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Abstract: A lot of tree-shaped data exists: XML documents, abstract syntax trees, hierarchies, etc. To accelerate query
processing on trees stored in a relational database a pre-post-ordering can be used. It works well for locating
ancestors of a single or few vertices because pre-post-ordering avoids recursive table access. However, it is
slow if it comes to locating ancestors of hundreds or thousands of vertices because ancestors of each of the
input vertices are located sequentially. In this paper, two novel algoritBonstilt-scan and single-pass-
scan) for solving this problem are proposed and compared with a naive approach. Whdar ttidt-scan
improves the performance by a constant factor,shgle-pass-scan achieves a better complexity class. The
performance gain is achieved because of a single table scan which can locate all result vertices by a single run.
Using generated data, this paper demonstrates thairifjle-pass-scan is orders of magnitude faster than the
naive approach.

1 INTRODUCTION

A lot of tree-shaped data exists: XML documents,
abstract syntax trees, bills of material, hierarchies,
etc. In many cases leaves of a tree contain the ac-
tual information and all other vertices (their ances-
tors) describe the meaning of the leaves and their de-
pendencies. Usually, users request information stored
in the leaves, but a (database) system requires all cor-
responding ancestors to reconstruct the context of the
query or to visualize the result set properly. There-
fore, the result set often should contain the matching
verticesand their ancestors.

To store a tree in a relational database, each ver-
tex is stored as a tuple with a unique ID. To represent
the tree structure, an attribute for the parent ID is re-
quired. With this crude data schema, it is possible
to fetch immediate children or parent of a vertex. To
locateall ancestors or descendants of a vertex effi-
ciently, pre-post-order numbering can be used (Grust
et al., 2004). For creating pre-post-order labels, the ~ SELECT * FROM vertices
entire tree has to be traversed once. For each vertex, ~ WERE preQrder < 11 AND postQrder > 14
on entering and leaving the pre- and post-order are  If the comparison operators are changed to oppo-
assigned as consecutive numbers. Figure 1 illustratessite, the same query can be used to compute the de-
the labeling process with an example. scendants of the vertex.

For a given vertex, its ancestors are all vertices  However, it is slow when it comes to locating an-
that were entered before and left after visiting this ver- cestors of hundreds or thousands of vertices simulta-
tex. Thus, they all have a smaller pre-order number neously because ancestors of each of the input ver-

Figure 1: A set of matches. The result paths are highlighted.

and a larger post-order number. Now it is possible to
fetchall ancestors or descendants of a vertex with one
table scan. For the example given in Figure 1, the fol-
lowing SQL query could be used to find the ancestors
of the vertexH:
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tices are located sequentially (see Section 2.1 forde-2 ALGORITHMS

tails). In this paper, two algorithms for solving this

problem are proposed and compared with a naive ap-Once the XPathquery was successfully executed, the

proach. While thesort-tilt-scan improves the per-  paths to the result vertices have to be computed. Fig-

formance by a constant factor, tisangle-pass-scan ure 1 shows an example that will be used throughout

achieves a better complexity class. The performancethis paper to explain the proposed algorithms.

gain is achieved because of a single table scan which

can qualify all result vertices by a single run. Using 2.1 Nave Approach

generated data, this paper shows thatsthgle-pass-

scan is orders of magnitude faster than the naive ap- A frugal way of solving the problem is appending

proach. /ancestor-or-self::* to each query. However, with a
Pre-post-order numbering is not the only label- certain database size, this approach is not feasible

ing scheme that was proposed to accelerate XPathsince the computation would take too long. For the

queries. For instance, a scheme for improving se- example of Figure 1, the ancestors of the regylIE,

guences of child steps has been proposed (Chen et al.H, J] could be computed with this SQL query:

2004). Since the problem addressed in this paper oc- g EcT * FROM verti ces

curs after the evaluation of the query, the evaluation VHERE (preOrder < 2 AND postQrder > 3)

of XPath queries itself is out of scope and is not dis- /* Vertex C */
cussed further. Implementations of XPath engines CR (preGrder < 6 AND postQrder > 7)
are available as open source projects (i.e., Apache I* Vertex E */

Xalan) and are subject to current research (Gou and CR (prelrdergy <"IT AND pfft %?f;;l_ﬁf}

Chirkova, 2007; Peng and Chawathe, 2005). Con- R (preQrder < 17 AND postQrder > 20)
ceptually, the paper proposes applying an algorithm /* Vertex J */
of a streaming nature to the data that is stored in a
database. We show that such a combination is effi-
cient for our scenario as we have a rather simple query
but a large input data set.

Streaming processing of XML data (Li and
Agrawal, 2005) is capable of handling large amounts
of data. Although a number of algorithms exist for
locating patterns on a tree, as far as we know no a
gorithm exists that is specially designed for the large
number of input vertices as we have them.

Our algorithms assume that the data is rarely
changed. This assumption allows us to use pre-
post-ordering and to physically sort the data as de-
scribed below. This condition significantly restricts
the number of scenarios in which the algorithms can
be applied. Nevertheless, there are still a number
of cases that do not change data often. For exam-  aigorithm 2.1: Naive APPROACH(inpUt,vertices).
ple, an abstract syntax tree, if changed, the entire tree
could be replaced because it should be parsed anyway
(Panchenko et al., 2010). In this case the vertices of  for each c € input

Itis clear that for each additional result vertex an-
other condition has to be added to the WHERE clause.
Since low selective queries in large systems can pro-
duce thousands of hits, this approach quickly exceeds
the maximum query size of most database systems.
But even a manual implementation would not solve
- the fundamental problem, namely that it is necessary
to iterate over the entire vertex set and that for each
vertex it has to be checked whether it is an ancestor
of one of the result vertices. This leads to a runtime
complexity ofO(|vertices| = |input|). Thus, assuming
that for a given query the size of the result is propor-
tional to the size of the database, the naive approach
has a quadratic complexity. The naive algorithm is
depict in the following listing.

comment: evaluate each input vertice

the new (or updated) tree will be placed at the end of comment: ierate over each vertex in the table
the table. The new pre-orders and post-orders will be for each v € vertices
assigned to preserve the physical order. The old data COMMENt: check if the vertex qualifies as ancestor
will then be removed from the table. COMMeNt: ofone o the input vrtices
The paper is organized as follows. Section 2 dis- do .
cusses a naive approach to the problem and introduces do { T Fpre< cpre
the two novel algorithms. In Section 3 the algorithms and v. post > c. post
are evaluated. The last section summarizes the results then 4 Comment: sddio e s
and discusses future work. output (v)

1we mentioned XPath here, but other query languages can be
used as well.
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2.2 Sort-tilt-scan Algorithm

post Node pre post
0 21 SV 21
Since in general the entire tree is significantly bigger 1 4 NEDIEY 20
than the result set, it is better to iterate over the en- | (¢ 2 3 Lk 18 19
tire tree in the outer loop and use the inner loop to | Db 5 16 P 4D s 16
probe the result set. Even if the entire database is kept e 6 7 v AP 8 15
in memory, switching the loops slows down the ex- F 8 15 G u 14
ecution. However, this loss of performance may be 6 S 10 ! 12 13
justified if the overall efficiency of the algorithm can Hmooou 1 ¢ o 10
be improved. With a sorted index over the pre-order ' r B £ 6 7
attribute it is possible that once a vertex itself has JK g ig i i :

been reached to stop searching for ancestors of this
vertex. Furthermore, for vertices in the rear part of Figure 2: The vertex set, once sorted ascending by pre-
the tree, the same can be done even faster with an in-order, once sorted descending by post-order. Result gertic
dex that is sorted by post-order. Figure 2 shows how and their ancestors are circled. The arrows indicate rows
this approach would process the example tree. ForScnned byort-tilt-scan.

each vertex it has to be decided first in which table . .

it has a higher position by using the functiosePre- 2.3 Single-pass-scan Algorithm
OrderSorting(c)). This can be done in constant time

if the pre-post-order numbering scheme is adjusted. As it can be seen in Figure 2, some vertices are
When using separate counters for pre- and post_order,CheCked multiple times. This is true insofar as these
the positions in the sorted indices can be derived di- Vertices are ascendants of more than one result vertex.

rectly from the order numbers. For consistency with However, for the final result it is not important to find
the other figures, this modification is not shown in these vertices more than once. This trait can be ex-
the example. After the index was selected, the algo- Ploited if the table and the result vertices are sorted by
rithm searches for ancestors until the result vertex is Pre-order. Once all ancestors of a result veltglave
reached. Because of the sorting, no ancestors will bePeen found, some ancestors of the next result vertex
found after that point. This algorithm has the same V2 are found as well. As it can be seen in Figure 3,
complexity as the naive approach, but improves exe- all ancestors o¥/; that are not ancestors ¥ must
cution time with a constant factor. We also tried to have a higher pre-order th&. Thus, for computing
further improve the performance by calculating the the ancestors of a result vertéix in a table sorted by
min pre-order and max post-order. Starting the table pre-order only the vertices betwe®n ; andV; have
scans with min pre-order and max post-order should to be checked. This algorithm assumes that the input
reduce the number of tuples to be scanned. However,vertices are sorted by pre-order. Figure 4 shows how
in practice this optimization negligibly improves per- the algorithm scans the table.

formance because of the distribution of the pre- and
post-orders. Theort-tilt-scan algorithm is depict in
the following listing.

Algorithm 2.2: SORT-TILT-SCAN (in, preOrdered, pos-
tOrdered).

comment: evaluate each input vertex

for each ¢ € in
comment: decide which sorting to use

if usePreOrderSorting(c)
for each v & preOrdered,
(v.pre < c. pre)
then if v. post > c. post
do " {comment: y=ancestor(d) Figure 3: Ancestors of result vertices without overlapping
en

dn output (v) . .
The removed overlapping of the result paths is

for each v & postOrdered, . . . A
shown in Figure 3. As it can be seen in Figure 4,

(v.post > c. post)

else if v. pre < c. pre the algorithm iterates over the vertex set only once.
do comment: v—ancestor(d In the worst case scenario, when at least one result

then i :
output (v) vertex is at the very end of the table, the execution
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attribute.
post Each algorithm accesses the data with an iterator
2 that hides the column architecture. This provides data

4 access in constant time and ensures the benefits of a
135 column store, such as sequential reading. As a result
7 of the computation, the indices of the selected vertices
" are stored in an array list, which provides amortized
m constant time for inserts. The generated data con-
1a sisted of 2.000 equally shaped trees that were com-
13 bined to one large super tree. Each tree had a depth
20 of seven with four children per vertex. In total, the

19 data set contained 10.922.000 vertices. Since the lo-

Figure 4: The vertex set is sorted by pre-order. Result ver- ey of the ancestors is mdepz_endent of the evalua-
tices and their ancestors are highlighted. The arrows show 0N Of the query, the set of vertices was generated
which rows are scanned Isingle-pass-scan. of which the ancestors will be computed. Although
a number of standard XML benchmark exists, we de-
time of the algorithm only depends on the size of the Cided to generate data in such a way that we can show
vertex set, and is independent of the number of result the properties of the algorithm in the best way as stan-
vertices. Thus, especially for queries with low selec- dard benchmarks do not have such a query. We per-
tivity, a good execution time is expected. After the formed our tests on a Linux machine equipped with
single-pass-scan is done, each of the output vertices InteI®Xeor®C|_3U E5450 takted at 3GHz.
has to be mapped to corresponding ancestors. This = 1he execution time of the algorithms mainly de-
can be done using the naive approackoot-tilt-scan. pends on the size of the database and the selectivity
This additional step negligibly affect the performance ©Of the original query. Figure 5 presents dependency
because the number of output vertices is significantly Of query execution time from the query selectivity.
smaller than the size of the entire table. The algorithm The selected vertices are distributed randomly in the

is depict in the following listing. super tree. Only leaf vertices were selected. Each
data point shows the average of five runs with a differ-
Algorithm 2.3: SNGLE-PASS SCAN(input, preOrdered). ent random seed. As expected, the execution time of

the naive approach and thert-tilt-scan grows linear
with the selectivity, while the execution time of the
single-pass-scan remains almost constant. A slight

comment: cvaluate each input vertex

for each c € input

COMMENL: contme it st increase can be observed because of the additional
continue for each v preOrdered overhead of adding more vertices to the ascendants
if v. preOrder > c. preOrder list.

do then 4 CCTMENE: noacesiors of cafr i We also compared our implementation with

d break MySQL and MonetDB. Although it was not a primary
else if v postOrder > c. postOrder goal of our research, we added these measurements
the {Cﬂmmenti vis an ancesior of ¢ to il!ustrate that convgnient databgse systems behave

output (v) similarly to our naive implementation.

In this test, the vertices were distributed randomly
throughout the entire tree. However, when search-
ing for certain vertices, it is likely that most matches

3 EVALUATION concentrate on a certain area of the table. To repre-

. i L sent this trait, the ordered vertex set was split into 200
When writing algorithms for large datasets, it is im-  oqual subsets. Then, for each of 11 tests, all vertices
portant that they operate as closely as possible on theyere selected from only one of these subsets. Figure 6
original data. Furthermore, for the purpose of COM- ghgws the result of these tests. The selectivity of
paring the algorithms, the execution should not be af- o input set of vertices was chosen to be 0.0007%.
fected by database specific optimizations. Therefore, The naive approach exhibits almost constant execu-

a simple prototype was developed in Java for the eval- 5y time because the entire table has to be scanned
uation. The prototype uses a column store that is im-

plemented with '”t'a”a}/s- On startup, the generated 2Some algorithms for streaming evaluation of XPath are capa-
data is loaded from a file, sorted by pre-order. Ad- ple of locating ancestors during the evaluation of the quisigi-
ditionally, a sorted index is created on the post-order ever, in this paper we focus on those algorithms which are not
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Figure 5: Query execution time of the three algorithms, Figure 6: Query execution time, depending on the position
MySQL and MonetDB depending on the selectivity of the of the selected vertices.
original query.

18.000

anyway. Since the last two algorithms start with iter- ' v
ating over the vertex set, beginning with the smallest 7 14000 s
pre-order, they are faster when all hits can be found g 2000 7
early in the table. With increasing pre-order of the re- = 10.000 S
sult vertices, the algorithms become linearly slower. $ om0 R,
As it was expected theort-tilt-scan becomes faster g 6.000 _ e’
again in the second half of the table, when the ver- %, et |
tices ascend in the table that is sorted by post-order. 2000 - ' 4 e

In the next test run, the execution time was mea- 0 ] g0 e
sured for different database sizes. To simulate that all 0 5.000.000 10.000.000
vertex sets were queried with the same query, the se- Database size
lectivity for creating the result set was 0.0007% for —0= Naive O+ Sort-Tilt-Scan = 2= Single-Pass-Scan

each run, which corresponds to 80 hits in the full Figure 7: Query execution time for different database sizes
database. The results of this test are shown in Figurewith constant selectivity.

7. On one hand, one can see that the execution time of

the naive approach and of thart-tilt-scan is growing 500
guadratic, caused by the linear increase of database :
and result set sizes. On the other hand, dimgle-
pass-scan shows a linear behavior as it was predicted
in the analysis in Section 2.3. When comparing the
overall performance of larger result sets, Hhagle-
pass-scan is orders of magnitude faster, while the
sort-tilt-scan is faster than the naive approach by a

constant factor. o f

Row-oriented Col iented C

Since thesingle-pass-scan scans tuples of the ta- Column-oriented
ble sequentially, it can exploit the advantages of mod- Figure 8: Query execution time single-pass-scan for dif-
ern processors if the table is stored using column- ferent data layouts. The selectivity is 0.1%.
oriented layout. Furthermore, to reduce the amount
of scanned data a simple dictionary compression canpecause of the need of maintaining the index and of
be used (Cockshott et al., 1998). Figure 8 illustrates keeping the records sorted by pre-order.
the impact of the physical data layout on performance.
In our prototype we changed the layout of the arrays

as proposed by Li et al. (Li et al., 2004). 4 CONCLUSIONS AND FUTURE

The performance advantages come at costs of ad-
ditional space requirements because a sorted index is WORK
needed. Furthermore, the performance of data manip-
ulation operations (insert, update, delete) is affected This paper showed how the computation of the paths
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from the root of the tree to the result vertices of an Grust, T., Keulen, M., and Teubner, J. (2004). Accelerating
XPath query can be improved. Therefore two algo- XPath evaluation in any RDBMSACM Transactions
rithms were proposed. The algorithms were designed ~ ©n Database Systems, 1.

for a relational column-oriented in-memory database Li, F., Agrawal, P., Eberhardt, G., Manavoglu, E., Ugurel,
and rely on pre-post-order numbering. Téuet-tilt- S., and Kandemir, M. (2004). Improving Memory
scan improves the naive approach by using two sorted Egg?crrf:;‘gjt ﬂoimggggﬁg f;‘r’g C;%?J}'g:g}?t?; I?]y Dy-
tables and minimizing the num.ber_of rows that have ternational Parallel and Distributed Processing Sym-

to be scanned for a vertex to find its ancestors. The posium, page 159. IEEE Computer Society.
single-pass-scan exploits the f_act that _the result is a Li, X. and Agrawal, G. (2005). Efficient Evaluation of
set and does not need the information how often a XQuery over Streaming Data. IRroceedings of

certain vertex was found as an ancestor. In this way the 31st international conference on Very large data

it is possible to solve the problem with a single ta- bases, pages 265-276. VLDB Endowment.

ble scan. In the evaluation part it was found that the panchenko, O., Treffer, A., and Zeier, A. (2010). To-
single-pass-scan greatly improves the performance of wards Query Formulation and Visualization of Struc-
the task, especially for queries with a high selectivity. tural Search Results. IRroceedings of the ICSE

It was significantly faster than other algorithms, re- Workshop on Search-driven Development: Users, In-

gardless of the database size, the queries selectivity ﬁcﬁruﬁtgrfjgﬂdzgﬁ Evaluation, pages 33-36, New

or the distribution of the results. _
Peng, F. and Chawathe, S. S. (2005). XSQ: A Streaming

Sin_ce th(_asinglepa_ss_-_sc_:an is based on a table XPath Engine.ACM Transactions on Database Sys-
scan, it provides possibilities for parallelization. Fur- tems, 30(2):577—623.

ther tests should show how the algorithms behave in
a multithreaded environment. Another approach for
fetching the paths to the result vertices would be us-
ing a streaming-based XPath engine as XSQ (Peng
and Chawathe, 2005). It could be modified to keep
a stack of ancestors and write them into the result
once the query produced a hit. However, this might
slow down the actual execution of the query, as the
advantage of targeted, index-based access to the data
could not be used. Finally, it should be mentioned
that with a slight modification the algorithms could
be used to fetch the descendants of a set of vertices
as well. This way, a new potential for optimizing the
implementation of the XPath axes arises. Thus, the al-
gorithms proposed in this paper can not only improve
the post-processing of the result, but the evaluation of
the query as well.
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