
MODGRAPH
A Transformation Engine for EMF Model Transformations

Thomas Buchmann, Bernhard Westfechtel and Sabine Winetzhammer
University of Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany

Keywords: Model-driven development, Graph transformations, Code generation, EMF, Pattern matching, OCL.

Abstract: Model-driven software engineering aims at increasing productivity by replacing conventional programming
with the development of high-level executable models. However, current technology focuses on structural
models, while behavioral modeling is still neglected. The transformation engine ModGraph intends to fill
this gap. ModGraph complements the Eclipse Modeling Framework with graphical transformation rules from
which executable code is generated. An operation defined in an Ecore model is specified by a model transfor-
mation rule which is compiled into a Java method calling EMF operations. In this way, ModGraph comple-
ments the capabilities of EMF which would compile operations into empty Java methods. The net result is an
environment which provides comprehensive support for executable models.

1 INTRODUCTION

TheEclipse Modeling Framework (EMF)(Steinberg
et al., 2009) has been used successfully in a wide
range of applications in both research and industry. In
EMF, models are based on the object-oriented Ecore
metamodel, in which classes as well as their structural
and behavioral features are defined. However, con-
cerning behavior, the modeling capabilities of EMF
are limited: Only the signatures of operations may be
defined. Thus, Ecore may be used to define struc-
tural models only. The EMF code generator creates
code for the classes in an Ecore model. But this code
comprises only elementary operations for setting at-
tribute values, inserting and deleting links, etc. For
user-defined operations, only a skeleton is generated
consisting of the signature and an empty body. The
user needs to supply an implementation for each user-
defined operation. Usually, this is done by program-
ming in Java.

Thus,model-driven software engineeringis sup-
ported only partially by EMF. In this paper, we intro-
duceModGraph1, a transformation engine forEMF
model transformations, which adds behavioral mod-
eling and code generation to EMF. In ModGraph,
model transformations may be defined for any model
defined with Ecore. ModGraph is based on the theory
of graph transformationand views an EMF model

1ModGraph is an acronym of “Model Transformation
with GraphTransformation”.

instance as a directed graph. A model transforma-
tion rule is used to realize an operation defined in the
Ecore model and describes a model transformation in
a declarative way. The core of a transformation rule
consists of a graph pattern, which specifies both a set
of objects and links to be searched and the changes to
be performed. In ModGraph, model transformations
are specified at a much higher level of abstraction than
Java code. A model transformation rule is validated
against the underlying Ecore model. Furthermore, a
valid rule is transformed into executable code which
is injected into the code generated by the EMF code
generator. Thus, ModGraph is tightly integrated with
the EMF framework.

ModGraph adds support for behavioral modeling
to EMF in an incremental way. This approach is in
line with the philosophy underlying EMF, namely to
offer an evolutionary path from Java programming to
modeling. Using the EMF core technology, an ap-
plication developer benefits from structural modeling
and code generation for elementary operations. Us-
ing ModGraph, (s)he may use graph transformations
whenever they are helpful to describe complex oper-
ations on EMF model instances in a declarative and
graphical way. The ModGraph compiler will then
compile these rules into ordinary Java methods. For
the “rest”, the application developer may still resort
to plain Java programming. In particular, the control
structure of an application resides completely in Java
since Java — and other conventional textual program-

212 Winetzhammer S., Buchmann T. and Westfechtel B..
MODGRAPH - A Transformation Engine for EMF Model Transformations.
DOI: 10.5220/0003606702120219
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 212-219
ISBN: 978-989-8425-77-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



ModGraph

Ecore 

metamodel
Class diagram

instance of

Package diagram 

metamodel
instance of

Package diagram

instance of

Graph transformation

metamodel
instance of

Graph trans-

formation rule

instance of

Java Methods

written in

implements

implements

EMF

Code generator

GraTra

Code generator

calls

consistent with

consistent with

+

Executable

model

GMF

based upon

based upon

Graphical

definition
GMF

Graphical

tool

Modeler End user

Figure 1: Overview about the different meta-models and models used in ModGraph.

ming languages — has proved to offer a concise and
expressive notation for control flow.

2 OVERVIEW

In this section we provide an overview about Mod-
Graph and its context. Figure 1 depicts a diagram
showing the different modeling components and the
interaction with the modeler and the end user. When
specifying a software system, the modeler usually
starts on a coarse-grained level, by defining an ar-
chitecture. In our approach, package diagrams are
used for this task. A package diagram describes
the coarse structure of the software system by pack-
ages and their dependencies (public/private package
and element imports are used for this purpose). We
developed a package diagram editor which provides
the modeler with modeling-in-the-large capabilities
(Buchmann et al., 2009). This editor was developed
in a model-driven way using the Eclipse Modeling
Framework (EMF) (Steinberg et al., 2009) and the
Graphical Modeling Framework (GMF) (Gronback,
2009). Thus, its metamodel is an instance of the Ecore
metamodel.

In a subsequent step, the modeler can refine this
package diagram with an Ecore class diagram. To
create Ecore class diagrams, any Ecore compliant ed-
itor can be used, e.g., the tree editor which is part of

Eclipse’s EMF distribution or graphical editors like
the Ecore Tools editor or even commercial tools like
eUML2 (Soyatec, 2011). The package diagram editor
provides several methods of use to maintain consis-
tency with the corresponding class diagrams, includ-
ing forward, reverse, incremental round-trip engineer-
ing and an additional validation.

In the following step, the modeler can refine an
operation declared in the class diagram by a graph
transformation rule. This graph transformation rule
is an instance of the graph transformation metamodel
which is also an instance of the Ecore metamodel.
The graphical editor which allows the modeler to
graphically specify the graph transformation rule was
also developed in a model-driven way using EMF and
GMF.

In addition, hand-written method implementations
in plain Java code are used to call the graph transfor-
mation rules.

To generate code from the specification created
by the modeler, two different code generation steps
are used. First, the EMF code generator is used to
generate EMF compliant code according to the Ecore
class diagram. In a subsequent step, the method bod-
ies which are specified by graph transformation rules
are generated and merged with the code generated in
the previous step. The different code fragments - the
generated ones and the hand written ones - result in
an executable model. An additional advantage of our

MODGRAPH - A Transformation Engine for EMF Model Transformations

213



approach is that GMF can be used to build graphi-
cal tools on top of the executable model, since Ecore
class diagrams are used to model the static structure.

3 GRAPH TRANSFORMATION
RULES

This section goes into detail concerning the graph
transformation rules, which may be used to model be-
havior on a fine grained level.

3.1 General Description

Implementing an EMF operation can lead to large
method bodies coded on a low level of abstraction.
Our graph transformation rules provide a compact and
declarative way to model complex operations. Each
graph transformation rule represents the method body
for an operation declared in the Ecore model. The
parameters of this operation represented EMF objects
and data values. Object parameters are used to bind
nodes of the graph pattern. Data values are used e.g.
in attribute conditions and attribute assignments.

EMF model instances are considered as graphs —
called model graphs — whose nodes and edges rep-
resent objects and links, respectively. A graph trans-
formation rule declaratively describes a transforma-
tion of the model, consisting of structural changes (in-
sertion/creation of objects and links), changes of at-
tribute values, and nested method calls. The core part
of a graph transformation rule is a graph pattern, in
which objects and links are represented by nodes and
edges, respectively. The graph pattern specifies both
the subgraph to be searched and the operations to be
performed. The graph pattern may be constrained us-
ing pre- and postconditions as well as a negative ap-
plication condition (NAC).

A graph pattern resembles a UML communica-
tion diagram, which is composed of a static part —
the underlying object diagram — and a dynamic part
(specifying change operations). The nodes of a graph
pattern are classified into the current object (denoted
by this), parameter objects, single objects and multi-
objects (representing sets of objects). The current
object and the parameter objects are bound via the
method call. All other objects are unbound and need
to be searched in the model graph. Unbound objects
may be marked with<<out>> to designate them as
return objects of the graph transformation rule.

Nodes are connected by two kinds of edges: paths
and links. Paths stand for derived references and are
marked with expressions. A path expression is written
in OCL or Java. It is evaluated on the source node,

resulting in all target nodes belonging to the model
graph and fulfilling the expression. Links represent
instances of references declared in the Ecore model
on which the graph transformation rule is based.

All unbound nodes of the graph pattern need to be
typed with classes from the underlying Ecore model.
Bound nodes are not typed because the types are de-
rived from the owning class (in the case of the cur-
rent object) and the operation signature (in the case of
parameter objects). Links are typed with references
from the Ecore model.

Nodes in a graph pattern contain compartments
for specifying constraints and changes. In the con-
straints compartment, OCL constraints and conditions
on values of single attributes (in Java syntax) may be
defined. The changes compartment may contain at-
tribute assignments as well as other Java statements
(e.g., method calls).

To model structural changes, the elements of a
graph pattern may be decorated with a state.++ and
- - indicate the states “created” and “deleted”, respec-
tively. An element without decoration owns the de-
fault state “preserved”. Bound nodes may not be cre-
ated, and the current object may not be deleted. If
the graph pattern does not contain any changes either
in its structural part or in the nodes’ change compart-
ments, it describes a graph test which does not have
any effect on the model graph.

Preconditions are checked before the graph pat-
tern is searched; they provide additional application
conditions. Postconditions are checked immediately
before the end of the execution of the graph trans-
formation rule to ensure that the model graph is in a
valid state. Both pre- and postconditions are written
as OCL constraints.

A negative application condition (NAC) is
checked after a match of the graph pattern has been
located and before the transformation is executed. If
the pattern specified in the NAC occurs in the model
graph, the rule cannot be applied to the current match.
If no other match may be found, the rule fails alto-
gether. An NAC is composed of nodes of the graph
pattern, all of which are bound at this stage of execu-
tion, and (optionally) further nodes, all of which are
unbound. In contrast to the graph pattern, an NAC
may describe only a graph test rather than a graph
transformation.

3.2 Example

To show the functionality, a widely known example
from an EMF tutorial2, the library model, is adapted

2http://help.eclipse.org/ganymede/index.jsp?topic=/
org.eclipse.emf.doc/references/overview/EMF.html

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

214



Figure 2: Ecore model of a simple library management system.

(Figure 2). The model defines a library with a name,
that owns books and lends them to its clients. Each
book has a title, is available or not, and is associated
to exactly one writer. This writer has a name and is
known to the library. Clients also have a name and
an address. In addition, they have to pay a fee if they
borrow a book longer than allowed.

The classesLibrary andClient define some opera-
tions. In the following we show the implementation
of three operations with the help of ModGraph trans-
formation rules. The rules have been designed for the
purpose of demonstration. They are simple to under-
stand, yet they cover most of the elements of graph
transformation rules described in the previous subsec-
tion.

The ruleacquireBook shown in Figure 3 acquires
a book for the library provided that the author is not
known yet. It receives two parameterstitle and au-
thorsName of type String. The OCL precondition
given on the top requires that both strings must not
be null. If the precondition does not hold, the rule
fails. The graph pattern below the precondition spec-
ifies that a new writer is added to the known writers
of the library. Furthermore, a new book associated to
the library and the writer is created. This new book
is marked with<<out>> as the return object of the
rule. In the changes compartment, the parametertitle
is assigned to the attribute of the same name. Fur-
thermore, the books’ availability is set to true, hence
it can be lent to a client. The NAC to the right of
the graph pattern is checked before the transforma-
tion is applied. The NAC succeeds if there already ex-
ists a writer with the nameauthorsName. If the NAC
succeeds, the rule fails without having performed any
changes.

The rulelendBook (Figure 4) lends a book owned
by the library to one of its clients if the book is avail-
able and there are no unpaid fees charged to the client.
A precondition forcing the library to be open and the
client to be registered is set as the application condi-

tion to be checked before applying the rule. Alter-
natively, this precondition could have been specified
in the constraints compartment of the current object.
In addition to the current object, the graph pattern
consists of two objects bound by the input parame-
tersclient andauthor (rounded rectangles), and an un-
bound object of classBook (since only the title was
supplied as an input parameter, thebook object needs
to be searched in the model graph). The constraints
compartment of thebook object checks that the book
has the title supplied as input parameter and that it is
available. The constraints compartment of theclient
object ensures that there are no unpaid fees. If the
pattern match succeeds, a link from thebook object
to theclient object is created, and the book is marked
as not available in its changes compartment.

Finally, returnAllBooks returns all books borrowed
by some client in a single step (Figure 5). This rule is
executed on an object of classClient. The rule demon-
strates the use of a multi-objectbooks representing
a set of books. This set is determined by intersect-
ing the target sets of the referencesborrows andowns
emanating from the current object and the parame-
ter objectlib, respectively. This means that the set
will contain all books which have been borrowed by
the client and are owned by the library (please notice
that the client may have borrowed books from other li-
braries, which are not considered in this operation). If
the pattern match succeeds, allborrows links between
the current object andbooks objects are deleted, and
all books objects are marked as available.

4 IMPLEMENTATION

ModGraph provides a graphical editor, different
mechanisms for validation, and a code generator. For
their realization, several Eclipse based tools have
been used.

MODGRAPH - A Transformation Engine for EMF Model Transformations

215



Figure 3: ModGraph rule forLibrary::acquireBook(title : String, authorsName : String) : Book.

Figure 4: ModGraph rule forLibrary::lendBook(author : Writer, title: String, client : Client).

Figure 5: ModGraph rule forClient::returnAllBooks(lib : Library).

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

216



4.1 Graphical Editor and Validation

The ModGraph graphical editor has been developed
in a model-driven way using the Eclipse Model-
ing Framework (EMF) and the Graphical Modeling
Framework (GMF). The graph transformation rules
shown in Figures 3–5 were produced as snapshots of
the graphical view provided by the editor. In addition,
the editor displays a property view and a tool palette.

Correctness of a ModGraph graph transformation
rule is achieved using several mechanisms:

1. A graph transformation rule must conform to the
metamodel underlying ModGraph. For example,
nodes in NACs may not be marked as created or
deleted. The Ecore model for ModGraph is built
in such a way that errors of this kind cannot occur.

2. The graphical editor performs live validation dur-
ing editing. Commands which would violate the
rules of live validation are rejected. Live valida-
tion is realized by GMF constraints. For example,
a link to be preserved must not be connected to a
node to be deleted. Furthermore, we implemented
restrictions in the source code. For example, the
properties view allows only to select valid refer-
ences for typing a link between two objects (a ref-
erence is valid if it is owned by the class of the
source and the class of the target conforms to the
target class of the reference).

3. All remaining errors are caught by batch valida-
tion. After a batch validation, the user will be in-
formed about the rule’s validity. In case of fail-
ures, error markers are shown in the diagram, and
the Eclipse problems view shows error messages.
For the implementation of the batch validation we
used the EMF-Validation and the Check language
(oAW3). Check is a validation language of the
former openArchitectureWare, which is now part
of Eclipse (MDT4). The ModGraph Check vali-
dation is called by an MWE-workflow (MWE5),
which loads the user’s model and performs all
given Check files, containing various constraints.
Batch validation catches errors which cannot be
checked conveniently by live validation. For ex-
ample, batch validation verifies the reachability
of nodes, which is important for pattern match-
ing (see below), and performs a syntactic check
on OCL constraints.

3http://openarchitectureware.org/
4http://www.eclipse.org/modeling/
5http://wiki.eclipse.org/ModelingWorkflow Engine

(MWE)

4.2 Code Generation

When the user invokes the code generator on a graph
transformation rule, the rule is automatically vali-
dated. If validation succeeds, code will be gener-
ated. Since each rule implements an operation de-
fined in the underlying Ecore model, code is gen-
erated directly into the EMF generated code. After
parsing the EMF generated code, the code generator
for graph transformation rules uses Xpand templates
which were formerly provided by openArchitecture-
Ware and were recently included into the Eclipse
Modeling Project. These templates are, like the vali-
dation, called by an mwe-workflow.

The generated code will execute a graph transfor-
mation rule in the following steps:

1. The preconditions of the rule are checked. If one
of the preconditions is violated, execution fails.

2. An instance of the graph pattern is searched in the
model graph. If no match is found, execution fails.

3. If a match is found and an NAC is present, it is at-
tempted to find a match for the NAC. If the match-
ing succeeds, a forbidden pattern was located. Ac-
cordingly, rule execution returns to the previous
step, trying to find the next match for the graph
pattern.

4. Now, the changes specified in the graph pattern
are applied to the located match.

5. Finally, the postconditions are checked. If one
of the postconditions is violated, execution fails6.
Otherwise, execution terminates successfully.

Pattern matching constitutes a crucial step in the
execution of a graph transformation rule. Pattern
matching starts at the bound nodes and needs to locate
instances of the unbound nodes of the model graph.
We require that all unbound nodes are reachable from
the bound nodes via a directed path. In the case of
bidirectional references, opposite links are automati-
cally considered in the search, as well. Thus, pattern
matching is performed exclusively by navigation and
does not assume other mechanism for locating objects
such as key attributes and indices.

The performance of pattern matching is severely
affected by the order in which unbound nodes are
searched. In the case of multi-valued references, all
targets of outgoing links need to be considered in the
matching process. Since these targets may have out-
going multi-valued references, as well, the set of can-
didates may grow combinatorially. To bound the can-

6In this case, an exception is raised which has to be han-
dled by the caller, e.g., by running a compensating graph
transformation rule.

MODGRAPH - A Transformation Engine for EMF Model Transformations

217



didate set, we implemented a heuristic greedy algo-
rithm which assigns costs to references according to
the upper bounds defined in the Ecore model. In or-
der to extend the current partial match, all edges from
already matched to unmatched nodes are considered
in parallel. From this set of edges, an edge with min-
imal costs is selected. In this way, a spanning for-
est of the graph pattern is constructed. In particu-
lar, the pattern matching algorithm considers single-
valued references before multi-valued references. If
only single-valued references are used to locate the
unbound nodes, there is at most one candidate for
each of them.

5 RELATED WORK

Research on model-driven software engineering has
produced a wide spectrum of model transformation
approaches (Czarnecki and Helsen, 2006). The term
model-to-model transformation indicates that some
target model is created from some source model.
For example, ATL (Jouault and Kurtev, 2005) and
QVT (OMG, 2011) address model-to-model trans-
formations. In contrast, ModGraph supports updat-
ing model transformations, which modify an existing
model.

In contrast to textual model transformation lan-
guages such as ATL and QVT, ModGraph provides
a graphical notation (with embedded textual frag-
ments). The graphical notation makes it easier to un-
derstand the effects of a complex model transforma-
tion. Furthermore, ModGraph is based on the theory
of graph transformations. Many languages, tools, and
environments have been developed for graph transfor-
mations (Ehrig et al., 1999). However, in most cases
there is no connection to the EMF framework. There
is only a small number of graph transformation ap-
proaches which are based on EMF. In the following,
we will focus on these approaches because they are
related most closely to ModGraph.

VIATRA2 (Varró and Balogh, 2007) provides a
textual rather than graphical language for graph trans-
formations. VIATRA2 has been built withEMF; it
defines its own metamodel with the help of Ecore. In
contrast, ModGraph has been built forEMF. In par-
ticular, Ecore is reused for structural modeling. As
we have demonstrated, ModGraph is integrated seam-
lessly into the EMF framework and extends it with
graph transformations.

Like ModGraph, TIGER (Biermann et al., 2006)
exploits Ecore for structural modeling. However,
TIGER supports only graph transformation rules
which lack many of the advanced constructs imple-

mented in ModGraph (multi-objects, pre- and post-
conditions, paths, method calls, and OCL integra-
tion). Its successor Henshin (Arendt et al., 2010) ex-
tends TIGER’s graph transformation rules with multi-
objects and control structures, but the other features
mentioned above are still missing.

In TIGER, rules are compiled into classes rather
than methods. When an application developer wants
to implement a user-defined operation introduced in
an Ecore model with the help of a graph transforma-
tion rule, (s)he must write code to instantiate the rule’s
class, to provide the rule instance with parameters,
and to execute the rule. Thus, calling a rule involves
multiple steps which are awkward to implement and
cause considerable overhead at run time. In contrast,
in ModGraph a graph transformation rule is associ-
ated to a user-defined operation, and the ModGraph
compiler generates an ordinary Java method. From
an application developer’s point of view, ModGraph
provides both seamless and efficient integration of the
Java code generated from graph transformation rules.
This is not the case for TIGER. So far, Henshin pro-
vides only an interpreter, which is of limited use for
conventional application development.

Fujaba (Zündorf, 2001) is an object-oriented mod-
eling environment which offers class diagrams for
structural modeling and story diagrams for behavioral
modeling. A story diagram is a control flow dia-
gram containing statement activities (plain Java code
fragments) and story patterns (graph transformation
rules). Fujaba was developed outside EMF, but was
re-implemented partially in EMF (Giese et al., 2009).
The re-implementation — called MDELab — uses
Ecore for structural modeling and provides a graphi-
cal editor and an interpreter for story diagrams. Thus,
the end user is limited to the interpreter when work-
ing with model instances. In our approach, the gener-
ated EMF compliant code can be used in all possible
ways, including the generation of a graphical editor
using GMF.

Fujaba’s story patterns are less expressive than
ModGraph’s graph transformation rules because only
the latter offer pre- and postconditions, OCL integra-
tion7, and negative application conditions defined as
separate forbidden graph patterns. Furthermore, the
control flow of story diagrams is limited in its expres-
sive power since it lacks explicit high-level control
structures. For these reasons, ModGraph resorts to
Java for expressing the control flow.

7A prototypical integration, which did not make its way
into the Fujaba release, was reported in (Stölzel et al.,
2006).

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

218



6 CONCLUSIONS

We have presented ModGraph, an environment for
modeling with graph transformations. ModGraph in-
crementally adds behavioral modeling to EMF. Thus,
it provides an evolution path from programming to
modeling. An application developer may take advan-
tage of model transformations where they provide an
added value, and program in Java otherwise. The
examples given in Section 3 clearly demonstrate the
benefits of modeling behavior graphically and declar-
atively with the help of graph transformation rules.

Implementation of ModGraph currently is under
way. Most parts have already been completed. The
package diagram editor and its integration with Ecore
have been implemented completely. The metamodel
for graph transformation rules, the graphical editor,
and rule validations have been completed recently.
The code generator is currently being implemented
and is expected to be complete in the near future.
Since the graphical editor is already available, we are
performing case studies in parallel in order to obtain
feedback from applications. The experiences gained
from these case studies are promising, and we expect
at most minor future changes of the transformation
metamodel.

REFERENCES

Arendt, T., Biermann, E., Jurack, S., Krause, C., and
Taentzer, G. (2010). Henshin: Advanced concepts
and tools for in-place EMF model transformations. In
Petriu, D. C., Rouquette, N., and Haugen, Ø., editors,
Proceedings 13th International Conference on Model
Driven Engineering Languages and Systems (MOD-
ELS 2010), Part I, volume 6394, pages 121–135, Oslo,
Norway.

Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer,
G., and Weiss, E. (2006). Graphical definition of in-
place transformations in the eclipse modeling frame-
work. In Nierstrasz, O., Whittle, J., Harel, D., and
Reggio, G., editors,Proceedings 9th International
Conference on Model Driven Engineering Languages
and Systems (MoDELS 2006), volume 4199, pages
425–439, Genova, Italy.

Buchmann, T., Dotor, A., and Klinke, M. (2009). Sup-
porting modeling in the large in fujaba. In van Gorp,
P., editor,Proceedings of the 7th International Fujaba
Days, pages 59–63, Eindhoven, The Netherlands.

Czarnecki, K. and Helsen, S. (2006). Feature-based sur-
vey of model transformation approaches.IBM Sys-
tems Journal, 45(3):621–646.

Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G.,
editors (1999).Handbook on Graph Grammars and
Computing by Graph Transformation: Applications,
Languages, and Tools, volume 2. World Scientific,
Singapore.

Giese, H., Hildebrandt, S., and Seibel, A. (2009). Im-
proved flexibility and scalability by interpreting story
diagrams. In Boronat, A. and Heckel, R., editors,Pro-
ceedings of the 8th International Workshop on Graph
Transformation and Visual Modeling Techniques (GT-
VMT 2009), volume 18 ofElectronic Communications
of the EASST, York, UK. 12 p.

Gronback, R. C. (2009). Eclipse Modeling Project:
A Domain-Specific Language (DSL) Toolkit. The
Eclipse Series. Boston, MA, 1st edition.

Jouault, F. and Kurtev, I. (2005). Transforming models
with ATL. In Bruel, J.-M., editor,MoDELS Satellite
Events, volume 3844, pages 128–138.

OMG (2011). Meta Object Facility (MOF) 2.0
Query/View/Transformation, v1.1. OMG.

Soyatec (2011). euml2 studio edition 3.6.0.20110120.
Steinberg, D., Budinsky, F., Paternostro, M., and Merks,

E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Boston, MA, 2nd edition.

Stölzel, M., Zschaler, S., and Geiger, L. (2006). Integrat-
ing OCL and model transformations in Fujaba. In
Chiorean, D., Demuth, B., Gogolla, M., and Warmer,
J., editors,Proceedings of the 6th OCL Workshop OCL
for (Meta-)Models in Multiple Application Domains
(OCLApps 2006), volume 5 ofElectronic Communi-
cations of the EASST, Genova, Italy. 16 p.

Varró, D. and Balogh, A. (2007). The model transforma-
tion language of the VIATRA2 framework.Science of
Computer Programming, 68(3):214–234.

Zündorf, A. (2001). Rigorous object oriented software de-
velopment. Technical report, University of Paderborn,
Germany.

MODGRAPH - A Transformation Engine for EMF Model Transformations

219


