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Abstract: A lot of tree-shaped data exists: XML documents, abstract syntax trees, hierarchies, etc. To accelerate query
processing on trees stored in a relational database a pre-post-ordering can be used. It works well for locating
ancestors of a single or few vertices because pre-post-ordering avoids recursive table access. However, it is
slow if it comes to locating ancestors of hundreds or thousands of vertices because ancestors of each of the
input vertices are located sequentially. In this paper, two novel algorithms (sort-tilt-scan and single-pass-
scan) for solving this problem are proposed and compared with a naı̈ve approach. While thesort-tilt-scan
improves the performance by a constant factor, thesingle-pass-scan achieves a better complexity class. The
performance gain is achieved because of a single table scan which can locate all result vertices by a single run.
Using generated data, this paper demonstrates that thesingle-pass-scan is orders of magnitude faster than the
naı̈ve approach.

1 INTRODUCTION

A lot of tree-shaped data exists: XML documents,
abstract syntax trees, bills of material, hierarchies,
etc. In many cases leaves of a tree contain the ac-
tual information and all other vertices (their ances-
tors) describe the meaning of the leaves and their de-
pendencies. Usually, users request information stored
in the leaves, but a (database) system requires all cor-
responding ancestors to reconstruct the context of the
query or to visualize the result set properly. There-
fore, the result set often should contain the matching
verticesand their ancestors.

To store a tree in a relational database, each ver-
tex is stored as a tuple with a unique ID. To represent
the tree structure, an attribute for the parent ID is re-
quired. With this crude data schema, it is possible
to fetch immediate children or parent of a vertex. To
locateall ancestors or descendants of a vertex effi-
ciently, pre-post-order numbering can be used (Grust
et al., 2004). For creating pre-post-order labels, the
entire tree has to be traversed once. For each vertex,
on entering and leaving the pre- and post-order are
assigned as consecutive numbers. Figure 1 illustrates
the labeling process with an example.

For a given vertex, its ancestors are all vertices
that were entered before and left after visiting this ver-
tex. Thus, they all have a smaller pre-order number
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Figure 1: A set of matches. The result paths are highlighted.

and a larger post-order number. Now it is possible to
fetchall ancestors or descendants of a vertex with one
table scan. For the example given in Figure 1, the fol-
lowing SQL query could be used to find the ancestors
of the vertexH:

SELECT * FROM vertices
WHERE preOrder < 11 AND postOrder > 14

If the comparison operators are changed to oppo-
site, the same query can be used to compute the de-
scendants of the vertex.

However, it is slow when it comes to locating an-
cestors of hundreds or thousands of vertices simulta-
neously because ancestors of each of the input ver-
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tices are located sequentially (see Section 2.1 for de-
tails). In this paper, two algorithms for solving this
problem are proposed and compared with a naı̈ve ap-
proach. While thesort-tilt-scan improves the per-
formance by a constant factor, thesingle-pass-scan
achieves a better complexity class. The performance
gain is achieved because of a single table scan which
can qualify all result vertices by a single run. Using
generated data, this paper shows that thesingle-pass-
scan is orders of magnitude faster than the naı̈ve ap-
proach.

Pre-post-order numbering is not the only label-
ing scheme that was proposed to accelerate XPath
queries. For instance, a scheme for improving se-
quences of child steps has been proposed (Chen et al.,
2004). Since the problem addressed in this paper oc-
curs after the evaluation of the query, the evaluation
of XPath queries itself is out of scope and is not dis-
cussed further. Implementations of XPath engines
are available as open source projects (i.e., Apache
Xalan) and are subject to current research (Gou and
Chirkova, 2007; Peng and Chawathe, 2005). Con-
ceptually, the paper proposes applying an algorithm
of a streaming nature to the data that is stored in a
database. We show that such a combination is effi-
cient for our scenario as we have a rather simple query
but a large input data set.

Streaming processing of XML data (Li and
Agrawal, 2005) is capable of handling large amounts
of data. Although a number of algorithms exist for
locating patterns on a tree, as far as we know no al-
gorithm exists that is specially designed for the large
number of input vertices as we have them.

Our algorithms assume that the data is rarely
changed. This assumption allows us to use pre-
post-ordering and to physically sort the data as de-
scribed below. This condition significantly restricts
the number of scenarios in which the algorithms can
be applied. Nevertheless, there are still a number
of cases that do not change data often. For exam-
ple, an abstract syntax tree, if changed, the entire tree
could be replaced because it should be parsed anyway
(Panchenko et al., 2010). In this case the vertices of
the new (or updated) tree will be placed at the end of
the table. The new pre-orders and post-orders will be
assigned to preserve the physical order. The old data
will then be removed from the table.

The paper is organized as follows. Section 2 dis-
cusses a naı̈ve approach to the problem and introduces
the two novel algorithms. In Section 3 the algorithms
are evaluated. The last section summarizes the results
and discusses future work.

2 ALGORITHMS

Once the XPath1 query was successfully executed, the
paths to the result vertices have to be computed. Fig-
ure 1 shows an example that will be used throughout
this paper to explain the proposed algorithms.

2.1 Näıve Approach

A frugal way of solving the problem is appending
/ancestor-or-self::* to each query. However, with a
certain database size, this approach is not feasible
since the computation would take too long. For the
example of Figure 1, the ancestors of the result[C, E,
H, J] could be computed with this SQL query:

SELECT * FROM vertices
WHERE (preOrder < 2 AND postOrder > 3)

/* Vertex C */
OR (preOrder < 6 AND postOrder > 7)

/* Vertex E */
OR (preOrder < 11 AND postOrder > 14)

/* Vertex H */
OR (preOrder < 17 AND postOrder > 20)

/* Vertex J */

It is clear that for each additional result vertex an-
other condition has to be added to the WHERE clause.
Since low selective queries in large systems can pro-
duce thousands of hits, this approach quickly exceeds
the maximum query size of most database systems.
But even a manual implementation would not solve
the fundamental problem, namely that it is necessary
to iterate over the entire vertex set and that for each
vertex it has to be checked whether it is an ancestor
of one of the result vertices. This leads to a runtime
complexity ofO(|vertices| ∗ |input|). Thus, assuming
that for a given query the size of the result is propor-
tional to the size of the database, the naı̈ve approach
has a quadratic complexity. The naı̈ve algorithm is
depict in the following listing.

Algorithm 2.1: NAÏVE APPROACH(input,vertices).

1We mentioned XPath here, but other query languages can be
used as well.
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2.2 Sort-tilt-scan Algorithm

Since in general the entire tree is significantly bigger
than the result set, it is better to iterate over the en-
tire tree in the outer loop and use the inner loop to
probe the result set. Even if the entire database is kept
in memory, switching the loops slows down the ex-
ecution. However, this loss of performance may be
justified if the overall efficiency of the algorithm can
be improved. With a sorted index over the pre-order
attribute it is possible that once a vertex itself has
been reached to stop searching for ancestors of this
vertex. Furthermore, for vertices in the rear part of
the tree, the same can be done even faster with an in-
dex that is sorted by post-order. Figure 2 shows how
this approach would process the example tree. For
each vertex it has to be decided first in which table
it has a higher position by using the functionusePre-
OrderSorting(c)). This can be done in constant time
if the pre-post-order numbering scheme is adjusted.
When using separate counters for pre- and post-order,
the positions in the sorted indices can be derived di-
rectly from the order numbers. For consistency with
the other figures, this modification is not shown in
the example. After the index was selected, the algo-
rithm searches for ancestors until the result vertex is
reached. Because of the sorting, no ancestors will be
found after that point. This algorithm has the same
complexity as the naı̈ve approach, but improves exe-
cution time with a constant factor. We also tried to
further improve the performance by calculating the
min pre-order and max post-order. Starting the table
scans with min pre-order and max post-order should
reduce the number of tuples to be scanned. However,
in practice this optimization negligibly improves per-
formance because of the distribution of the pre- and
post-orders. Thesort-tilt-scan algorithm is depict in
the following listing.

Algorithm 2.2: SORT-TILT-SCAN (in, preOrdered, pos-
tOrdered).

Node pre post
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Figure 2: The vertex set, once sorted ascending by pre-
order, once sorted descending by post-order. Result vertices
and their ancestors are circled. The arrows indicate rows
scanned bysort-tilt-scan.

2.3 Single-pass-scan Algorithm

As it can be seen in Figure 2, some vertices are
checked multiple times. This is true insofar as these
vertices are ascendants of more than one result vertex.
However, for the final result it is not important to find
these vertices more than once. This trait can be ex-
ploited if the table and the result vertices are sorted by
pre-order. Once all ancestors of a result vertexV1 have
been found, some ancestors of the next result vertex
V2 are found as well. As it can be seen in Figure 3,
all ancestors ofV2 that are not ancestors ofV1 must
have a higher pre-order thanN1. Thus, for computing
the ancestors of a result vertexVi, in a table sorted by
pre-order only the vertices betweenVi−1 andVi have
to be checked. This algorithm assumes that the input
vertices are sorted by pre-order. Figure 4 shows how
the algorithm scans the table.
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Figure 3: Ancestors of result vertices without overlapping.

The removed overlapping of the result paths is
shown in Figure 3. As it can be seen in Figure 4,
the algorithm iterates over the vertex set only once.
In the worst case scenario, when at least one result
vertex is at the very end of the table, the execution
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Figure 4: The vertex set is sorted by pre-order. Result ver-
tices and their ancestors are highlighted. The arrows show
which rows are scanned bysingle-pass-scan.

time of the algorithm only depends on the size of the
vertex set, and is independent of the number of result
vertices. Thus, especially for queries with low selec-
tivity, a good execution time is expected. After the
single-pass-scan is done, each of the output vertices
has to be mapped to corresponding ancestors. This
can be done using the naı̈ve approach orsort-tilt-scan.
This additional step negligibly affect the performance
because the number of output vertices is significantly
smaller than the size of the entire table. The algorithm
is depict in the following listing.

Algorithm 2.3: SINGLE-PASS-SCAN(input, preOrdered).

3 EVALUATION

When writing algorithms for large datasets, it is im-
portant that they operate as closely as possible on the
original data. Furthermore, for the purpose of com-
paring the algorithms, the execution should not be af-
fected by database specific optimizations. Therefore,
a simple prototype was developed in Java for the eval-
uation. The prototype uses a column store that is im-
plemented with int-arrays. On startup, the generated
data is loaded from a file, sorted by pre-order. Ad-
ditionally, a sorted index is created on the post-order

attribute.
Each algorithm accesses the data with an iterator

that hides the column architecture. This provides data
access in constant time and ensures the benefits of a
column store, such as sequential reading. As a result
of the computation, the indices of the selected vertices
are stored in an array list, which provides amortized
constant time for inserts. The generated data con-
sisted of 2.000 equally shaped trees that were com-
bined to one large super tree. Each tree had a depth
of seven with four children per vertex. In total, the
data set contained 10.922.000 vertices. Since the lo-
cation of the ancestors is independent of the evalua-
tion of the query2, the set of vertices was generated
of which the ancestors will be computed. Although
a number of standard XML benchmark exists, we de-
cided to generate data in such a way that we can show
the properties of the algorithm in the best way as stan-
dard benchmarks do not have such a query. We per-
formed our tests on a Linux machine equipped with
Intel R©XeonR©CPU E5450 takted at 3GHz.

The execution time of the algorithms mainly de-
pends on the size of the database and the selectivity
of the original query. Figure 5 presents dependency
of query execution time from the query selectivity.
The selected vertices are distributed randomly in the
super tree. Only leaf vertices were selected. Each
data point shows the average of five runs with a differ-
ent random seed. As expected, the execution time of
the naı̈ve approach and thesort-tilt-scan grows linear
with the selectivity, while the execution time of the
single-pass-scan remains almost constant. A slight
increase can be observed because of the additional
overhead of adding more vertices to the ascendants
list.

We also compared our implementation with
MySQL and MonetDB. Although it was not a primary
goal of our research, we added these measurements
to illustrate that convenient database systems behave
similarly to our naı̈ve implementation.

In this test, the vertices were distributed randomly
throughout the entire tree. However, when search-
ing for certain vertices, it is likely that most matches
concentrate on a certain area of the table. To repre-
sent this trait, the ordered vertex set was split into 200
equal subsets. Then, for each of 11 tests, all vertices
were selected from only one of these subsets. Figure 6
shows the result of these tests. The selectivity of
the input set of vertices was chosen to be 0.0007%.
The naı̈ve approach exhibits almost constant execu-
tion time because the entire table has to be scanned

2Some algorithms for streaming evaluation of XPath are capa-
ble of locating ancestors during the evaluation of the query. How-
ever, in this paper we focus on those algorithms which are not.
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Figure 5: Query execution time of the three algorithms,
MySQL and MonetDB depending on the selectivity of the
original query.

anyway. Since the last two algorithms start with iter-
ating over the vertex set, beginning with the smallest
pre-order, they are faster when all hits can be found
early in the table. With increasing pre-order of the re-
sult vertices, the algorithms become linearly slower.
As it was expected thesort-tilt-scan becomes faster
again in the second half of the table, when the ver-
tices ascend in the table that is sorted by post-order.

In the next test run, the execution time was mea-
sured for different database sizes. To simulate that all
vertex sets were queried with the same query, the se-
lectivity for creating the result set was 0.0007% for
each run, which corresponds to 80 hits in the full
database. The results of this test are shown in Figure
7. On one hand, one can see that the execution time of
the naı̈ve approach and of thesort-tilt-scan is growing
quadratic, caused by the linear increase of database
and result set sizes. On the other hand, thesingle-
pass-scan shows a linear behavior as it was predicted
in the analysis in Section 2.3. When comparing the
overall performance of larger result sets, thesingle-
pass-scan is orders of magnitude faster, while the
sort-tilt-scan is faster than the naı̈ve approach by a
constant factor.

Since thesingle-pass-scan scans tuples of the ta-
ble sequentially, it can exploit the advantages of mod-
ern processors if the table is stored using column-
oriented layout. Furthermore, to reduce the amount
of scanned data a simple dictionary compression can
be used (Cockshott et al., 1998). Figure 8 illustrates
the impact of the physical data layout on performance.
In our prototype we changed the layout of the arrays
as proposed by Li et al. (Li et al., 2004).

The performance advantages come at costs of ad-
ditional space requirements because a sorted index is
needed. Furthermore, the performance of data manip-
ulation operations (insert, update, delete) is affected
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Figure 6: Query execution time, depending on the position
of the selected vertices.
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ferent data layouts. The selectivity is 0.1%.

because of the need of maintaining the index and of
keeping the records sorted by pre-order.

4 CONCLUSIONS AND FUTURE
WORK

This paper showed how the computation of the paths
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from the root of the tree to the result vertices of an
XPath query can be improved. Therefore two algo-
rithms were proposed. The algorithms were designed
for a relational column-oriented in-memory database
and rely on pre-post-order numbering. Thesort-tilt-
scan improves the naı̈ve approach by using two sorted
tables and minimizing the number of rows that have
to be scanned for a vertex to find its ancestors. The
single-pass-scan exploits the fact that the result is a
set and does not need the information how often a
certain vertex was found as an ancestor. In this way
it is possible to solve the problem with a single ta-
ble scan. In the evaluation part it was found that the
single-pass-scan greatly improves the performance of
the task, especially for queries with a high selectivity.
It was significantly faster than other algorithms, re-
gardless of the database size, the queries selectivity
or the distribution of the results.

Since thesingle-pass-scan is based on a table
scan, it provides possibilities for parallelization. Fur-
ther tests should show how the algorithms behave in
a multithreaded environment. Another approach for
fetching the paths to the result vertices would be us-
ing a streaming-based XPath engine as XSQ (Peng
and Chawathe, 2005). It could be modified to keep
a stack of ancestors and write them into the result
once the query produced a hit. However, this might
slow down the actual execution of the query, as the
advantage of targeted, index-based access to the data
could not be used. Finally, it should be mentioned
that with a slight modification the algorithms could
be used to fetch the descendants of a set of vertices
as well. This way, a new potential for optimizing the
implementation of the XPath axes arises. Thus, the al-
gorithms proposed in this paper can not only improve
the post-processing of the result, but the evaluation of
the query as well.
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