
Advancements of the Topological Functioning Model for

Model Driven Architecture Approach
1

Armands Slihte, Janis Osis, Uldis Donins, Erika Asnina and Bernards Gulbis

Faculty of Computer Science and Information Technology
Institute of Applied Computer Systems, Riga Technical University, Riga, Latvia

Abstract. This paper describes the advancements of the Topological Function-
ing Model (TFM) for Model Driven Architecture (MDA) approach. This ap-
proach recognizes the computation independent nature of a TFM and suggests
it to be used as the Computation Independent Model (CIM) within MDA, thus
partially automating system analysis. Since the proposal of this approach, there
have been a number of significant improvements, revealing new possibilities
for system analysis, domain modeling and system design modeling. These ad-
vancements include integrating knowledge engineering with system analysis
for domain modeling and acquiring a Topological Class Diagram, thus provid-
ing unique features within Platform Specific Model (PSM) for further transfor-
mation and code generation.

1 Introduction

Model Driven Architecture (MDA) proposes software development to abstract from
the code as the uppermost of the functionality of the information system to the model
of the information system [1]. MDA is a software development framework which
defines 3 layers of abstraction for system analysis: Computation Independent Model
(CIM), Platform Independent Model (PIM), and Platform Specific Model (PSM). The
CIM describes system requirements and the way system works within its environment
while details of the application structure and realization are hidden or are yet unde-
termined. The CIM is also known as the domain model or the business model. As the
business model CIM should be a precise description of the business in its environ-
ment, by the business, in the language of business people, dedicated to business pur-
poses [2]. The CIM may include 3 main parts: 1) Knowledge Model; 2) Business
Model; 3) Business Requirements for the System.

TFM offers a formal way to define a system by describing both the system’s func-
tional and topological features [3]. TFM represents the system in its business envi-
ronment and shows how the system is functioning, without details about how the
system is constructed. Related research [4] is suggesting using TFM as CIM by con-

1
This work has been supported by the European Social Fund within the project „Support for the implemen-

tation of doctoral studies at Riga Technical University”.

Slihte A., Donins U., Osis J., Asnina E. and Gulbis B..
Advancements of the Topological Functioning Model for Model Driven Architecture Approach .
DOI: 10.5220/0003586700910099
In Proceedings of the 3rd International Workshop on Model-Driven Architecture and Modeling-Driven Software Development (MDA & MDSD-2011),
pages 91-99
ISBN: 978-989-8425-59-1
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

structing it with TFM for MDA approach; acquiring a mathematically formal and thus
transformable CIM.

TFM for MDA approach introduces a way to acquire a formal CIM and provides
the necessary methods to construct the CIM from domain knowledge (which can also
be considered as part of CIM) and further transform CIM to PIM/PSM. As described
in [5] and [6] an informal description of the system in textual form can be produced
as a result of system analysis. Construction of the CIM is part of related research [7]
and [8]. Research [7] describes a way to use Natural Language Processing (NLP) for
defining domain knowledge that can be further formally analyzed. Research [8]
shows how it is possible to automatically acquire a CIM from domain knowledge. An
algorithm is introduced to automatically derive the TFM from business use cases.
This algorithm utilizes the statistical parser to analyze the syntax of use case sen-
tences and identify functional features for the TFM. The problem of potential ambi-
guity and inconsistency of the business use case steps can be resolved by using ontol-
ogy. This issue is discussed further in this paper. Additionally TFM for MDA ap-
proach improves PIM/PSM by introducing topology. This topology is acquired from
the CIM. In related research [9] author is showing an approach for software develop-
ment with emphasis on topology, where PIM/PSM is supplemented with topology
acquired from the CIM. In this paper we are suggesting sequential phases of TFM for
MDA approach to be combined for fulfilling the MDA life-cycle.

In [10] author is proposing a toolset for TFM for MDA approach and has devel-
oped a tool for manually constructing a TFM by analyzing domain knowledge. In this
paper we are proposing to expand the toolset: 1) making it possible to automatically
acquire CIM if the domain knowledge is properly defined; 2) including the topologi-
cal UML as target model from TFM as source.

TFM for MDA approach has been suggested to deal with lack of a formal CIM,
but since then this approach has significantly evolved, providing also a formal way
for defining knowledge about a domain and discovering unique features within PSM
for further transformation and code generation. This paper describes the advance-
ments of the TFM for MDA approach, proposes a framework for further research and
suggests expanding the toolset.

This paper is organized as follows. Section 2 is looking into domain knowledge
and proposes a way for defining CIM-Knowledge Model. Section 3 is looking into
domain modeling and proposes a way to acquire CIM-Business Model in correspon-
dence to the knowledge model defined before. Section 4 is describing the topological
UML and the benefits of using it as the PIM/PSM. Section 5 is showing the new
schema for TFM for MDA approach integrating ontology, business use cases, TFM
and TopUML. Section 6 is describing the necessary supporting toolset and how these
tools will work together to support MDA life-cycle.

2 Domain Knowledge

At the beginning of system analysis, it is necessary to acquire knowledge about the
domain – business system and its environment. System analysis is interested in know-
ledge that can be articulated or captured in form of text, tables, diagrams, product

92

specifications and so on. Knowledge means understanding of a subject area including
concepts and facts about that subject area, as well as relations among them and me-
chanisms for how to combine them to solve problems in that area [11]. In this section
we discuss the domain knowledge, which can also be considered as part of the CIM,
i.e., Knowledge Model.

Previously the TFM for MDA approach assumed that knowledge about a business
system can be can be represented as an informal description in from of text in natural
language. Because such an informal description can be far too complex, ambiguous,
redundant and inconsistent for a formal analysis, using formally defined knowledge
with correspondence to well known standards is considered as one of the advance-
ments of this approach.

Developing business use cases is a popular approach for defining the procedural
knowledge of a business system. There are many different business use case tem-
plates and the structure of a use case can be adjusted depending on the situation and
the development team [12]. For defining procedural knowledge TFM for MDA ap-
proach is using textual business use cases with the following structure: 1) use case
title, 2) actors, 3) pre-conditions, 4) main scenario, 5) extensions, and 6) sub-
variations. In order for the business use cases to be understandable by a computer, the
step sentences are defined using a controlled natural language. Attempto Controlled
English (ACE) appears perfectly natural, but — being a controlled subset of English
— is in fact a formal language [13]. ACE texts are enabled for computer processing
and can be unambiguously translated into discourse representation structures, a syn-
tactic variant of first-order logic.

This solves some of problems when using natural language, but still not all. The
open problems are: 1) ambiguity, e.g., possibility to express the same meaning using
different words; 2) inconsistency of business use cases, i.e., there might be steps de-
fined that do not make sense in the given business system. We cannot put this much
responsibility on a system analyst who will be developing these business use cases.
This kind of ambiguity and inconsistency should be automatically discovered and
eliminated. TFM for MDA suggests ontology to be used as a predefined lexicon for
the specific domain to deal with these problems. Ontologies provide logical state-
ments that describe what terms are, how they are related to each other, and how they
can or cannot be related to each other. This feature is exploited to validate the proce-
dural knowledge. If there is ontology for a given domain and corresponding use cas-
es, we consider that the domain knowledge has been formally defined.

3 Domain Modeling

Related research is mostly focusing on the Business Model and Business require-
ments for the System of CIM, which include more or less structured language models
accepted by requirements community, e.g. the Language Extended Lexicon (LEL)
and scenarios, Semantics for Business Rules and Business Vocabulary, and use cases.
Another means for CIM definitions are different languages and notations for business
process modeling that may include semi-formal languages, such as ARIS-Event
Process Chains, Business Process Modeling Notation (BPMN) used in Business

93

Process Modeling (BPM), Vide CIM Level Language (VCLL), UML profiles, UML
Activity Diagrams. The only formal means for definition of business models is Petri
nets and their extensions [2].

TFM for MDA approach is suggesting not avoiding the CIM, but instead starting
the transformations from this model, thus providing evident consistency of PIMs, at
least with the Business Model and also with the Knowledge Model. At the high level
of abstraction the TFM reflects cause-effect relations among business functions. At
the lower level of abstraction TFM reflects cause-and-effect relations among business
activities. Moreover, at this level TFM can be decomposed to business processes. The
TFM contains knowledge about its business functions, organizational units (positions
rules, subsystem, units), and relations between business functions and between busi-
ness functions and organizational units. From [2], transformation from the Know-
ledge Model to the Business Model cannot be performed automatically, because it
requires human participation since information in the Knowledge Model is specified
informally and used to have implicit knowledge.

With the advancements of the TFM for MDA approach we have acquired a formal
Knowledge Model and it is now possible to transform this model to the Business
Model automatically. As shown in [8] it is possible to automatically acquire TFM
from business use cases using a special algorithm. Nevertheless, creating these busi-
ness use cases still require human participation – defining and analyzing the know-
ledge about the domain. In context of MDA, from perspective of PIM/PSM the input
model for transformation is the Business Model. Knowledge Model and Business
Requirements are the source models for the Business Model.

4 Topological UML

Another branch of this research is suggesting a new UML profile – TopUML, which
incorporates the topological nature of TFM with UML. UML approaches usually are
strong with defining the class hierarchy, but TopUML provides unique benefits for
MDA, defining the Topological Class Diagram. By using TopUML it is possible to
acquire cause-effect relationships between methods for PIM/PSM from CIM. Class
diagrams reflect the statistic structure of the system, and by using class diagrams it is
possible to model objects and their methods that are involved in the system. Using the
standard UML class diagram specification it is not possible to reflect the cause-and-
effect relations within a system to indicate which certain activity of an object triggers
another objects certain activity.

Uniqueness and main value of the Topological Class Diagram is that it is able to
show the relations between different methods from the same or different classes [9].
This property can be used for PSM and code generation. It allows defining part of the
logic within the methods, not only the structure. TFM for MDA approach allows
doing this automatically by means of transformation from CIM. No other approach
provides this possibility from perspective of CIM; this kind of logic has to be added
manually by the PSM designer.

It is possible to develop a topological class diagram describing the business sys-
tem, if the corresponding TFM has been developed. The transformation between

94

TFM and topological class diagram, i.e., transformation between CIM and PIM/PSC
is described in [9]. To execute the transformation several steps have to take place: 1)
creation of the TFM; 2) creation of the problem domain objects graph; 3) transforma-
tion into class diagram. To obtain a problem domain object graph, it is necessary to
detail each functional feature of the TFM to a level where it uses only one type of
objects. After construction of problem domain object graph all the vertices with same
type of objects and operations must be merged, while keeping all relations with other
graph vertices. As a result, object graph with direct links is defined. This then can be
transformed into a corresponding TFM.

It is possible to develop a topological class diagram where the established TFM
topology between classes is retained. In traditional model-driven development rela-
tions (mostly associations and generalizations) between classes in the UML class
diagram are defined by the modelers’ discretion. Moreover, by using TFM for MDA
approach it is also possible to partially automatically acquire a more complete UML
sequence diagram from the CIM by exploiting the topology.

5 TFM for MDA Approach

To step towards the completeness of MDA and enable the automation of system anal-
ysis and software development the TFM for MDA approach is considered. This paper
introduces sufficient advancements to this approach. The main idea behind this ap-
proach is MDA transformation from CIM to PIM to PSM.

This approach starts the system analysis process from formally defined declarative
and procedural knowledge. TFM for MDA approach integrates declarative and pro-
cedural knowledge providing a common approach for system analysis with perspec-
tive of integration with MDA. As shown in Fig. 1 we are exploiting ontology and
business use cases for defining the Knowledge Model. The ontology is constructed by
a knowledge engineer and business use cases are constructed by a system analyst
(also known as business analyst – the one who is competent to analyze organization
and design of businesses and business processes). While constructing business use
cases, they have to be validated in order to correspond to the ontology. This is an
iterative process, because the ontology or business use cases have to be modified until
they correspond.

The next step is acquiring the Business Model. When Knowledge Model is con-
structed and verified, it is possible to generate the Business Model automatically
using the TFM generation algorithm described in [8]. This algorithm utilizes the sta-
tistical parser to analyze the syntax of use case sentences and identify functional fea-
tures for the TFM. Nevertheless, TFM will have to be validated as well. If any
changes are necessary, they will have to be done in the Knowledge Model and then
the TFM can be regenerated. Additionally, within the Business and Requirements
Model it is possible to derive the Business Processes and UML Use Case diagram
from TFM.

The next step of TFM for MDA lifecycle is transforming CIM to PIM/PSM. The
source for this transformation is the Business Model (CIM) and the target is the De-
sign Model (PIM/PSM), which includes Topological Class Diagram, Sequence Dia-

95

gram and other UML diagrams. Until now we have provided transformation for To-
pological Class Diagram and Sequence Diagram, but research continues to provide
transformations for other diagrams.

Design Model

Business/Requirements Model

Knowledge Model

Business Use
Cases

Ontology

Topological
Functioning

Model

C
IM

Business
Processes

P
IM

/P
S

M

Topological
Class Diagram

Sequence
Diagram

Use Case
Diagram

Declarative Knowledge Procedural Knowledge

Fig. 1. This schema shows the integrated TFM for MDA approach. It starts with the domain
knowledge defined as formal CIM-Knowledge Model, which includes business use cases and
ontology. It then provides a formal transformation to CIM-Business Model, which is defined
by TFM. The CIM can then be further expanded to include Business Processes and UML Use
Case Diagram (corresponding transformation are also provided). After that it is possible to
exercise a transformation from CIM to PIM/PSM, acquiring a Topological Class Diagram,
Sequence Diagram, etc.

6 Supporting Toolset

In earlier work [10] and [8] some suggestions have been made what tool support
would be necessary for TFM for MDA approach. In this paper expand the toolset to
support the new workflow suggested in previous section. Advantage of using MDA
standards is that MOF compatible meta-models can be created for business use cases
using XMI, as well as for a TFM, which authors have already is defined in [7] and
[4]. A statistical parser can be used for analyzing the sentences of use cases, and thus
retrieving functional features for a TFM of the system. To prevent incompleteness,
redundancy or inconsistency of the business use cases ontology and controlled natural
language is used. At last, for retrieving the cause-effect relations between these func-

96

tional features the structure of the business use cases is exploited.
TFM for MDA approach lacks the necessary tool support. The purpose of these

tools would be to enable users: 1) to construct or reuse a domain ontology; 2) develop
business use cases for this domain; 3) verify these business use cases via controlled
natural language and the ontology defined previously; 4) automatically generate the
CIM for this domain in form of a TFM; 5) verify the functional requirements; 6)
transform the CIM to PIM/PSM in a form of a UML profile - TopUML. The users of
this toolset would be the knowledge engineer and the system analyst.

Fig. 2. This schema shows the toolset necessary for TFM for MDA approach. This toolset
consists of an Ontology Development tool, Business Use Case Builder, TFM Builder and To-
pUML Builder. Ontology development tool has to support OWL standard, but other than that it
can be a 3rd party tool, i.e., Protégé. You can also see the distinction between CIM and
PIM/PSM that correspond to these tools from perspective of MDA.

As Fig. 2 shows the TFM for MDA toolset consists of: 1) Ontology Development
tool – a tool for defining ontology according to OWL standard; 2) Business Use Case
Builder – this tool will allow the user to define the business use cases for this domain
and check if the correspond to the ontology; 3) TFM Builder – a tool to fetch the
functional features and generate the TFM for the domain (it will also allow to verify
the functional requirements); 4) TopTFM Builder – a tool for acquiring TopUML
from a TFM and later allow to generate the source code for the system.

7 Conclusions

This paper describes the advancements of the TFM for MDA approach. This ap-
proach was suggested to acquire a formal CIM, but since has significantly evolved,
providing a way for defining domain knowledge and discovering unique features
within PSM for further transformation and code generation. An informal description
of the domain can be far too complex, ambiguous, redundant and inconsistent for a
formal analysis, so using formally defined knowledge with correspondence to well

97

known standards is proposed. A new UML profile TopUML has been introduced to
enable cause-effect relationships between class methods for PIM/PSM, which can be
retrieved from CIM.

This paper also shows how the different step of the TFM for MDA approach re-
late to each other and how it fits into MDA lifecycle. This approach provides a new
perspective for domain modeling, allowing the domain model to be generated auto-
matically if the knowledge is gathered and defined before accordingly. This way we
are integrating knowledge engineering and system analysis. Main value of the Topo-
logical Class Diagram is that it can provide unique properties for use in PSM and
code generation.

Further research includes the development of the supporting toolset for this ap-
proach. This would complement the automation of system analysis, and introduce
artificial intelligence to software development.

References

1. Frankel D. S.: Model Driven Architecture: Applying MDA to Enterprise Computing. Indi-
anapolis. OMG Press, Wiley (2003).

2. Asnina E., Osis J.: Topological Functioning Model as a CIM-Business Model. Model-
Driven Domain Analysis and Software Development: Architectures and Functions. IGI
Global (2011) 40-64.

3. Osis, J.: Topological Model of System Functioning (in Russian). In: Automatics and Com-
puter Science, J. of Acad. of Sc., pp. 44--50, Zinatne, Riga (1969).

4. Osis, J., Asnina, E., Grave, A.: Computation Independent Representation of the Problem
Domain in MDA. J. Software Eng. Vol. 2, Iss. 1, (2008) 19—46 Available: http://www.e-
informatyka.pl/e-Informatica/Wiki.jsp?page=Volume2Issue1 [Accessed: Feb 28, 2010].

5. Asnina, E.: The Formal Approach to Problem Domain Modeling within Model Driven
Architecture. In: 9th International Conference on Information Systems Implementation and
Modelling, pp. 97 – 104. Prerov, Czech Republic, Ostrava (2006).

6. Osis, J., Asnina, E.: Enterprise Modeling for Information System Development within
MDA. In: 41th Annual Hawaii International Conference on System Sciences, pp. 490.
HICSS, USA (2008).

7. Šlihte A.: The Specific Text Analysis Tasks at the Beginning of MDA Life Cycle. In:
Databases and Information Systems Doctoral Consortium, Latvia, Riga, 5.-7. July (2010)
11–22.

8. Šlihte A.: Transforming Textual Use Cases to a Computation Independent Model. MDA &
MTDD 2010, Greece, Athens, 22.-24. July (2010) 33–42.

9. Donins, U.: Software Development with the Emphasis on Topology. In: Proceeding of 13th
East-European Conference on Advances in Databases and Information Systems (ADBIS
2009). Volume 5968 of LNCS. Springer (2010) 220-228.

10. Šlihte A.: Implementing a Topological Functioning Model Tool. In: Scientific Journal of
Riga Technical University, 5. series., Computer Science, Vol. 43, Riga (2010) 68–75.

11. Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Architecture and Ontology Develop-
ment. Springer, Heidelberg (2006).

12. Malan, R., Bredemeyer, D.: Functional Requirements and Use Cases, March 2001. Availa-
ble: http://www.bredemeyer.com/pdf_files/functreq.pdf [Accessed: Mar 31, 2011].

13. Fuchs, N. E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge Repre-
sentation. In Cristina Baroglio, Piero A. Bonatti, Jan Maluszynski, Massimo Marchiori,

98

Axel Polleres, and Sebastian Schaffert, editors, Reasoning Web, Fourth International
Summer School 2008, Lecture Notes in Computer Science 5224. Springer (2008) 104–124.

14. Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Available: http://www.omg.org/cgi-bin/doc?ptc/07-07-07.pdf [Accessed:
Mar 31, 2010].

99

