
ENERGY AWARENESS NEEDS A RETHINKING
IN SOFTWARE DEVELOPMENT

Hagen Höpfner1 and Christian Bunse2
1Mobile Media Group, Bauhaus-University of Weimar, Bauhausstr. 11, 99423 Weimar, Germany

2Software Systems, University of Applied Sciences of Stralsund, Stralsund, Germany

Keywords: Software engineering, Data processing, Energy awareness.

Abstract: Energy efficiency and -awareness are buzzwords in various areas of information and communication technol-
ogy and are at the core backbone of GreenIT. Computing centers aim for reducing energy consumption in order
to save money and carbon dioxide emissions. Furthermore, GreenIT labels are perfect selling points for com-
puter equipment. Especially battey-powered and mobile devices must consider software’s energy consumption
in order to prolong their uptime, while keeping the desired or agreed quality of service (QoS). Even if energy
awareness regarding hardware has been researched intensively for a couple of years, the analysis of the impact
of software on energy consumption is rather novel. We claim that the development of energy-efficient and
-aware software systems require a careful re-examination of the many paradigms in software development.

1 MOTIVATION

The history of software engineering shows that in-
novation is often stipulated by antedecent improve-
ments in the hardware sector. In the “good old
days” developers had to understand registers, CPU-
opcodes, or interrupt handling in order to develop
professional software systems. They had to optimize
source- and assembly code in order to improve per-
formance and quality. Interestingly, this is still true in
some domains (e.g., automotive) where resources are
scarce. In the following years, software became more
and more complex and development paradigms like
object-orientation, or model-driven and component-
oriented software engineering allowed for distinct and
clearly separated views regarding hardware and soft-
warekiwi-optimization. kiwi is an acronym for “kill
it with iron” and describes the approach to solve per-
formance problems with additional resources or hard-
ware. Unfortunately,kiwi does not solve every opti-
mization problem regarding the non-functional prop-
erties of a software system. Reliability, safety or se-
curity may need substantial adaptations of the system
and not just new, additional resources.

A a rule of thumbs it that more complex software
requires more energy. However, functional require-
ments demand a certain complexity. So, making soft-
ware less complex is not a proper approach for reduc-
ing energy consumption. Developers and researchers

must rethink many paradigms in software develop-
ment if they want to reduce software dependent en-
ergy consumption. In our research we addressed var-
ious hypotheses on how to develop energy-efficient
software. This position paper will briefly introduce
our ideas and support our opinion that energy aware-
ness requires a rethinking in software development.

2 ALGORITHMS

For the last couple of years, we taught our students
that various implementation alternatives for certain
problems exist and that algorithms that need less
CPU-cycles are usually the better choice. Complex-
ity theory, which aims on describing the boundaries
of the number of required CPU-cycles or operation
steps as a function over the number of input data,
formed the basis for the performance prediction of
an implementation alternative. If we look, e.g., on
different sorting algorithms, we prefer Mergesort to
Insertionsort because the complexity of Mergesort is
O(n · log(n)) while the complexity of Insertionsort is
O(n2). On the one hand, both algorithms can be used
for sorting an input list withn elements and Merge-
sort needs less comparison steps than Insertionsort.
On the other hand, Mergesort is a recursive algorithm
that reduces the number of comparisons through a di-

294 Höpfner H. and Bunse C..
ENERGY AWARENESS NEEDS A RETHINKING IN SOFTWARE DEVELOPMENT.
DOI: 10.5220/0003578002940297
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 294-297
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



vide and conquer strategy. Hence, it requires more
memory than Insertionsort. In previous works we an-
alyzed the energy consumption of different sorting
(Bunse et al., 2009a) and join algorithms (Höpfner
and Bunse, 2010a) and showed that there isno sta-
tistical correlation between energy consumption and
computational complexity Even if Insertionsort takes
more time to finish its task, it consumes less energy.

Further research (cf. (Bunse et al., 2009b)) has
shown that energy consumption can be reduced by
switching between different algorithms based on their
energy efficient operational range and on the input
data size. However, if it comes to energy-aware soft-
ware, algorithm designers and programmers must for-
mally understand the energy consumption of an algo-
rithm: The simple assumption that faster algorithms
require less energy as they finish faster is wrong!
Thus, we have to find a complexity measure that, sim-
ilar to computation complexity, allows us to specify
boundaries for an algorithm’s energy consumption.
We have to accept, that especially for battery-powered
devices, processing a limited amount of data, slower
but energy-efficient algorithms are preferable to faster
but energy intensive alternatives.

3 RESOURCE SUBSTITUTION

Almost all computers, smartphones, laptops, embed-
ded systems, etc. use a Von-Neumann-Architecture
(von Neumann, 1993): Data and program code are
stored in main memory and a CPU accesses them
over a bus system. Ubiquitous availability of net-
work accesses enables information exchange and task
distribution among devices with different built-in re-
sources. They form clouds that are either used to store
data or to distribute workload. Thus, various hard-
ware resources with different energy consumptions
are utilized for data processing and storage. However,
certain resources can be substituted by other ones (cf.
(Höpfner and Bunse, 2007)). Several projects ana-
lyzed such resource substitution strategies with regard
to energy consumption. The authors of (Marwedel,
2007) state that CPU usage needs comparatively less
energy than memory storage. The authors of (Vei-
jalainen et al., 2004) state that compressing a file by
more then 10%, transmitting and decompressing it re-
quires less energy than transmitting it uncompressed.
According to the authors of (Kansal and Zhao, 2008),
file compression also reduces the energy consumption
of operations on hard disks.

Substituting resources only reflected/reflects the
capacity of the involved resources. Compression
was/is used to save storage memory or communica-

tion afford. View materialization in database man-
agement systems reduces the number of executions
of CPU-intensive view definition queries by stor-
ing/materializing the queries results. Task distribu-
tion like the well known SETI@home helped/helps
to realize computations that require additional CPU-
cycles. However, only a few researchers tried to re-
think the idea of resource substitution while focussing
on energy awareness. In (Höpfner and Bunse, 2010b)
we started to summarize these works and started to
define a classification scheme for energy related as-
pects of a resource substitution strategy.

4 INFORMATION QUALITY

The previousely discussed issues focussed on energy
aspects while maintaining the quality of processed
information. However, certain application scenar-
ios (e.g. mobile information systems (Veijalainen
and Gross, 2002)) allow for trading information qual-
ity off energy consumptions (i.e., graceful degrada-
tion). A similar idea has been introduced in terms
of lossy compression for reducing the size of multi-
media files: One trades the quality of an image, a
movie, or an audio file off its file size. Especially
in networked environments, this approach is com-
mon as users accept lower quality to a certain extent.
With regard to energy consumption, one has to adapt
this idea. Of course, transmitting smaller files needs
less energy than transmitting larger ones, but this is-
sue was already addressed. In addition, energy-aware
lossy compression algorithms might help to find a bal-
ance between information quality (quality of a video
stream, etc.) and energy consumption.

The authors of (Hüls, 2002) found out that the en-
ergy consumption of an MPEG-algorithm is largely
affected by the used data types. By replacingdouble
by float, the algorithm’s energy consumption was
reduced to 34%. Of course, using less precise num-
bers leads to a drastic reduction of the resulting qual-
ity of the MPEG-file. Our own experiments on sort-
ing algorithms (Höpfner and Bunse, 2010a) show that
although data sizes were simply doubled (2-Byte in-
teger was replaced by 4-Byte floating point numbers),
the algorithm requires significantly more energy. In-
terestingly, the differences are not simply correlated
with a factor of two. Beneath additional memory re-
quirements, one reason for this growth might also be
the software emulated realization of the floating point
unit of the processor used for this experiment.

The conclusion for this section is twofold. On
the one hand, energy efficiency strongly depends on
the correct choice of data types. This issue is al-

ENERGY AWARENESS NEEDS A RETHINKING IN SOFTWARE DEVELOPMENT

295



ready reflected per default in software engineering
and database design, as proper data types should be
chosen anyway. On the other hand, compromises on
the information quality allow to use less complex data
types and therefore to reduce energy consumption.
However, we are not aware of any systematic research
on the user acceptance in such a scenario.

5 SOFTWARE ENGINEERING

Energy awareness and energy optimization strategies
have to be integrated into the processes and methods
of software development. This requires means for
specifying energy related properties as well as pre-
diction and optimization approaches.

A literature review has shown that quantitative de-
scriptions of system dependability are generally done
via combinations of attributes: Reliability, availabil-
ity, safety, integrity, confidentiality and maintainabil-
ity. In modern component based software develop-
ment (CBSD), these attributes are validated by mod-
eling the system components using binary fault states
and by combining the fault states to an overall sys-
tem state using Boolean logical function. The fault
states themselves are usually modeled as probabilis-
tic faults due to component wear out or other proba-
bilistic sources. In practice, a variety of techniques,
languages and tools are used for modeling both hard-
ware and software. Examples are SysML, Modelica,
Matlab, FMEA/FMECA, RBD, FTA, Markov chains,
and Petri-nets. However, these techniques do not ad-
dress the challenges of the GreenIT-era, nor do they
always follow sound engineering principles.

Specification and modeling of software compo-
nents is a much less mature discipline. At code level,
there are three well-known component models: Mi-
crosofts .NET, Suns Enterprise Java Beans and the
OMG’s CORBA Component Model, each with its
own interface definition language (IDL). However,
IDL specifications are purely syntactic and do not
contain a semantic description of a components func-
tionality. At “model” level, the UML2.0 component
model offers a rich specification of components in
terms of various UML diagrams, but much of the se-
mantic information is missing. The semantically rich-
est specification languages are currently associated
with web services and service-oriented architectures.
The Web Service Description Language provides syn-
tactic information like the component IDLs. How-
ever, a new suite of semantic service specification
languages such a WSDLS, OWLS and METEORS
have recently been developed to address this prob-
lem. None of the aforementioned technologies pro-

vides a development process, and although there are
several methods, that aim to support specific aspects
of CBSD (such as component identification), no one
is integrated in mainstream development processes.

For many years, non-functional requirements
were written textually as part of the overall system
requirements documents. However, with the increas-
ing use of hardware and software components and the
commoditization of computing power via grids, the
specification of the QoS requirements has gained in-
creasing attention. At the hardware level, QoS has
long been specified in terms of bandwidth and fault
probability. At the software level, several languages
have recently been introduced for the specific pur-
pose of modeling and describing QoS requirements.
Moreover, the web service technology also includes
mechanisms specifically for defining QoS require-
ments and policies such as WSPolicy. To date, how-
ever, there are no mainstream methodologies focusing
on the creation and use of energy-related QoS speci-
fications. Interestingly, research on specifying the re-
sources of software systems (Weilkiens, 2008; Pare-
dis et al., 2010), (Graf et al., 2006; Thomas et al.,
2008) have their focus on of platform models and per-
formance. Energy consumption is widely neglected.

To overcome these problems and to also address
the problem of optimization, another pillar of en-
gineering energy-aware software systems, we devel-
oped MARMOT (Bunse et al., 2007), a method that
facilitates reuse in embedded software system de-
velopment. MARMOT is a component-based and
model-driven development framework. Composition
is a key activity in component-based development
with MARMOT. Within MARMOT, the energy con-
sumption of a software system can either be statically
or dynamically, and one can optimize it at develop-
ment or at runtime (Bunse and Höpfner, 2008).

A final aspect that is currently beyond the scope of
our research is the prediction of the effects of changes
or more complex actions such as software composi-
tion. Regarding quality properties such as reliabil-
ity or maintainability, there exist already tools (cf.
(Becker et al., 2007; Happe et al., 2010a; Happe et al.,
2010b)). Regarding energy first projects (Kounev,
2011; Rathfelder et al., 2010) have been started but
did not provide any results yet. In addition to predic-
tion, engineering also requires support for optimiza-
tion. Optimization can either take place at develop-
ment or at runtime. At development time energy con-
sumption can be improved by adapting system mod-
els, implementations, and infrastructures (Siegmund
et al., 2010). At runtime a system might adapt itself
(Grassi et al., 2009) according to external needs and
requirements, such as energy consumption.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

296



6 SUMMARY AND OUTLOOK

We claimed that developers and researchers have to
rethink many paradigms in software development if
they want to reduce software-dependent energy con-
sumption. We illustrated that, so far, almost all well
accepted-approaches starting from complexity theory
issues, over resource substitution issues and informa-
tion quality compromises, to the software engineer-
ing process do not properly support energy aware-
ness. We presented some of our findings as well as
research conducted by other researchers. However,
all presented results need more generalization in or-
der to form the basis and a profound framework for
energy aware software development. The authors of
this paper welcome all interested researchers to start
the discussion about these issues.

REFERENCES

Becker, S., Koziolek, H., and Reussner, R. (2007). Model-
Based performance prediction with the palladio com-
ponent model. InWOSP’07, pages 54–65, New York,
NY, USA. ACM.

Bunse, C., Groß, H.-G., and Peper, C. (2007). Applying
a Model-based Approach for Embedded System De-
velopment. InEUROMICRO’07, pages 121–128, Los
Alamitos, CA, USA. IEEE.

Bunse, C. and Höpfner, H. (2008). Resource substitu-
tion with components — optimizing energy consump-
tion. In ICSOFT’08, volume SE/GSDCA/MUSE,
pages 28–35, Setúbal, Portugal. INSTICC.

Bunse, C., Höpfner, H., Mansour, E., and Roychoudhury, S.
(2009a). Exploring the Energy Consumption of Data
Sorting Algorithms in Embedded and Mobile Envi-
ronments. InMDM’09, pages 600–607, Los Alamitos,
CA, USA. IEEE.

Bunse, C., Höpfner, H., Roychoudhury, S., and Mansour, E.
(2009b). Choosing the “best” Sorting Algorithm for
Optimal Energy Consumption. InICSOFT’09, vol-
ume 2, pages 199–206. INSTICC.

Graf, S., Gérard, S., Haugen, Ø., Ober, I., and Selic, B.
(2006). Modeling and Analysis of Real-Time and Em-
bedded Systems. InSatellite Events at MoDELS’05,
volume 3844 ofLNCS, pages 58–66, Berlin / Heidel-
berg. Springer.

Grassi, V., Mirandola, R., and Randazzo, E. (2009). Model-
Driven Assessment of QoS-Aware Self-Adaptation. In
Software Engineering for Self-Adaptive Systems, vol-
ume 5525 ofLNCS, pages 201–222, Berlin / Heidel-
berg. Springer.

Happe, J., Becker, S., Rathfelder, C., Friedrich, H., and
Reussner, R. H. (2010a). Parametric Performance
Completions for Model-Driven Performance Predic-
tion. Performance Evaluation, 67(8):694–716.

Happe, J., Groenda, H., Hauck, M., and Reussner, R. H.
(2010b). A Prediction Model for Software Perfor-

mance in Symmetric Multiprocessing Environments.
In QEST’07, pages 59–68, Los Alamitos, CA, USA.
IEEE.

Höpfner, H. and Bunse, C. (2007). Ressource Substitution
for the Realization of Mobile Information Systems.
In ICSOFT’07, volume SE, pages 283–289, Setúbal,
Portugal. INSTICC.

Höpfner, H. and Bunse, C. (2010a). Energy Aware Data
Management on AVR Micro Controller Based Sys-
tems.ACM SIGSOFT SE Notes, 35(3).

Höpfner, H. and Bunse, C. (2010b). Towards an energy-
consumption based complexity classification for re-
source substitution strategies. InProc. GVDB’10, vol-
ume 581 ofCEUR Workshop Proc.CEUR-WS.org.

Hüls, T. (2002). Optimizing the energy consumption of an
MPEG application. Master’s thesis, TU Dortmund,
Fakultät für Informatik, Dortmund, Germany.

Kansal, A. and Zhao, F. (2008). Fine-grained energy pro-
filing for power-aware application design.SIGMET-
RICS Performance Evaluation Review, 36(2):26–31.

Kounev, S. (2011). Self-Aware Software and Systems Engi-
neering: A Vision and Research Roadmap. InSE’11,
Nachwuchswissenschaftler-Symposium.

Marwedel, P. (2007).Embedded System Design. Springer.
Neumann, J. V. (1993). First Draft of a Report on the

EDVAC. IEEE Annals of the History of Computing,
15(4):27–75.

Paredis, C. J., Bernard, Y., Burkhart, R. M., de Koning, H.-
P., Friedenthal, S., Fritzson, P., Rouquette, N. F., and
Schamai, W. (2010). An Overview of the SysML-
Modelica Transformation Specification. InINCOSE
Int. Symposium 2010.

Rathfelder, C., Klatt, B., Brosch, F., and Kounev, S. (2010).
Performance Modeling for Quality of Service Predic-
tion in Service-Oriented Systems. InHandbook of
Research on Non-Functional Properties for Service-
Oriented Systems: Future Directions. IGI Global.

Siegmund, N., Kuhlemann, M., Pukall, M., and Apel, S.
(2010). Optimizing non-functional properties of soft-
ware product lines by means of refactorings. InVa-
MoS’10, volume 37 ofICB-Research Report, pages
115–122. Uni Duisburg-Essen.

Thomas, F., Gérard, S., Delatour, J., and Terrier, F. (2008).
Software Real-Time Resource Modeling. InEmbed-
ded Systems Specification and Design Languages, vol-
ume 10 ofLNEE, pages 169–182. Springer, Berlin /
Heidelberg.

Veijalainen, J. and Gross, T. (2002). Mobile Wireless Inter-
faces: In Search for the Limits. InDeveloping an In-
frastructure for Mobile and Wireless Systems, volume
2538 ofLNCS, pages 153–163, Berlin / Heidelberg.
Springer.

Veijalainen, J., Ojanen, E., Haq, M. A., Vahteala, V.-P., and
Matsumoto, M. (2004). Energy Consumption Trade-
offs for Compressed Wireless Data at a Mobile Termi-
nal. IEICE ToC, E87-B(5):1123–1130.

Weilkiens, T. (2008).Systems Engineering mit SysML/UML
— Modellierung, Analyse, Design. dPunkt.Verlag,
Heidelberg, 2nd edition.

ENERGY AWARENESS NEEDS A RETHINKING IN SOFTWARE DEVELOPMENT

297


