
AN APPROACH TO METAMORPHIC TESTING FOR WS-BPEL
COMPOSITIONS

Carmen Castro-Cabrera and Inmaculada Medina-Bulo
Department of Computer Languages and Systems, University of Cádiz, Cádiz, Spain

Keywords: Testing, Metamorphic testing, Mutation analysis, Oracle, Follow-up test cases, Web services, WS-BPEL.

Abstract: Nowadays, Web Service (WS) compositions play an important role in business processes. Languages for com-
posing web services, such as the OASIS WS-BPEL 2.0 standard, open a new field for large-scale programming.
However, they also present a challenge for traditional quality assurance because of the inclusion of specific
instructions for concurrency, fault compensation, and dynamic service discovery and invocation. Metamor-
phic Testing (MT) has proved useful to test and improve the quality of traditional imperative programs. This
paper discusses how to use MT to test WS compositions in WS-BPEL. Although MT has not been previously
applied to this area, promising results have been obtained in a number of different applications. A component
diagram for a testing framework implementing this approach is included.

1 INTRODUCTION

Web services are having a strong impact in our so-
ciety because of the increasing number of Internet
transactions and the new ways of conceiving and us-
ing web applications dealing with them. The Web
Services Business Process Execution Language (WS-
BPEL), (OASIS, 2007) allows us to develop new Web
Services (WS) by modeling more complex business
processes on top of preexisting WS. This evolution
of business processes has produced the development
of specific software to satisfy this demand. However,
this development has not come with an advance in
testing for this kind of software. In addition, the eco-
nomic impact of WS-BPEL service compositions has
increased (IDC, 2008), and deeper insight on how to
test them effectively is therefore required. We present
a proposal to apply MT to WS-BPEL compositions.

MT (Chen, 1998) is a software testing technique
usingmetamorphic relations(MR). MR are existing
or expected relations defined on a set of inputs and
their corresponding outputs for multiple executions of
a function under test. The underlying concept is sim-
ple and its automation is not difficult. In fact, it has
proved successful in testing and improving the qual-
ity of traditional imperative programs (Zhou et al.,
2004). Regarding the cost effectiveness of MT, Zhang
(Zhang et al., 2009) conducted an experiment where
the fault detection capabilities and time cost of MT
were compared to the standard assertion checking me-

thod. Results show that MT has the potential to detect
more faults than the assertion checking method. In
addition, Chan and his collaborators are investigating
their applications to different areas. The most related
to this paper are the application of MT to service-
oriented software (Chan et al., 2006; Chan et al.,
2007).

The structure of the rest of the paper is as follows:
Section 2 outlines the main concepts about service
compositions and MT. Section 3 presents some tech-
niques that are being applied with success to testing
WS compositions. In the following Section 4, some
applications of MT to different areas are reviewed.
Section 5 presents our proposal, its main steps and
a component diagram for applying MT to WS-BPEL
compositions. Finally, Section 6 presents some con-
clusions and future research lines.

2 PRELIMINARIES

Next, we introduce the main concepts about service
compositions in WS-BPEL and MT.

2.1 Web Services Compositions

This paper focuses in WS compositions, specially
when they are implemented using WS-BPEL. WS-
BPEL is a programming language based in XML that

137Castro-Cabrera C. and Medina-Bulo I..
AN APPROACH TO METAMORPHIC TESTING FOR WS-BPEL COMPOSITIONS.
DOI: 10.5220/0003611401370142
In Proceedings of the International Conference on e-Business (ICE-B-2011), pages 137-142
ISBN: 978-989-8425-70-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

is used to generate business processes from preexist-
ing services. The resulting business process can be
then reused as a WS in higher level compositions. A
WS-BPEL composition contains four sections:

1. Declarations of the relationships to the external
partners. These include both the client that has in-
voked the business process and the external part-
ners whose services are required to complete the
request of the client.

2. Declarations of the variables used by the process
and their types. Variables are used for storing both
the messages received and sent from the business
process and the intermediate results required by
the internal logic of the composition.

3. Declarations of handlers for various situations,
such as fault, compensation or event handlers.

4. Description of the business process behavior.

The major building blocks in WS-BPEL are the
activities. Activities may have bothattributesand a
set ofcontainers. These containers can also include
elements with their own attributes. Here is an exam-
ple:

<flow> ← Structured activity
<links> ← Container
<link name="checkFl-BookFl"/> ← Element

</links>
<invoke name="checkFlight" . . . > ← Basic activity
<sources> ← Container
<source linkName="checkFl-BookFl"/> ← Element

</sources>
</invoke>
<invoke name="checkHotel" . . . />
<invoke name="checkRentCar" . . . />
<invoke name="bookFlight" ← Attribute . . .>
<targets> ← Container
<target linkName="checkFl-BookFl" />

</targets>
</invoke>

</flow>

WS-BPEL provides concurrency and synchro-
nization primitives. For instance, theflow activ-
ity runs a set of activities in parallel. Synchroniza-
tion constraints between activities can be defined. In
the above example, theflow activity invokes three
WS in parallel: checkFlight, checkHotel, and
checkRentCar. There is another WS,bookFlight,
that will only be invoked ifcheckFlight is com-
pleted. Activities are synchronized by linking them:
the target activity of every link will only be executed
if the source activity of the link has been completed
successfully.

2.2 Metamorphic Testing

Software testing is a key activity in any software
development project. Fault detection and correc-

tion are key activities to ensure program reliability.
For this reason, a number of software testing tech-
niques have been developed following different ap-
proaches (Beizer, 1990; Myers, G.J. et al., 2004).

One of the main challenges for most testing tech-
niques is theoracle problem. Because of its nature,
some programs are inherently difficult to test. For ex-
ample, the output can be difficult to verify because the
precise result is not knowna priori,1 or because the
size of the output makes it unfeasible to apply stan-
dard techniques. In these cases, we should use a dif-
ferent approach to help with the verification and vali-
dation process.

Traditionally, human testers have been used to
check the results manually, though it is clear that
this is both expensive and error-prone. An alterna-
tive is to develop a simpler program implementing the
same functional requirements that the original pro-
gram, sacrificing efficiency and other non-functional
requirements. However, this is out of the question for
complex systems and reduces the problem to the cor-
rectness of the simpler program. Any mechanism for
checking whether a program under test behaves cor-
rectly for any given input is called anoracle. As we
have argued, there are practical situations where or-
acles can be unavailable or too expensive to apply.
MT has been proposed to alleviate the oracle prob-
lem (Chen, 1998; Chen, 2010).

MT relies on the notion ofmetamorphic relation
(MR). In (Andrews et al., 2005), they are defined as
“existing or expected relations over a series of dis-
tinct inputs and their corresponding results for mul-
tiple evaluations of a target function”. When the
implementation is correct, program inputs and out-
puts are expected to satisfy some necessary proper-
ties that are relevant for the underlying algorithms.
These properties are traditionally known asasser-
tions. In these sense, a MR is a kind of assertion.
However, a MR should provide a way of generating
new test cases from given ones. In order to illus-
trate this, let us consider a sorting programsort that
sorts an input list of integers producing a list with the
same integers in ascending order. For example, when
the list l1 = 〈4,7,2〉 is used, the expected result of
sort(l1) is 〈2,4,7〉. Then, if we use the permutation
l2 = perm(l1,〈(1,2)〉) = 〈7,4,2〉 as thefollow-up test
case, the expected result is the same. In other words,
sort(l1) = sort(l2), obviously because any permuta-
tion of a list has the same ordered list. Therefore, we
could formalize this property,MR1, as follows:

MR1≡ (∃x l2 = perm(l1,x))→ sort(l2) = sort(l1)

1Partial knowledge or properties of the result can, in-
deed, be available.

ICE-B 2011 - International Conference on e-Business

138

where l1 is the original input,l2 is a follow-up test
case (a permutation ofl1 in this particular case) and
perm is the function applying a permutation to a list
(just one swap in the example; the first and the second
elements). If the metamorphic property is not satis-
fied then the program is faulty.

Please, notice thatperm is the test generation
function associated toMR1. It receives an input list
(the given test case) and a permutation (a list of in-
dex pairs), and produces a new list (the follow-up test
case). Test case generation can be automated as in tra-
ditional techniques. For example, replacing the sec-
ond parameter ofpermby a random permutation we
would obtain the equivalent to traditional random test-
ing for this example. Of course, a single MR is gen-
erally insufficient. In the above example, we could
not detect certain faults just withMR1, as correctness
for sorting implies permutation preservation (the re-
sulting list must be a permutation of the original) and
an order constraint (it must be sorted). On the other
hand, a MR is usually devised by an expert in the ap-
plication domain.

Summing up, MT is a testing technique using
MR (Chan et al., 2007). It begins with an initial test
suite, which is produced with any test case selection
strategy, and a set of MR. Once the program is exe-
cuted on the test suite, errors are fixed until asuccess-
ful test suite(i.e., consisting of non-failing test cases)
is obtained. Then, MR are used to generate follow-
up test cases. These test cases form thefollow-up test
suiteand the process is iterated until the specified test
criteria are met.

3 TESTING WEB SERVICES
COMPOSITIONS

In this section, we describe some tools and techniques
applied to test this kind of software. We focus in those
which are implemented in WS-BPEL, specially the
automated ones. Most of them are referred in bib-
liography to test case generation of those composi-
tions (Garcı́a-Fanjul et al., 2007; Yan et al., 2006;
Zheng et al., 2007). There are more complete works
including the measure of test case quality and opti-
mizing test case generation through mutation testing.
GAmera (UCASE Research Group, 2010a) is a mu-
tation testing framework to WS-BPEL that uses ge-
netic algorithms to reduce the number of mutants re-
quired. It classifies mutants as killed (output is dif-
ferent than original composition), alive (output is the
same as the original composition against the entire
test case set performed), equivalents (output is al-
ways the same as the original composition), and er-

roneous (result in failure of the unfold) (Domı́nguez-
Jiménez et al., 2009). Other testing framework called
Takuan (UCASE Research Group, 2010b) is based on
dynamic generation of invariants for WS-BPEL com-
positions. Lastly, a recent work describes different
technologies developed in web services and web ser-
vices testing (Bozkurt et al., 2010).

4 METAMORPHIC TESTING IN
SOME ENVIRONMENTS AND
PROGRAMS

The first documented work about MT belongs to
Weyuker (Weyuker, 1982). In this paper she pro-
posed a new perspective for software testing based on
using alternative programs to the original code shar-
ing the same objective to prove the original program.
However, she only focused on numerical functions
and the relations were of equality, such as(a+b)2 =
a2+2a∗b+b2.

That original notion was later adopted by
Chen (Chen, 1998), who defined the term asMeta-
morphic Testingand extended it, including non-
numerical functions to be tested and MR but not nec-
essarily equality as previously.

Since then, other works have been written, each
one focusing on one or more different aspects of the
theory. For example, (Zhou et al., 2004) describes di-
verse programs to apply MT. (Gotlieb and Botella,
2003) relates to automatization of this technique and
where it is applicable. Moreover, a research group
from Columbia University has implemented part of
the process to apply MT using JML execution envi-
ronmental (Murphy et al., 2009). Furthermore, Chen
and his colleagues in (Chen et al., 2004) describe
the importance of choosing MR suitable with prob-
lem domain and algorithm structure of the program to
prove. In addition, Chan and his collaborators have
different approaches about this subject. Although, the
most interesting for us is how to apply MT to SOA
software (Chan et al., 2006; Chan et al., 2007). Fur-
thermore, there is other interesting issue based on the
analysis of feature model to obtain MR and automate
the test data generation (Segura et al., 2010).

4.1 MT with Numerical Problems

MT may be applied to resolve issues related to ora-
cle problems with partial differential equations where
the solution is unknown. A related study case (Chen
et al., 2002) addresses how to successfully apply MT
techniques to a thermodynamic problem to obtain ce-

AN APPROACH TO METAMORPHIC TESTING FOR WS-BPEL COMPOSITIONS

139

rtain properties representing MR.

4.2 MT with Non-numerical Problems

This technique is not limited to numerical problems
and may be applied to programs designed to solve
non-numerical problems (Zhou et al., 2004). For
example, it has been proven in programs implement-
ing algorithms that solve graph problems, with known
properties that may be proven and must be met. MT
has also been applied in computer graphics software.
Additionally it may be used in testing compilers when
it becomes too difficult to prove the equivalence be-
tween source and object code.

Another approach is to use interactive software
where inputs to program are user inputs, instead of
data. As example, test cases to testing a browser are
HTML files and action sequences like this:

EnterURL→ClickItem1→

SelectMenu f ile→ SelectOpen...

There may be several action sequences for a spe-
cific user defined requirement. By relating all inputs
to their suitable outputs for every matching action we
obtain MR. If we select the appropriate MR set we
may apply MT to this kind of software.

4.3 MT with Learning Machine
Programs

A group of Columbia University have implemented
a framework (Murphy et al., 2008) automating part
of the testing process. They have analyzed programs
that implement learning machines applications to au-
tomize how to obtain properties for this type of soft-
ware. In (Murphy et al., 2008) categorized six types
of metamorphic properties that such applications may
have. Then implemented a tool called Corduroy to
automate the process by allowing developers to spec-
ify individual functions of metamorphic properties us-
ing the specification language JML; these properties
could then be checked using JML Runtime Assertion
Checking (Murphy et al., 2009). This way they ob-
tain and check Metamorphic Relations in order to ap-
ply MT.

5 AN APPROACH OF MT IN WEB
SERVICES COMPOSITIONS

Once the different testing aspects to web services and
MT have been analized, we propose to apply MT

to web services compositions in WS-BPEL and im-
plement MT by integrating well-tested open-source
systems: ActiveBPEL as the WS-BPEL engine and
BPELUnit as the unit test library. ActiveBPEL is a
WS-BPEL 2.0 compliant open-source engine. Com-
pared to other engines, it is quite lightweight, reduc-
ing the time needed to run a test suite. It is main-
tained by ActiveVOS (ActiveVOS, 2009), which of-
fers commercial products based on it. BPELUnit is a
WS-BPEL unit test library (Mayer and Lübke, 2006)
which can use any WS-BPEL 2.0 compliant engine. It
uses XML files to describe test suites. It can replace
external services with mockups providing predefined
responses.

Our approach is based in the two following ideas:

1. Based in Murphy and his collaborators (Murphy
et al., 2008; Murphy et al., 2009), the first idea
consists of achieving program properties from
learning machines software, automating MR se-
lection.

2. The second idea is to specify, design and imple-
ment a new web service calledmetamorphic ser-
vicethat wraps the service to prove with MR. This
approach is proposed by Chan and his colleagues
in (Chan et al., 2006; Chan et al., 2007)

A generic diagram of our approach is as follows:
Firstly, a metamorphic compositionwill be specified
to encapsulate each composition to be proven, to in-
clude MR previously selected by analyzing the com-
position to obtain properties. This way it will allow
us to automate part of the process. Furthermore, MR
will allow to generate follow-up test cases and prove
results sound respect properties and, therefore, prove
the original composition. Finally, metamorphic com-
position will issue a report with results to be analyzed.
In our proposal (Fig. 1) is necessary for each compo-
sition:

• Select adequate MR.

• Generate initial test cases.

• Get follow-up test cases.

• Multiple executions of composition.

• Analyze results.

To begin, we take a composition example. We
comment briefly this approach with the classical WS-
BPEL example of theLoan Approval Serviceincluded
in the WS-BPEL 2.0 specification (OASIS, 2007). To
begin, we have to develop a program to ingest a file
containing a BPELUnit Test Suite (BPTS) using tem-
plates to generate initial test cases and return other
BPTS with follow-up test cases (from initial ones ap-
plying MR previously selected). To achieve this, we
will do the following:

ICE-B 2011 - International Conference on e-Business

140

Analize composition to obtain properties

tecnique
Obtain the initial (succesful) test cases with other

Design and implement suitable MR

Specify, design and implement a metamophic

adding MR

Compare results and metamorphic composition

Apply MR to obtain follow−up test cases

composition based on initial composition,

Execute initial test cases and follow−up test cases

issues to obtain a report

Figure 1: A component diagram.

• Hand write a BPTS for the example composition
using templates. This is already completed.

• Write the data file to generate the initial test cases
by the BPTS. This is completed as well. It is a
CSV file.

• Design the MR.

• Implement a program that receives the data
file(CSV) and generates a new file (CSV) using
BPTS to generate one or more test cases using the
MR designed. We have to associate the initial test
cases with the new ones.

• Execute the sample composition with the initial
and new test cases.

• Analize and compare the results in both execu-
tions.

Another option would be to develop a program to
ingest a BPTS (initial test cases written by hand) and
return other BPTS once MR are applied. by complet-
ing the following:

• Load BPTS in memory (this would be done by
BPELUnit).

• Conver the BPTS in memory using MR.

• Use XMLBeans to save the new BPTS from mem-
ory to a file in disk.

We are currently working on the first option of the
proposed approach. The proposed Metamorphic com-
position includes all the tools and files used to gener-
ate initial and follow-up test cases, as well as, MR
code implemented besides original composition.

6 CONCLUSIONS AND FUTURE
WORK

Business processes based in WS-BPEL compositions
are rapidly becoming commonplace in recent years,
so it is important to devote more attention to testing
in this context.

Therefore, it is required more innovative and effi-
cient techniques in software testing to WS composi-
tions.

The WS-BPEL programming language is oriented
to business processes, and therefore its peculiarities
must be considered. MT is proven efficient on dif-
ferent applications, and research by several groups
continues. Moreover, it is a technique that can be
implemented independently of program features to
prove. Selection of adequate MR is a critical aspect
in this technique, therefore, problem knowledge and
program structure must be considered.

We have proposed a diagram of a test framework
to apply MT to service compositions in WS-BPEL,
specifying steps and ways to design it.

Regarding future work, the proposed framework
must be formally specified, designed, and imple-
mented, developing every step until the system is
completed.

REFERENCES

ActiveVOS (2009). ActiveBPEL WS-BPEL Engine.
http://sourceforge.net/search/?q=ActiveBPEL.

Andrews, J. H., Briand, L. C., and Labiche, Y. (2005). Is
mutation an appropriate tool for testing experiments?
In Proceedings of the 27th International Conference
on Software Engineering (ICSE 2005), pages 402–
411. ACM Press.

Beizer, B. (1990). Software Testing Techniques, 2nd Edi-
tion. International Thomson Computer Press, 2 sub
edition.

Bozkurt, M., Harman, M., and Hassoun, Y. (2010). TR-10-
01: testing web services: A survey. Technical Report
TR-10-01, King’s College, London.

AN APPROACH TO METAMORPHIC TESTING FOR WS-BPEL COMPOSITIONS

141

Chan, W. K., Cheung, S., and Leung, K. (2006). Towards
a metamorphic testing methodology for service-
oriented software applications. InQuality Software,
2005.(QSIC 2005). Fifth International Conference on,
pages 470–476.

Chan, W. K., Cheung, S. C., and Leung, K. R. (2007).
A metamorphic testing approach for online testing of
service-oriented software applications.International
Journal of Web Services Research, 4(2):61–81.

Chen, T. Y. (1998). Metamorphic testing: A new approach
for generating next test cases.HKUSTCS98-01.

Chen, T. Y. (2010). Metamorphic testing: A simple ap-
proach to alleviate the oracle problem. InProceedings
of the 5th IEEE International Symposium on Service
Oriented System Engineering. IEEE Computer Soci-
ety.

Chen, T. Y., Feng, J., and Tse, T. H. (2002). Metamorphic
testing of programs on partial differential equations:
A case study. InProceedings of the 26th International
Computer Software and Applications Conference on
Prolonging Software Life: Development and Redevel-
opment, COMPSAC ’02, pages 327–333, Washing-
ton, DC, USA. IEEE Computer Society.

Chen, T. Y., Huang, D. H., Tse, T. H., and Zhou, Z. Q.
(2004). Case studies on the selection of useful re-
lations in metamorphic testing. InProceedings of
the 4th Ibero-American Symposium on Software En-
gineering and Knowledge Engineering (JIISIC 2004),
pages 569–583.

Domı́nguez-Jiménez, J. J., Estero-Botaro, A., Garcı́a-
Domı́nguez, A., and Medina-Bulo, I. (2009). GAm-
era: An automatic mutant generation system for WS-
BPEL compositions. InECOWS 2009: Seventh IEEE
European Conference on Web Services, pages 97–106,
Eindhoven, The Netherlands. IEEE Computer Soci-
ety.

Garcı́a-Fanjul, J., Tuya, J., and de la Riva, C. (2007). Gen-
eración sistemática de pruebas para composiciones de
servicios utilizando criterios de suficiencia basados en
transiciones. InJISBD 2007: Actas de las XII Jor-
nadas de Ingenierı́a del Software y Bases de Datos.

Gotlieb, A. and Botella, B. (2003). Automated metamor-
phic testing. Computer Software and Applications
Conference, Annual International, 0:34–40.

IDC (2008). Research reports. http://www.idc.com.
Mayer, P. and Lübke, D. (2006). Towards a BPEL unit test-

ing framework. InTAV-WEB’06: Proceedings of the
2006 workshop on Testing, Analysis, and Verification
of Web Services and Applications, pages 33–42, New
York, NY, USA. ACM.

Murphy, C., Kaiser, G., Hu, L., and Wu, L. (2008). Proper-
ties of machine learning applications for use in meta-
morphic testing. InProc. of the 20th international
conference on software engineering and knowledge
engineering (SEKE), pages 867–872.

Murphy, C., Shen, K., and Kaiser, G. (2009). Using
JML runtime assertion checking to automate meta-
morphic testing in applications without test oracles.
In Software Testing Verification and Validation, 2009.
ICST’09. International Conference on, pages 436–
445.

Myers, G.J., Sandler, C., Badgett, T., and Thomas, T. M.
(2004). The Art of Software Testing, 2nd ed. Wiley -
Interscience.

OASIS (2007). Web Services Business Process
Execution Language 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
Organization for the Advancement of Structured
Information Standards.

Segura, S., Hierons, R. M., Benavides, D., and Ruiz-Cortes,
A. (2010). Automated test data generation on the anal-
yses of feature models: A metamorphic testing ap-
proach.Software Testing, Verification, and Validation,
2008 International Conference on, 0:35–44.

UCASE Research Group (2010a). GAmera home site.
http://neptuno.uca.es/˜gamera.

UCASE Research Group (2010b). Takuan home
site. https://neptuno.uca.es/redmine/projects/takuan-
website.

Weyuker, E. (1982). On testing Non-Testable programs.
The Computer Journal, 25(4):465–470.

Yan, J., Li, Z., Yuan, Y., Sun, W., and Zhang, J. (2006).
BPEL4WS unit testing: Test case generation using a
concurrent path analysis approach. InISSRE 2006:
17th International Symposium on Software Reliability
Engineering, pages 75–84, Raleigh, North Carolina,
USA. IEEE Computer Society.

Zhang, Z.-Y., Chan, W. K., Tse, T. H., and Hu, P.-F. (2009).
An experimental study to compare the use of meta-
morphic testing and assertion checking.Journal of
Software, 20(10):2637–2654.

Zheng, Y., Zhou, J., and Krause, P. (2007). An automatic
test case generation framework for web services.Jour-
nal of software, 2(3):64–77.

Zhou, Z. Q., Huang, D. H., Tse, T. H., Yang, Z., Huang,
H., and Chen, T. Y. (2004). Metamorphic testing and
its applications. InProceedings of the 8th Interna-
tional Symposium on Future Software Technology (IS-
FST 2004). Software Engineers Association.

ICE-B 2011 - International Conference on e-Business

142

