
A CLAIM TO INCORPORATE FUNCTIONAL DEPENDENCIES
IN DEVELOPMENT TOOLS

Benchmarking and Checking Functional Dependencies Algorithms

Manuel Enciso Garcia-Oliveros, Angel Mora Bonilla, Pablo Cordero and Rosario Baena
Research Group in Mathematics Applied to Computing, University of Malaga, Malaga, Spain

Keywords: Database design, Functional dependencies.

Abstract: In this work we summarize the state of the art in the use of database functional dependencies. We compare
the low impact that it has in the commercial environment with its successful acceptation in the academic
environment. Particularly we remark that there does not exists any commercial development tool which uses
the information provided by functional dependencies and this useful information is also deprecated by the
database management systems. As a result of this, large database designs have to be re-built a few years
after their establishment. In this work we identify the reasons which causes this situation and we propose a
guideline to wide spread the effective use of Functional Dependencies in commercial design and tools.

1 INTRODUCTION

Functional Dependencies (FD), were first defined by
E.F. Codd in the relational model (Codd, 1970) and
later used in Armstrong’s axiomatic system. It has
been well studied in the past and the design of a nor-
malization method may be consider one the most im-
portant result to take into account to produce high
quality database design.

Database designers do not explicitly use FDs as
it is shown in (Antony and Batra, 2002). In fact, its
use is sparse or inexistent in database design tools and
they do not play a central role in DBMS (Database
Management Systems) (they appears only in the form
of keyconstraints).

A tool which really uses this information is the
exception and it can be found in academical and re-
search institutions with an interesting approach from
the Knowledge Engineering perspective (Concepcion
and Villafuerte, 1990). Unfortunately, this work is
outdated and discontinued.

In this work, we summarize some result that we
consider as valuable elements that may open the door
to solve this problem, more concretely, we have:

• A strong theoretical background proposal: the
SLFD logic, a true executable logic for FDs.

• A careful and unified implementation of all clas-
sical FD-Closure algorithms.

• The group’sSLFD-Closure algorithm, based on a

free and open framework of reusable components
for efficient FD-algorithm and data structures in-
tegration (common framework).

• A method to generate random test sets for FDs
algorithm benchmarking with several parameters
and strategies and suitable to be extended.

• An multi-language web site to illustrate the execu-
tion of these algorithms and theirs performances.

Our intention with the proposal of these elements
in a unified tool is to motivate the research in the de-
sign of efficient methods to manage FDs and to pro-
mote their use and the integration into database tools.

2 THEORETICAL BACKGROUND

Throughout the literature there have been a lot of al-
gorithms for the management of FDs. In (Mora et al.,
2006) the authors carried out a empirical study of the
efficiency of closure algorithms for FDs. One conclu-
sion of this preliminary study was the need for a care-
ful implementation of the algorithms to allow further
comparisons with new methods.

Another important consequence of FDs algo-
rithms comparisons, is the need for test suites that
allow a uniform and heterogeneous comparison. We
claim for a set of test which recreate different models
to stress the algorithms in different directions. Nowa-
days, there isn’t public repositories that provide clas-

313
Enciso Garcia-Oliveros M., Mora Bonilla A., Cordero P. and Baena R..
A CLAIM TO INCORPORATE FUNCTIONAL DEPENDENCIES IN DEVELOPMENT TOOLS - Benchmarking and Checking Functional Dependencies
Algorithms.
DOI: 10.5220/0003608803130316
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 313-316
ISBN: 978-989-8425-76-8
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



sic benchmarks of FDs to verify both the efficiency
and behavior of the algorithms.

Another important concern is the design of infer-
ence systems for the management of FDs that may
serve as a basis for the development of automated
management of FDs. Armstrong’s axiomatic system
is the core for many logics of FDs. All these logics
have a common characteristic: they use the transitiv-
ity rule which limits their direct application and the
further development of methods with efficient deduc-
tion capabilities. As a conclusion, these logics are not
used in the definition of FDs management algorithms.

There exists another logic approach that substi-
tutes the transitivity rule by a new rule and allows
the creation of automatic algorithms for the manage-
ment of FDs. The authors (Ángel Mora et al., 2004)
presented the Simplification Logic for FDs (SLFD),
which is equivalent to Armstrong’s axiomatic system.
The main core ofSLFD is a new rule of simplifica-
tion, that allow the elimination of redundant attributes
efficiently, turning it into an executable logic which
opens the door to the creation of efficient algorithms.

The authors have also developed a set of algo-
rithms to solve the most important FDs problems: the
closure of a set of atoms, the redundancy removal to
get FDs basis and the calculation of minimal keys.

3 A DISCUSSION AROUND
IMPLEMENTATION ISSUES

All the algorithms for FDs deal with a simple data
structure: FDs are represented using two associated
sets of attributes. Their flow are mainly based on
primitives set operators: union, intersection, differ-
ence, etc.

As (Wirth, 1978) points out, programs are not only
algorithms, they depend strongly in data structures.
We have made two version of the implementation of
set of attributes. The two implementations are based
on the representation of the set of attributes as a set of
bits. So we have two versions of each DF algorithm:

Fixed. The size of the set of atoms of is fixed and
each bit represents an attribute. The cost of set
operators depends on the maximum number of at-
tributes of all the FDs in the set.

Sparse. The size of the set is variable, having the
same cardinality than the number of attributes on
each side of the FD. The cost of set operators de-
pend on the size of the FD involved in the concrete
execution.

Sparse implementations are recommended when
the number of attributes which form FD, is very low

compared to the cardinality of the set of atoms. This
situation may be found on those models with a sig-
nificant number of “small” FDs. In models where all
the attributes appears in only a few number of FDs is
better tackled using the fixed approach. A degener-
ated version of this situation is the start models, used
in data warehousing, with a central table containing
the data analysis, surrounded by other smaller tables
called dimension tables.

The standard algorithm (Maier, 1983) is first pre-
sented in the literature that calculates the closure in a
nonlinear time:O(‖U‖‖Γ‖2) 1, whereΓ is the set of
FDs andU the set of all attributes inΓ.

In this work we have consider five different clo-
sure algorithms which appears in the literature: (Beeri
and Bernstein, 1979), (Diederich and Milton, 1988),
(Paredaens et al., 1989) , (Maier, 1983) and (Mora
et al., 2006). Each algorithm, as we have mention
above, has been development in two different ver-
sions: fixed and sparse. To compare the efficiency
of these algorithms, we have also developed a method
to generate random sets of FDs with different char-
acteristics, provided by a set of different parameters
detalied above.

3.1 Benchmarking of Functional
Dependencies

As we have mentioned, the lack of benchmarks for
FDs limits the unified comparison of proofs for the ef-
ficiency and behavior of the FDs algorithms. Unless it
is possible to generate random FDs sets, a more depu-
rated method to produce set of FDs which represent
different models is demanded. He have developed
strategies to increase the control in the generation of
FDs sets. In our approach the user can parametrize
the random generation which determines the selection
of an strategy. This strategies are characterized by a
combination of the cardinality of the set of attributes
and the size2 of the right and left hand sides in the
FDs:

Size. This is the first strategy used in (Mora et al.,
2006). In this strategy, we provide a maximum
level to the size of FDs and the left size is limited
to 1

4 of this threshold and13 on the right.

Vanilla. The user provides two values which repre-
sent the maximum percentage of attributes on the
left and on the right. The percentages determines
two separate lengths in both sides of the FDs and

1‖X‖ denotes the cardinality of X
2The size is defined in the literature as the sum of the

lengths of the left-hand side and the right-hand side.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

314



Figure 1: FDs algorithm in action.

its size is always proportional to the cardinal of
the set of attributes.

Groups. It allows us a more precise generation of the
FDs sets and it obtains more realistic sets, closer
to real database schemas. The attributes are classi-
fied in three groups: very frequents, medium fre-
quents, lower frequents. For each group we pro-
vide the probabilities for left and right hand sides.
The methods to built both sides of the FD are dif-
ferent: the attributes more frequents has a big-
ger probability of being in the left-hand side that
the others two groups. In the right-hand side the
attributes with medium and lower frequency are
more frequently used.

3.2 A Tool to Motivate the Use of
Functional Dependencies

The proposal of this paper is to re-activate the
use of FDs in real software engineering tools.
To illustrate the successful management of
FDs, a web application has been developed
(http://sicuma02.lcc.uma.es:8080/WebTin2007).
This web application provides a simple and straight-
forward interface for the interactive execution of
closure algorithms over tree kind of input data:

1. The user supplies a concrete set of FDs. We pro-
vide a simple language to be used as a specifica-
tion of FD sets which allows to test a single prob-
lem with one algorithm or with all the algorithms.

2. Examples from the literature: the user may select
a FDs set and an attributes set specified in the in-
put language.

3. Random generation of big FDs sets: an advanced
FDs set generator can be used to automatically
generate a big and complex set of FDs.

4 CONCLUSIONS

This work claims for the practical use of Functional
Dependencies and try to promote the integration of
the FDs algorithms into the software engineering
tools. In this work we have concluded:

• The theoretical efficiency of the algorithms in the
literature does not match with the empirical re-
sults obtained after a rigorous implementation of
them.

• The theoretical studies do not pay attention to data
structures.

• It is not possible to establish a uniform compari-
son among algorithms without the source code.

• In others areas the use of benchmarks for the com-
parison of hard problems is a crucial issue.

These evidences reinforce the proposal oft his
work: the need to have a common framework for
algorithms tests, including the definition of bench-
marks, as a preliminary step to promote the use of
FDs in software Engineering tools for the design and
development of database schemas.

REFERENCES

Antony, S. R. and Batra, D. (2002). CODASYS: a consult-
ing tool for novice database designers.ACM SIGMIS
Database, 33:54–68.

Beeri, C. and Bernstein, P. A. (1979). Computational prob-
lems related to the design of normal form relational
schemas.ACM TDS, 4(1):30–59.

Codd, E. F. (1970). A relational model of data for large
shared data banks.Commun. ACM, 13(6):377–387.

Concepcion, A. I. and Villafuerte, R. M. (1990). Expert db:
an assistant database design system. InProceedings

A CLAIM TO INCORPORATE FUNCTIONAL DEPENDENCIES IN DEVELOPMENT TOOLS - Benchmarking and
Checking Functional Dependencies Algorithms

315



of the 3rd Int. Conf, volume 1 ofIEA/AIE ’90, pages
333–340. ACM.

Diederich, J. and Milton, J. (1988). New methods and fast
algorithms for database normalization.ACM TODS,
13:339–365.

Maier, D. (1983).The theory of relational database. Com-
puter Science Press.

Mora, A., Aguilera, G., Enciso, M., Cordero, P., and
de Guzmán, I. P. (2006). A new closure algorithm
based in logic: Slfd-closure versus classical closures.
Inteligencia Artificial, Revista Iberoamericana de In-
teligencia Artificial, 10(31):31–40.

Ángel Mora, Enciso, M., Cordero, P., and de Guzmán, I. P.
(2004). An efficient preprocessing transformation for
functional dependencies sets based on the substitution
paradigm. InCurrent Topics in Artificial Intelligence,
volume 3040 ofLNCS, pages 136–146. Springer.

Paredaens, J., Bra, P. D., Gyssens, M., and Gucht, D. V.
(1989). The structure of the relational database
model. Springer.

Wirth, N. (1978). Algorithms + Data Structures = Pro-
grams. Prentice Hall PTR.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

316


