
Bridging UML Profile Based Models and OWL
Ontologies in Model-driven Development – Industrial

Control Application

David Hästbacka and Seppo Kuikka

Department of Automation Science and Engineering, Tampere University of Technology
P.O. Box 692, FI-33101 Tampere; Korkeakoulunkatu 3, Tampere, Finland

Abstract. Model-driven development is considered to improve productivity
and quality in software application development. The increasing complexity in
models and the number of modeling methods used requires new approaches for
knowledge management to make the handling of models easier both during de-
sign and run-time. Modeling in MDD shares characteristics with ontology de-
velopment. This paper discusses UML based models used in MDD and their re-
lationship to OWL ontologies. A concept is proposed how to create ontologies
corresponding to these models and how they can be used concurrently in sup-
porting the application development. The main principle of the approach is the
distinct separation of knowledge in the domain model and model instances. As
a result the instance model transformations can be kept simple and correspond-
ing ontology representations of application models can be used to support the
development. Applications of the approach to model-driven development and
engineering of industrial control applications are also discussed.

1 Introduction

The pervasive uses of computers and software in various application domains and the
advances in networking technologies have created a demand for new methods for
developing complex software applications. Model-driven engineering (MDE) and
model-driven development (MDD) have been proposed as methods that promote the
use of models on different levels of abstraction to narrow the gap between the prob-
lem domain and implementation technologies.

Models are abstractions of some aspects of a system and they are used for develop-
ing new and describing existing systems. Expertise and important aspects of the do-
main can be used and taken into account when models and modeling concepts on an
appropriate level of abstraction are being used. In MDD the models on different le-
vels are gradually refined and transformed finally towards the executable application.

From a technical point of view, MDD can be carried out with the use of standard
UML and its extension profile mechanism, e.g. SysML or custom profiles, or with the
use of domain-specific languages (DSL). In order to cater domain-specific needs it is
often required to implement the modeling concepts either using an extension profile

Hästbacka D. and Kuikka S..
Bridging UML Profile Based Models and OWL Ontologies in Model-driven Development – Industrial Control Application.
DOI: 10.5220/0003561900130023
In Proceedings of the International Joint Workshop on Information Value Management, Future Trends of Model-Driven Development, Recent Trends in
SOA Based Information Systems and Modelling and Simulation, Verification and Validation (FTMDD-2011), pages 13-23
ISBN: 978-989-8425-60-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

or a domain-specific modeling language. The use of these new abstractions, i.e. mod-
eling concepts, causes new challenges such as supporting and using them in models,
overlapping viewpoints, as well as concerns related to defining and using model
transformations and maintaining traceability in models [3].

As the diversity and complexity of modeling methods and associated modeling
elements is increasing, new approaches are required to ease the handling of models
both during development and at run-time. For example, modeling constructs used in
development can be enriched with semantics that are better described with mechan-
isms other than the metamodel, e.g. for domain knowledge representation and later
analysis. The use of domain-specific elements often results in hierarchical, pattern-
like structures that may be out of the scope of the metamodel. A large variety in mod-
eling conventions also prevents the interpretation of models used, for example, at run-
time in order to provide information on the capabilities and the structure of a system.

The vision of the Semantic Web [1] is a world where knowledge is shared in an
open environment with machine-readable metadata to enable automated agents and
software applications intelligent access to resources. The emergence of ideas related
to the Semantic Web has increased the interest in associated technologies, i.e. those
recommended by the W3C such as the Resource Description Framework (RDF), RDF
Schema (RDFS) and the Web Ontology Language (OWL).

In the Semantic Web and artificial intelligence research, ontologies are used to
specify taxonomies for defining classes of objects with associated relationships and
properties. The intent of the aforementioned technologies is to provide a formal de-
scription of concepts and their relationships within a specific domain of knowledge.
These machine interpretable descriptions enable software applications to access and
manipulate information, and further infer new knowledge by application of inference
rules.

The MDD paradigm shares characteristics with the aims of the Semantic Web and
its technologies. In a way, from an application development point of view both strive
to provide abstractions of the things being described. The knowledge of the domain is
especially important in ontology development but domain-specific aspects are typical
also in MDD system modeling. The interesting features provided by ontologies, and
the main justifications for using ontologies in MDD, are the semantically enriched
descriptions - unrestricted by the metamodel. The descriptions, in combination with
rule-based inference can be used, for instance, to support development and ease the
use of modeling elements, and for different kinds of examination purposes.

In this paper MDD and metamodeling, as defined by OMG in its Meta-object Fa-
cility (MOF) specification (2006), is discussed from the point of view of combining
UML based models with OWL ontologies. The paper is based on experiences using a
domain specific profile for modeling and development of industrial control applica-
tions. Section 2 presents the background and some of the challenges related to com-
bining UML based models with OWL ontologies. A conceptual approach dividing the
problem into domain knowledge transformation and instance model transformation is
presented in section 3. Results from experiments as well as possible use cases and
applications of the approach in engineering are also discussed. Related work is pre-
sented in section 4 before concluding the paper in section 5.

14

2 Background

Models used in model-driven development typically adhere to some modeling lan-
guage, e.g. a metamodel, that provides the rules and building blocks for constructing
the models. In MDD different metamodels can be used and the aim is usually also in
defining automatic transformations that can be executed to ease transformation from
one level of abstraction to another. Computer interpretability and formality of the
models is required in order to facilitate automatic transformations. This may require
the use of a relatively small amount of fixed domain-specific modeling concepts. As a
result, more than one modeling method may be needed to express all aspects which,
in turn, could present new challenges combining different and possibly overlapping
viewpoints of concurrent models.

Technologies for defining ontologies have a different approach. The specification
of an ontology basically starts from nothing and knowledge about the domain is add-
ed on concept by concept or by linking to existing knowledge in previously created
ontologies. The ontology is expressing all the knowledge in the domain whereas the
metamodel and its defined modeling concepts typically have agreed semantics in the
field of application. For ontology development there are, fortunately, basic concepts
in core and domain ontologies that can be used as a basis when defining new con-
cepts.

In ontology development, RDF is used for making statements about resources on
the web in the form of triples. The triples are constructed in a subject-predicate-object
manner and enable representation of information in the form of graphs. RDF Schema
is a basic vocabulary for RDF that can be used to create hierarchies of classes and
properties. In the stack of Semantic Web technologies OWL provides an additional
layer of constructs for describing semantics of RDF statements. OWL is based on
description logic bringing reasoning to the approach and allows, for example, stating
constraints on cardinality, restrictions of values and characteristics of properties.

2.1 Major Differences Modeling Objects in MDD and Ontologies

There are challenges unifying models and ontologies due to the different nature and
point of focus of the approaches. In comparison, a descriptive modeling approach
based on ontologies is, in general, more flexible and less restrictive allowing expres-
sivity beyond typical object-oriented modeling. Oren, Heitmann and Decker [11]
compared object-oriented programming languages and the Semantic Web and state
that objects in typical object-oriented languages must be a member of exactly one
class, inherit only one super class, and conform exactly to the structure of the class
definition. Compared to RDF(S) the resources can have multiple types and super
classes, and differ from their original definitions or not have any definitions at all.

The philosophy interpreting ontologies also differs in a constitutive way. For ex-
ample, when resources are being identified they are matched against the ontology
descriptions and class memberships are resolved based on properties and relationship
statements. The relationship between objects and OWL/RDF resources has been con-
sidered by Hillairet, Bertrand and Lafaye (2008) focusing on attributes vs. properties,
structural inheritance, and object conformance. In the object-oriented model attributes

15

are defined inside a class whereas OWL and RDF properties are entities which can be
used by any resource in the absence of domain and range declarations. Hillairet et al.
(2008) continue that because properties in OWL are not inherited the property do-
mains are instead propagated upwards indicating the membership of the resources
using the property.

As a result of using ontologies for describing the nature and behavior of systems,
the interpretability may suffer as the knowledge base may get excessively large unless
planned and constructed carefully. This happens, for example, when many aspects of
a system are described in an ontology and the concepts have to be expanded with
detailing semantics in the absence of previous knowledge. Modeling objects in MDD
strives for good interpretability and a model in a diagram, for example, is typically
easily understood by a human. This is also an issue of using tailored or generic mod-
eling concepts which is heavily reflected on the intended usage scenarios of the mod-
els.

2.2 Example MDD Environment: UML Based Profile

The modeling concepts used as reference and discussion in this paper are from the
UML Automation Profile (UML AP) aiming to provide domain-specific concepts for
modeling of industrial control applications [13]. The profile is extended from suitable
elements of the UML Real-Time Profile (UML Profile for Schedulability, Perfor-
mance and Time), SysML and UML Profile for Quality of Service and Fault Toler-
ance. The profile is based on a first-class extension mechanism extended from UML
and SysML metamodels, which enables the use of domain concepts concurrently with
UML and SysML. Featured are subprofiles for modeling of requirements, domain-
specific and platform independent functionality, distribution of components on a
system level, and devices and resources of the platform. The metamodel and the tool
support are implemented using Eclipse (EMF) among other tools.

The MDD approach [7] is based on OMG MDA and utilizes the aforementioned
modeling constructs as its metamodel. The development process includes three main
phases: requirement modeling and unification of source data, functional modeling,
and platform specific modeling on the execution platform. Various transformations
have been specified and implemented to support and automate the development as
much as possible. The process aims to increase efficiency, quality and reusability of
solutions while allowing domain expertise to be taken into account during develop-
ment.

3 Approach Unifying UML Based Models with OWL Ontologies

Defining a modeling language is in effect specification of building blocks, their inter-
relations, and rules that dictate how systems are to be modeled. Considering the na-
ture of the process it can be argued that defining a modeling language also involves
describing the domain in a similar manner to creating domain ontologies. Real-world
objects that are modeled either using MDD models or ontologies are then related to

16

the metamodel elements or the domain ontology concepts, respectively.

3.1 Outline

A plausible approach combining models in MDD with ontologies is therefore divided
into two separate tasks: the metamodel to domain ontology transformation and the
model instance to ontology individual transformation, as illustrated in Figure 1. The
aim is to keep knowledge about the domain static with regard to the modeling lan-
guage. Transformation of model instances to ontology individuals is delimited to
mapping of structures and data when individuals created can be related to previously
created ontology concepts.

Fig. 1. The transformation from UML based models to OWL is divided into domain knowledge
transformation and instance model transformation.

At this point transformations are considered only one-way and round-trip trans-
formations back from OWL to UML are not examined due to issues that would re-
quire a different transformation approach. For example, converting a graph structure
in OWL into a tree based structure in UML based models, and more importantly the
possibility of unforeseen descriptions in ontologies that cannot be transformed auto-
matically to keep the parallel models synchronized. It is an interesting thought, how-
ever, to model simultaneously in both MDD and ontologies.

3.2 Metamodeling in MDD and Domain Ontologies

From a MOF based MDD perspective the mapping of a metamodel to a domain on-
tology can be seen as a metametamodel transformation. The transformation includes
creating a domain ontology corresponding to the elements of the UML based model-
ing constructs on the M2 level (as seen on the left in Figure 2). Because the modeling
elements of the modeling language (metamodel, M2) are defined using higher-level
elements of the metametamodel (M3) the transformation is then defined using M3
elements. For example, a metametamodel transformation could define that a MOF
Class is transformed to an RDF Class.

Metametamodels are usually implemented using platform specific notations, such
as Eclipse EMF in the case for UML AP. Therefore, a metametamodel transformation
is considered best handled using tools and technologies of the platform, e.g. QVT or
some other transformation language supporting EMF based models. As the level of

17

abstraction increases there are typically fewer transformation mappings to define. On
the other hand, transformations easily become complex so that automatic transforma-
tions are almost impossible to implement.

The benefits of automatic transformations on a metameta level depend on how fre-
quently the modeling language changes and how the corresponding domain ontolo-
gies are going to be used. For a standardized modeling language the transformation is
done only once and manually while automatic generation is preferred for rapidly
evolving DSLs. If automatic metametamodel transformations, such as the EMF Triple
Eclipse plug-in (2010), are used and only partial solutions that produce basic classes
and hierarchies are available, the generated ontologies can, nevertheless, serve as an
excellent basis for manual completion.

Fig. 2. Transformation of UML based metamodels into OWL domain ontologies and the trans-
formation of UML based model instances to OWL individuals.

3.3 Model Instances and Ontology Individuals

The correspondence of model instances and ontology individuals in relation to trans-
formations in this approach is presented on the right in Figure 2. Similar to the
metametamodel transformations discussed in the previous section, the transformation
from model instances to ontology individuals can be defined using higher-level ele-
ments, i.e. the metamodel elements defining the modelling language. For example, a
transformation could specify that an UML AP Controller instance is to be mapped as
a Controller individual of the domain ontology previously created.

The key idea in the approach is to separate the transformation of domain know-
ledge from transformation of instance models. In this way, the instance transforma-
tions can be kept simple and straightforward to implement as transformations can
concentrate on mapping of serialized structures between the notations. This ensures
that model transformations can be automated and ontology representations for further
utilization can be created without additional effort.

3.4 Experiences from Model Instance Transformation Based on XMI

To reduce the dependence of the MDD environment, an XML Metadata Interchange

18

(XMI, 2007) based approach was used in order to provide flexibility better suited for
a distributed engineering environment. XMI is interesting because standard XML
transformation tools can be used to transform models into OWL/XML. In principle, it
is straightforward to generate OWL individuals corresponding to UML AP model
elements because both source and target models have a previously defined metamodel
and semantics, and only the serialized structure of the model is of relevance.

The Eclipse (EMF) environment allows exporting UML based models in XMI.
XMI, however, only defines a metaformat for a further specified transfer format for
serializing models. The XMI exports of UML AP, for instance, have resource de-
pendencies to EMF, UML2 and SysML, and the metamodels with their schema defi-
nitions are required in external tools to perform the transformations. Finally, it is also
worth noting that as the models are XMI based there is no real metamodel available
that could be utilized in typed mappings between the constructs of the different struc-
tures.

The XMI transformations become easily large and complex making it challenging
to maintain compared to e.g. metamodel transformation tools available for the Eclipse
environment. The lack of a strongly typed metamodel and object inheritance also
increases redundancy when same kinds of transformations have to be defined for
different objects with similar nature. Other minor problems were also encountered
such as when triplets were added it was not unambiguous to which individual the new
assertions actually belonged. However, with reasoning on properties and the struc-
ture, i.e. hasPart/isPartOf relations, some of these problems can be resolved. A uni-
versal solution is to rely on unique identifiers available in XMI elements when nam-
ing and referring to specific individuals. Consequently, the naming practice must be
addressed in assertions that reflect relations between individuals as the unique identi-
fiers are not present in all references from one UML based element to another.

For XMI serialized model elements it is not evident which attributes are of value as
there are also attributes related to the tool environment that do not reflect the meta-
model semantics that the element is an instance of. Manual specification of required
attribute transformations may be challenging as the amount of attributes can be sub-
stantial. An approach using input parameters for the transformation could therefore be
the most efficient and yet still maintainable solution to control what attributes should
be transformed using generic assertions.

The proposed concept was tested with an XSLT template that takes the UML AP
model instances from the XMI serialization as its input. As a result, a new
OWL/XML document with OWL individuals is created along with a domain ontol-
ogy import to which the newly created individuals conform to.

3.5 Results and Future Applications in Engineering

Figure 3 illustrates a subset of an industrial process control application model and the
resulting ontology representation of the individuals with class relationships to the
domain ontology. The platform independent application model consists of two mea-
surement inputs for monitoring temperature and level, one control function without
any specified algorithm, one on/off type actuator output for controlling a heater, and a
safety interlocking to prevent the heater from being on when the level is too low. The

19

resulting ontology may then be used concurrently to facilitate the use of complex
models in MDD and support knowledge management.

The information gathered in the domain ontology and the ontology individuals
does not necessarily provide additional benefits unless further knowledge is in-
ferred

Fig. 3. Subset of a control application model and its simplified ontology representation.

from it or it is combined with other existing knowledge, or used, for example, with
query languages such as SPARQL Query Language for RDF. Supplementary infor-
mation such as company or project specific practices, previously captured tacit know-
ledge and other points of interest can be presented in special ontologies and used in
the synthesis of a knowledge base to support engineering.

The most apparent applications in the near future are different types of services
supporting MDD design tasks. In the MDD environment interactive aids can be pro-
vided to help choosing and using the modeling concepts. An interactive guide, for
example, could simultaneously analyze the application being modeled and suggest
appropriate elements. The approach could be applied to a previously developed work
support tool [6] in order to support the transfer and usage of tacit knowledge in MDD
of control applications. For example, during the platform specific phase it could be
beneficial to have additional knowledge automatically presented as there can be hun-
dreds of design constructs available in typical distributed control system platforms.

Structural analysis of models could also be performed that based on rules can rea-
son whether required and correct elements are used, element connections are com-
plete and that common identifiable human design errors, for instance, are avoided.
Industrial control applications are complex and can contain thousands of objects that
need to be managed and manual checking of which is challenging. Automatically
executed model examinations, for example, could be provided as external services in
versioning to plant information models used in distributed engineering. As the models
also include modeling elements from requirements and functions to platform specific
constructs, similar analysis could also be done to support the MDD process by ex-
amining traceability soundness between model elements in the different phases.

Using the approach with mappings of similar modeling concepts, knowledge could
be mined even from instance models developed with different modeling languages in
project databases of previous solutions. Frequently occurring control or safety inter-
locking structures as well as best practice solutions, e.g. for specific types of devices,
could be extracted as new knowledge with suitable mining techniques. There are, of
course, many uses of the approach outside of the MDD environment. For run-time

20

operation of the system, a platform independent ontology-based description of the
structure and the capabilities could be used to facilitate integration of networked
dynamic system configurations, e.g. in association with agent technologies.

4 Related Work

One of the most important advantages of using ontologies is flexibility in information
integration when combining information from various sources and inferring new facts
on this. The use of ontologies in the software engineering lifecycle in general has
been analyzed by Happel and Seedorf (2006) and they argue that within software
engineering the specific advantages are the formal definitions of a domain that encou-
rages a broader use of ontologies throughout the whole engineering lifecycle. Merg-
ing model-driven and ontology driven system development has been studied by Soylu
and De Causmaecker (2009) for pervasive computing applications. They argue that
when the context space is expanded the applications need to be more intelligent
which also reflects on the development methodology employing formalized concepts.

Na, Choi and Jung (2006) have presented a method for transforming standard
UML models into OWL ontologies. In their approach an XSLT transformation was
implemented to map generic UML constructs to OWL concepts. Walter, Parreiras and
Staab (2009) have proposed an approach for using ontologies to describe domain-
specific languages. The approach constitutes an ontology-based framework for defin-
ing DSLs enriched by formal class descriptions. The framework then provides tools
for checking the consistency of models and reasoning for dynamic classification.
TwoUse (Parreiras, Staab, 2010) is a framework for integrated use of UML class-
based models and OWL ontologies. In the case study presented, TwoUse features
have been analyzed for non-functional requirements and it is stated to achieve im-
provements on maintainability, reusability and extensibility.

5 Conclusions

As a result of increasing productivity and quality requirements, the continuing shift-
ing of design towards a higher level of abstraction is expected by utilization of ad-
vanced modeling techniques. In addition, the size and complexity of systems is in-
creasing and new methods are needed for model management. Ontologies typically
demand additional modeling effort that must pay off in order to be established. One
way of promoting the use of ontologies is in a higher reuse of ontological knowledge
and the use of it not only during the development but throughout the whole applica-
tion lifecycle.

The challenges of combining UML based models with OWL ontologies were dis-
cussed related to metamodeling and use in MDD. In the presented approach, a do-
main ontology is first developed separately to which corresponding model instances
are later appended as ontology individuals. Novel for the approach is the partition of
the domain knowledge and the instance models making the implementation of model
instance transformations straightforward. The concept has been successfully tested in

21

transforming a subset of model instances used for developing industrial control appli-
cations. The approach opens up new possibilities to apply reasoning and analysis of
models to support MDD of industrial control applications. Automatic transformation
of UML based metamodels to domain ontologies was considered less important due
to platform dependencies of the metamodel implementation and the not so evident
benefits in the case of stable metamodels evolving in a controlled way.

The information in the generated ontologies along with other knowledge, i.e. pre-
sented as separate ontologies, forms a knowledge base that can be used for reasoning
in various services supporting MDD and structural analysis of models, for example.
In the future, research will be continued on how knowledge in ontologies can be
applied to engineering processes to support design. There is also interest to study the
lifecycle of MDD models as a part of the plant model and the plant lifecycle.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American (2001)
2. EMF Triple Eclipse Plugin. URL: http://code.google.com/p/emftriple/ (April, 2010)
3. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research

Roadmap. In: 2007 Future of Software Engineering (FOSE '07) (23-25 May 2007) 37-54
4. Happel, H-J., Seedorf, S.: Applications of Ontologies in Software Engineering. In: Pro-

ceedings of the 2nd International Workshop on Semantic Web Enabled Software Engineer-
ing (SWESE 2006) (November 6th 2006) Athens, USA.

5. Hillairet, G., Bertrand, F., Lafaye, J.-Y.: Bridging EMF applications and RDF Data
Sources. In: 4th International Workshop on Semantic Web Enabled Software Engineering
(SWESE) at ISWC’08, Karlsruhe, Germany.

6. Hästbacka, D., Laitinen, O., Tommila, T., Kuikka, S.: Implementing a Work Support and
Training Tool for Control Engineers. In: 4th IEEE International Workshop on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS'2007), Dortmund, Germany (6-8 September 2007) 512-517

7. Hästbacka, D., Vepsäläinen, T., Kuikka, S.: Model-driven Development of Industrial
Process Control Applications. Journal of Systems and Software (2011). In Press, Accepted
Manuscript. doi:10.1016/j.jss.2011.01.063

8. Na, H.-S., Choi, O-H, Lim, J.-E.: A Method for Building Domain Ontologies based on the
Transformation of UML Models. In: Proceedings of the Fourth International Conference on
Software Engineering Research, Management and Applications (SERA '06) 332-338
doi:10.1109/SERA.2006.4

9. Object Management Group: Meta Object Facility (MOF) Core Specification, Version 2.0
formal/06-01-01 (January 2006)

10. Object Management Group: MOF 2.0/XMI Mapping, Version 2.1.1 (December 2007)
11. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: Embedding Semantic Web data into

object-oriented languages. Web Semantics: Science, Services and Agents on the World
Wide Web 6 (3), World Wide Web Conference 2007, Semantic Web Track (September
2008) 191-202

12. Parreiras, F., S, Steffen Staab, S.: Using ontologies with UML class-based modeling: The
TwoUse approach. Data & Knowledge Engineering, Special issue on contribution of
ontologies in designing advanced information systems 69 (11) (November 2010)
1194-1207

13. Ritala, T., Kuikka, S.: UML Automation Profile: Enhancing the Efficiency of Software

22

 Development in the Automation Industry. In: 5th Int. IEEE Conf. on Industrial Informatics
 (INDIN 2007), Vienna, Austria, (23-26 July 2007) 885-890
14. Soylu, A., De Causmaecker, P.: Merging model driven and ontology driven system

development approaches pervasive computing perspective. In: 24th International
Symposium on Computer and Information Sciences (ISCIS 2009) (14-16 September 2009)
730-735

15. Walter, T., Parreiras, F. S., Staab, S.: OntoDSL: An Ontology-Based Framework for
Domain-Specific Languages. In: Model Driven Engineering Languages and Systems, 12th
International Conference (MODELS 2009) 5795 (2009) 408-422

23

