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Abstract. Hardware implementation aspects of the finite automaton public key 
cryptosystem are discussed in this paper. A general architecture of the 
multiplication of a square matrix on a vector over GF(q) is presented in the 
paper. Our design was implemented on Altera EP3C5E144C8N of the Cyclone 
III FPGA family. The performance of finite automaton public key 
cryptosystems is mainly appointed by the efficiency of the underlying finite 
field arithmetic. The results are compared with reported reconfigurable 
hardware implementations of RSA. Proposed hardware realization of 
cryptographic system allows organizing pipeline calculations. 

1 Introduction 

Today there are many distributed systems, which use communication resources that 
must be safeguarded against eavesdropping or unauthorized data alteration. Thus 
cryptographic protocols are applied to these systems in order to prevent information 
extraction or to detect data manipulation by unauthorized users. Besides the widely-
used RSA method [1], other public-key schemes have gained more and more 
importance in this context.  

The public key cryptosystem on the basis of finite state machines (FSM) has been 
offered by Tao Renji [2] and was named FAPKC (Finite Automaton Public Key 
Cryptosystem). The private key consists of two FSM that are constructed so that their 
inverses are easily calculated. The public key is the automaton which we get by 
combining these two automata. It is believed to be hard to invert this combined 
automaton without knowledge of the private key automata [1].  

FAPKC cryptosystem is a stream ciphe. There are some modifications: FAPKC0 
[2], FAPKC1 and FAPKC2 [3], FAPKC3 [4,5] and FAPKC4 [6]. The cryptosystem 
can be used as for enciphering (with using public key) and for decryption (with using 
FSM, which is reversed to public key), and for signing (by this FSM) and for check of 
the signature (by public key) [6, 7]. 

Cryptographic transformations can be implemented in both software and hardware 
[8]. Software implementations are designed and coded in programming languages, 
such as C, C++, Java, and assembly language, to be executed, among others, on 
general purpose microprocessors, digital signal processors, and smart cards. Hardware 
implementations are designed and coded in hardware description languages, such as 
VHDL and Verilog HDL, and are intended to be realized using two major 
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implementation approaches: application-specific integrated circuits (ASICs) and field 
programmable gate arrays (FPGAs). 

In this paper we describe an implementation method of FAPKC. The method is 
based on realization of computational structure in GF(q). A project was implemented 
on the programmed matrix FPGA EP3C5E144C8N of the device family Cyclone III 
offered by Altera. 

2 FAPKC Principles 

2.1 Definitions and Denotations 

Let us introduce the basic terminology [5]: 
Definition 1. Finite automaton M – a quintuple <X, Y, S, δ, λ>, where we have the 
input alphabet X, the output alphabet Y and the state alphabet S which all are 
nonempty finite sets and the transition function δ:S×X→S and the output function 
λ:S×X→Y which are single valued functions. 

If we denote by AN the set of all finite words of alphabet A, by Aω the set of all 
infinite words of alphabet A and by ϵ the empty word, we can expand the domains of δ 
and λ to S ×XN and S × (XN  ∪ Xω), respectively, as follows: 

δ(s, ϵ ) = s,  δ(s, αx) = δ(δ(s, α), x),   (1) 
λ(s, ϵ ) = ϵ,  λ(s, xα′) = λ(s, x) λ(δ(s, x), α′),  (2) 

where s ∈ S,  x ∈ X, α ∈ XN and α′ ∈  XN  ∪ Xω. 
Definition 2. Let M = <X,Y,S,K,δ,λ> be a finite automaton, X and Y are column 

vector spaces over GF(q) of dimension l and m, respectively, and τ be a nonnegative 
integer. M is a weakly invertible with delay τ if, for any xi ∈ X, i =0, 1, …, τ and s ∈ 
S, x0  can be uniquely determined by the state s and the output λ(s, x0…xτ ). 

For any states s ∈ S and s′ ∈ S, if ∀α ∈ Xω, ∃α0 ∈ XN : 

λ′ (s′, λ(s, α)) = α0α  and    |α0| = τ,   (3) 

then (s′, s) is a matching pair with delay τ or  s′ matches s with delay τ . 
Definition 3. Let M = <X, Y, S, δ ,λ> and M′ = <Y, X, S′, δ′, λ′> be two finite 

automata and τ be a nonnegative integer. M′ is a weak inverse with delay τ of M if, for 
any s ∈ S, there exists s′ in S′ that (s′, s) is a matching pair with delay τ. 

Definition 3. Let M1 = <X, Y, S1, δ1 ,λ1> and M2 = <X, Y, S2, δ2 ,λ2> be two finite 
automata. Superposition of M1 and M2 is a finite automaton C(M1,M2) = <X1, Y2, S1 × 
S2, δ, λ >, where 

δ(<s1, s2>, x) =<δ1(s1, x), δ2(s2, λ1(s1, x))>   (4) 
λ(< s1, s2 >, x) = λ2(s2, λ1(s1, x)),    (5) 

for any x ∈ X1 and s1 ∈ S1, s2 ∈ S2. 
Definition 4. Let ϕ be a mapping from Yk × Xh+1 to Y. This mapping defines 

Mϕ=<X,Y,Yk ×Xh,δ,λ> to be an (h, k)-order memory finite automaton if  

y(i) = ϕ(y(i − 1), . . . , y(i − k), x(i), . . . , x(i − h)), i = 0, 1, . . .  (6) 
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If the mapping ϕ is from Xh+1 to Y then Mϕ is an h-order input memory finite 
automaton. 

2.2 Brief Overview of FAPKC Cryptosystems  

In the paper [5] it was shown how to break the FAPKC cryptosystem if not a suitable 
nonlinear automaton is used. From the mathematical point of view of  rules and 
conditions finding of invertible nonlinear automata of the suitable form and 
superposition of its are in detail considered in [5,9]. Therefore here we will consider 
only the cryptographic algorithm steps for encryption/decryption without 
mathematical calculations.  

Let X and Y be column vector spaces over GF(q), with dimension l. 
A FAPKC3 user A chooses his own public key and secret key as follows: 
(1) Construct two automata: an (h0, k0)-order memory finite automaton M0 =<X, Y, 

S0, δ0, λ0> and a (τ0 + k0, h0)-order memory finite automaton M0
* =<Y, X, S0

*, δ0
*, λ0

*>. 
(2) Construct an h1-order input memory finite automaton M1 ==<X, X, S1, δ1, λ1> 

and a (τ1, h1)-order memory finite automaton M1
* ==<X, X, S1

*, δ1
*, λ1

*>. 
(3) Construct the finite automaton C′(M1,M0) =< X, Y, S, δ, λ > from M1 and M0. 
(4) Denote τ = max(τ0, τ1, h0).  
Choose an arbitrary state ݏ௘ = ଵ,௘ିݕ〉 … ,௞బ,௘ିݕ ଵ,௘ିݔ …  ௛బି௛భ,௘〉 of C′ (M1,M0) toିݔ

be the starting state for encryption. Compute ݔ′ି௛బ,௘ … ଵ,௘ି′ݔ = λଵ(〈ିݔ௛బିଵ,௘, … ,〈௛బି௛భ,௘ିݔ ௛బ,௘ିݔ …  ଵ,௘ (7)ିݔ

Define parts needed in decryption  ݏଵ,ௗ௢௨௧ = ,ଵ,௘ିݔ〉 … ,  ௛భ,௘〉   (8)ିݔ
and ݏ଴,ௗ௢௨௧ = ,ଵ,௘ି′ݔ〉 … ,  ௛బ,௘〉    (9)ି′ݔ

(5) The public key of the user A is {C′(M1,M0), se, τ0 + τ1}. 
The secret key of the user A is {ܯ଴∗, ,∗ଵܯ ,଴,ௗ௢௨௧ݏ ,ଵ,ௗ௢௨௧ݏ ߬଴, ߬ଵ}.  

Encryption. When user B wants to send to user A a plaintext x0 … xn in secret, he 
first adds some τ0 + τ1 letters xn+1 … xn+τ0+τ1 to the end of the plaintext. Then he can 
compute the ciphertext using A’s public key: ݕ଴ … ௡ାఛబାఛభݕ = λ൫ݏ௘, ଴ݔ …  ௡ାఛబାఛభ൯.  (10)ݔ

Decryption. After receiving the ciphertext ݕ଴ … ௡ାఛబାఛభݕ , user A first computes 
using parts ܯ଴∗ and ݏ଴,ௗ௢௨௧ of his secret key and part ିݕଵ,௘ … ଴′ݔ ௞బ,௘ of his public keyିݕ … ௡ାఛభ′ݔ = λ଴∗ ,ᇱିଵ,௘ݔ〉) … ,௛బ,௘ିݔ ,τబିଵݕ … , ,଴ݕ ଵ,௘ିݕ … ,〈௞బ,௘ିݕ ఛబݕ …  ௡ାఛబାఛభ). (11)ݕ

Then using parts ܯଵ∗ and ݏଵ,ௗ௢௨௧ of his secret key user A retrieves the plaintext ݔ଴ … ௡ݔ = λଵ∗(〈ିݔଵ,௘, … ,௛భ,௘ିݔ ,τభିଵ′ݔ … , ,〈଴ݔ ఛభ′ݔ …  ௡ାఛభ). (12)′ݔ

As present in [5]  automaton M0 is in the form of  ݕ(݅) = ∑ ݅)ݕ௝ܣ − ݆)௞బ௝ୀଵ + ∑ ݅)ݔ௝ܤ − ݆),      ݅ = 0,1, …௛బ௝ୀ଴  (13) 
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and ܯ଴∗  in the form of ݔ(݅) = ∑ ݅)ݔ∗௝ܣ − ݆)௛బ௝ୀଵ + ∑ ݅)ݕ∗௝ܤ − ݆),      ݅ = 0,1, …ఛబା௞బ௝ୀ଴  (14) 

The nonlinear automaton M1 is in the form of ݔ′(݅) = ∑ ௝ܨ ݅)ݔ − ݆)௛భ௝ୀ଴ + ∑ ݅)ݔ൫ݏ∗௝ܨ − ݆), … , ݅)ݔ − ݆ − ߳)൯,      ݅ = 0,1, …    ௛భାఢ௝ୀ଴ (15) 

where ݏ൫ݔ(݅ − ݆), … , ݅)ݔ − ݆ − ߳)൯ is a nonlinear function from Xϵ+1 to X, ϵ is a small 
positive integer.  

Then C′(M1,M0) can be expressed by ݕ(݅) = ∑ ݅)ݕ௝ܣ − ݆)௞బ௝ୀଵ +  ∑ ݅)ݔ௝ܥ − ݆)        + ∑ ݅)ݔ൫ݏ௝ᇱܥ − ݆), … , ݅)ݔ −௛భା௛బିఢ௝ୀ଴௛బା௛భ௝ୀ଴݆ − ߳)൯,    ݅ = 0,1, …              (16) 

where  ܥ௝ = ∑ ௡௞ା௡ୀ௝,଴ஸ௞ஸ௛బ,଴ஸ௡ஸ௛భܨ௞ܤ
       (17) 

and  ܥ′௝ = ∑ ௡௞ା௡ୀ௝,଴ஸ௞ஸ௛బ,଴ஸ௡ஸ௛భ′ܨ௞ܤ
    (18) 

Parameters h0, h1, k0, τ0 and τ1 may be chosen by users. 

3 FPGA Implementation of FAPKC 

3.1 Hardware Implementation Environment 

In this paper FAPKC3 was implemented on the programmed matrix Altera FPGA of 
the device family Cyclone III (EP3C5E144C8N). This Cyclone III device has a total 
of 5,136 logic elements, 23 multipliers, 2 phase-locked loops (PLLs) [10].  Quartus II 
Web Edition software includes an integrated development environment to accelerate 
system-level design and seamless integration with leading third-party software tools 
and flows [11].  

3.2 Implementations Details  

The equations show that multiplication of a square matrix on a vector is the basic 
operation in algorithm FAPKC3. Matrix Аr[n, n], a vector V[n], dimension of a matrix 
are input parameters for the given procedure. P [n] is a resultant vector. Each element 
of a resultant vector calculated by search of elements of lines of matrix Аr and their 
multiplication to corresponding elements of a vector V. The result of multiplication 
increases to current value of an element of vector P. Each element of a resultant 
vector is calculated by the following formula:   

௜ܲ = ∑ ௜௝ݎܣ ∙ ௝ܸ௡௝ୀଵ                                                       (19) 
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The information graph of calculation realization according to the formula (19) is 
presented in Figure 1.   

 
Fig. 1. The graph of multiplication of a matrix on a vector-column. Аr and V – input 
information tops, Р – output information top, m – depth of a delay line. 

Depth of a delay line is equal to m, size of a vectors stream. Thus for the stream of 
vectors V we have:  ܸ = ଷଵݒଶଵݒ ଵଵݒ〉 … ௠ଵݒ ଷଶݒଶଶݒ ଵଶݒ … ௠ଶݒ … ଷ௡ݒଶ௡ݒ ଵ௡ݒ … ௠௡ݒ 〉, (20) 

where the top index means a vector’s element, the bottom index means number of 
vector in the stream.   

Thus, elements streams of matrix and vectors from information tops Аr and V 
accordingly are put on multiplier inputs. Further, the result of multiplication is added 
with earlier keeped value of an element of vector P from the delay line. 

The structure of block P, which is used for multiplication of a matrix on vectors 
stream, is presented on Figure 2. CR blocks provide communication of the computing 
scheme with memory cells from which commands and the data are read out and 
written. CR1  is designed for storage and getting of commands and  lines elements of 
a matrix, and also for writing of calculation results from CalB. CR2 it is designed for 
storage and getting of vectors  stream. 

 
Fig. 2. Structure of calculator P: CR1, CR2 – controllers of the  memory; Мx1 – the 
multiplexer of choice CR1 or CR2; CB – the control block; CalB – the calculation block.  
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Multiplexer Mx1 is used for switching of the input data flows  to CalB. At each 
moment of time on CalB arrives: 

- elements of a matrix line for their preservation in the internal buffer (loading 
of elements of a matrix), 

- or elements of stream vectors for computing structure (performance of 
calculations). Commands to CB are arrive from CR1.  

CB is designed for decoding of commands and formation of control signals for 
management of calculations by CalB. The structure of CalB block is presented on 
Figure 3.  

Buffer BUF1 is used for storage of a matrix line. Multiplier MUL, adder ADD and 
a delay line BUF2 realize calculations according to an information graph as shown on 
Figure 1. Multiplexer Mx2 is intended for switching of the input data flows to CalB. 
Data flows represent streams of matrix lines, streams of vectors and streams of 
results. Multiplexer Mx1 is intended for switching of streams of intermediate results 
and results from previous CalB, which come into buffer BUF2. Thus, hardware 
realization of set CalB allows organizing pipeline calculations.  

 
Fig. 3. The structure of calculatoin block CalB. 

3.3 FPGA Implementations Results  

The proposed architecture was captured by using VHDL. All the system components 
were described with structural architecture. The system tested using confirmed test 
vectors [5] in order to examine its correctness. The whole design was synthesized, 
placed and routed by using Altera FPGA device (Cyclone III, EP3C5E144C8N) [10]. 
Synthesis results for the proposed implementation are obtained as follows: 4,314 logic 
elements used (84% from available area) at a maximum frequency of 45 MHz and 
data rate of 24,3 Kb/s.  

The maximum operating frequency F as well as the number of logic elements 
required for our implementation was obtained from the Quartus II Web Edition 
software. Comparison between the proposed FAPKC implementation and a 512-bit 
RSA implementations are presented in Table 1. Area resource comparisons are not 
given because they are not provided by the other implementations.  

Table 1. Public key cryptosystem implementations comparison. 

Public key cryptosystem F (MHz) Data rate (Kb/s) 
RSA in [12] 45.6 140-460 
RSA in [13] 100 100 
RSA in [14] 50 43 
Proposed 45 MHz 24,3 
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4 Concluding Remarks 

FAPKC implementation oriented on multiplication of a square matrix on a vector 
over GF(q) on the reprogrammable matrix is offered in this paper. FAPKC3 was 
implemented on Altera FPGA of the device family Cyclone III (EP3C5E144C8N).  

The proposed system achieves a data throughput up to 24,3 Kb/s in a clock 
frequency of 45 MHz. The most part of an integrated circuit area (84%) was used in 
our FPGA implementation of FAPKC3 with small parameters (q = 2, l = 3, h0 = 1, k0 
= 2 and τ0 = 1).  

Thus, a future work will to concern of the implementation of FAPKC with the 
large parameters. The most obvious extension is to design a fully pipelined 
architecture in order to obtain a higher throughput at the price of area. 
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