of errors than the noiseZt ,
i.e., we observe a more significant change in this dif-
ference if a value ofd2 is fixed and we varye2 than if
we fix a value ofe2 while d2 varies. Finally, the ad-
vantages of WL processing are lost whens> 2 since
the WL and the SL predictors coincide.
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Figure 1: Error(ŶSL
n+1(d2,e2))−Error(ŶWL

n+1(d2,e2)).
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Figure 2: Error(ŶSL
n+2(d2,e2))−Error(ŶWL

n+2(d2,e2)).
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