
TOWARDS HIGHER-ORDER MUTANT GENERATION
FOR WS-BPEL

E. Blanco-Muñoz, A. Garcı́a-Domı́nguez, J. J. Domı́nguez-Jiménez and I. Medina-Bulo
University of Cádiz, C/ Chile, 1, Cádiz, Spain

Keywords: Mutation testing, Genetic algorithm, Web services, Web service compositions, WS-BPEL.

Abstract: We present an architecture for automatically generating higher-order mutants for WS-BPEL compositions
based on the architecture of GAmera, a first-order mutant generation system for WS-BPEL. Higher-order
mutants are created by applying a sequence of first-order mutation operators to the original program. This
paper also introduces the changes that GAmera has to undergo for converting the generation of first-order
mutants into a process capable of higher-order mutation, while detailing the modifications carried out for
adapting the crossover and mutation genetic operators to the new structure of the mutants.

1 INTRODUCTION

The Web Services Business Process Execution Lan-
guage (WS-BPEL) (OASIS, 2007) allows us to de-
velop new Web Services (WS) modelling more com-
plex business processes on top of preexisting WS. The
economic impact of WS-BPEL service compositions
is quickly increasing (IDC, 2008), and deeper insight
on how to test them effectively is therefore required.

Mutation testing (DeMillo et al., 1978; Ham-
let, 1977) is a testing technique that has been ap-
plied successfully to several programming languages.
Several mutant generation systems already exist (Jia
and Harman, 2010), such as Mothra (King and Of-
futt, 1991) for FORTRAN, MuJava (Ma et al., 2005)
for Java, SQLMutation (Tuya et al., 2007) for SQL,
among others. In fact, we have presented GAm-
era (Domı́nguez-Jiménez et al., 2009) in previous
works, an automatic mutant generation system for
WS-BPEL compositions, which only deals with first-
order mutants. GAmera is the first mutant generator
based on a genetic algorithm (GA) (Goldberg, 1989).

However, all these tools only generate first-order
mutants. In this work we present the modifications
of the architecture of GAmera for automatically gen-
erating higher-order mutants for WS-BPEL composi-
tions. A higher-order mutant is created by applying a
sequence of first-order mutation operators to the orig-
inal program (Jia and Harman, 2009). It has been
shown empirically that about 99% of higher-order
mutants are distinguished by test data that distinguish
first-order mutants (known as the coupling effect)

(Mathur, 1994; Wah, 2003).
This paper introduces the changes GAmera re-

quires to convert the generation of first-order mutants
into a process capable of higher-order mutation, while
detailing the modifications carried out for adapting
the crossover and mutation genetic operators to the
new structure of the mutants.

The paper is divided into the following sections:
Section 2 briefly summarizes the WS-BPEL lan-
guage, mutation testing and genetic algorithms. Sec-
tion 3 describes the modifications to the architecture
of GAmera, as well as the new genetic operators de-
fined. Finally, Section 5 presents the conclusions and
future work.

2 BACKGROUND

We will first introduce the WS-BPEL language and
mutation testing, and then offer some basic concepts
about genetic algorithms.

2.1 The WS-BPEL Language

WS-BPEL (Organization for the Advancement of
Structured Information Standards, 2007) is an XML-
based language which implements a business process
as a WS which interacts with other external WS. Stan-
dard WS-BPEL process definitions are not coupled to
the implementation details of the WS-BPEL engine

143Blanco-Muñoz E., García-Domínguez A., J. Domínguez-Jiménez J. and Medina-Bulo I..
TOWARDS HIGHER-ORDER MUTANT GENERATION FOR WS-BPEL.
DOI: 10.5220/0003611901430148
In Proceedings of the International Conference on e-Business (ICE-B-2011), pages 143-148
ISBN: 978-989-8425-70-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



they run on or the WS they invoke. WS-BPEL pro-
cess definitions can be divided in four sections:

1. Declarations of the relationships to the external
partners. These include both the client that has in-
voked the business process and the external part-
ners whose services are required to complete the
request of the client.

2. Declarations of the variables used by the process
and their types. Variables are used for storing both
the messages received and sent from the business
process and the intermediate results required by
the internal logic of the composition.

3. Declarations of handlers for various situations,
such as fault, compensation or event handlers.

4. Description of the business process behavior.

The major building blocks of a WS-BPEL process
are activities, XML elements which model assign-
ments, control structures, message passing primitives
or synchronization constraints, among others. There
are two types: basic and structured activities. Basic
activities specify a single action, such as receiving a
message from a partner or performing an assignment
to a variable. Structured activities contain other ac-
tivities and prescribe their execution order. Activi-
ties may have both attributes and a set of containers.
These containers can also include elements with their
own attributes. Here is an example:

<flow> ← Structured activity
<links> ← Container
<link name="checkFl-BookFl"/> ← Element

</links>
<invoke name="checkFlight" . . . > ← Basic activity
<sources> ← Container
<source linkName="checkFl-BookFl"/> ← Element

</sources>
</invoke>
<invoke name="checkHotel" . . . />
<invoke name="checkRentCar" . . . />
<invoke name="bookFlight" ← Attribute . . .>
<targets> ← Container
<target linkName="checkFl-BookFl" />

</targets>
</invoke>

</flow>

WS-BPEL provides concurrency and synchro-
nization primitives. For instance, theflow activ-
ity runs a set of activities in parallel. Synchroniza-
tion constraints between activities can be defined. In
the above example, theflow activity invokes three
WS in parallel: checkFlight, checkHotel, and
checkRentCar. There is another WS,bookFlight,
that will only be invoked ifcheckFlight is com-
pleted. Activities are synchronized by linking them:
the target activity of every link will only be executed
if the source activity of the link has been completed
successfully.

2.2 Mutation Testing

Mutation testing (DeMillo et al., 1978; Hamlet, 1977)
is a fault-based testing technique that introduces sim-
ple flaws in the original program by applyingmuta-
tion operators. The resulting programs are calledmu-
tants. Each mutation operator models a category of
errors that the developer could make. For instance,
if a program contains the instructiona > 5000 and
we apply the relational mutation operator (which re-
places a relational operator with another), one of the
mutants produced will containa < 5000 instead. If
a test case can tell apart the original program and the
mutant, i.e. their outputs are shown to be different, it
is said that this test casekills the mutant. Otherwise,
the mutant is said to stayalive.

Equivalent mutants, which always produce the
same output as the original program, are a common
problem when applying mutation testing. Equivalent
mutants should not be confused withstubborn non-
equivalent mutants, which are produced because the
test suite is not adequate to detect them. The general
problem of determining if a mutant is equivalent to the
original program is undecidable (Zhu et al., 1997).

2.3 Genetic Algorithms

Genetic Algorithms (Goldberg, 1989; Holland, J. H.,
1992) are probabilistic search techniques based on the
theory of evolution and natural selection.

GAs work with a population of solutions, known
asindividuals, and process them in parallel. Through-
out the successive generations of the population, GAs
perform a selection process to improve the popula-
tion, and so they are ideal for optimization. In this
sense, GAs favor the best individuals and generate
new ones through the recombination and mutation
of information from existing ones. The strengths of
GAs are their flexibility, simplicity and ability for hy-
bridization. Among their weaknesses are their heuris-
tic nature and their difficulties in handling restrictions.

Thefitnessof an individual measures its quality as
a solution for the problem to be solved. The average
fitness of the population will be maximized along the
generations produced by the GA.

GAs use two types of genetic operators: selection
and reproduction.Selection operatorsselect individ-
uals in a population for reproduction. The likelihood
of selecting an individual may be proportional to its
fitness.Reproduction operatorsgenerate the new in-
dividuals in the population by applying crossover and
mutation operators. On the one hand,crossover op-
eratorsgenerate two individuals (children) from two
pre-selected individuals (parents). The children in-

ICE-B 2011 - International Conference on e-Business

144



herit part of the information stored in both parents.
On the other hand,mutation operatorsaim to alter
the information stored in an individual. The design
of these operators heavily depends on the encoding
scheme used. It is important to note that these muta-
tion operators are related to the GA and are different
from those for mutation testing.

3 SYSTEM ARCHITECTURE

This section describes how GAmera has changed
from its previous architecture, the new genetic oper-
ators which have been adapted to the current frame-
work and lastly, the novel genetic algorithm. The
components of GAmera are still the same, although
the genetic search for mutants has been modified. Fig-
ure 1 shows the core of the system: the analyzer, the
mutant generator and the execution system. The an-
alyzer takes the original program WS-BPEL process
definition and produces the information required by
the mutant generator. The mutant generator is divided
into the GA and a converter from the individuals of
the GA to the mutants of the original process defini-
tion. Finally, the execution system runs the generated
mutants against the test cases and compares their out-
puts with those from the original process definition.

Genetic algorithm Converter

Analyzer

Execution engine Mutant WS−BPEL 2.0 program

Original WS−BPEL 2.0 program Mutation operator analysis

MUTANT GENERATOR

mutantsmutantsequivalent

mutants

suite

Potentially

Test

Killed Stillborn

Figure 1: GAmera architecture.

3.1 Higher-order Structure

Figure 2 shows the new structure for generating
higher-order mutants (HOM).

3.1.1 Extending the Representation

The concept ofindividualhas been changed. Individ-
uals now encodeN mutations on the original program,
whereN is the maximum order defined in the config-
uration. Individuals have five fields (Figure 3): the
order of the individual, its fitness, the identifiers of
the mutation operators to be applied, the identifiers of
the locations to be mutated and the additional values
which modify the behaviour of the selected mutation
operator. The three lists with the mutation operators,

the locations and the additional values must have the
same number of elements.

With the new structure, we now define two indi-
viduals to be equal if they have the same order (n)
and the firstn operator-location-attribute triplets are
equal. Populations contain sequences of individuals:
some of them may be equal to others.

In addition to regular populations for each gener-
ation, we keep a separate population during the exe-
cution of the GA, called theHall of Fame(HOF). The
HOF collects the individuals generated by the GA in
previous generations. Each distinct individual is only
stored once, unlike in regular populations. Individuals
in the HOF also contain theirExecution Rowswith the
results produced when the mutant was executed. We
will detail this further in the next section.

3.1.2 Fitness of the Individuals

Once the analyzer has finished, we know which muta-
tion operators can be applied. If the value of the field
Locationis zero, it means that mutation operator can-
not be used by the genetic algorithm. Therefore, it is
necessary to filter the usable combinations.

To calculate the fitness of the individuals we have
to convert them into mutants, by applying each mu-
tation operator in sequence. After applying the last
mutation operator mentioned in the individual, the re-
sulting HOM can be run with the execution system.

Theexecution rowof each individual is produced
by running the corresponding mutant against all test
cases. For each test case in the suite, its column re-
ports if the mutant stayed alive (0), if it was killed (1)
or if it could not be deployed (2).

Having set this field in the individuals of the HOF,
the individual fitness of the current population can
now be calculated. We use the original fitness func-
tion of GAmera. The fitness for individualI is given
by:

Fitness(I) = M ·T−
T

∑
j=1

(

mI j ·
M

∑
i=1

mi j

)

(1)

whereM is the number of mutants in a generation,
T represents the cases number of the test suite andm
shows the execution row of an individualI.

3.1.3 New Genetic Operators

The first population is randomly generated. The fol-
lowing generations are based on a generational GA
where individuals come from:

• Random generation. There is a percentage in the
configuration to know how many mutants will be
randomly generated.

TOWARDS HIGHER-ORDER MUTANT GENERATION FOR WS-BPEL

145



Figure 2: New higher-order structure.

• Crossover and mutation operations. The selection
of individuals involved in the operations is done
through the roulette wheel method. Crossovers
and mutations will be done according to the prob-
abilities specified in the configuration,pc and
pm = 1− pc, respectively. These operations have
undergone several changes that are detailed be-
low.
Thecrossover operatorconsists in an exchange of

certain fields of the individuals involved. There are
two types of crossover operators: the order and the
individual crossover operator. Their probabilities are
set in the configuration:poc and pic, respectively, so
pc = poc+ pic.

In theorder crossover operator, a crossover point
is chosen at random, between 1 to the order of the
individual. Figure 5 shows how two parents gener-
ate their children, according to the selected crossover
point.

Figure 3: Representation of an individual.

Figure 4: Equal individuals.

On the other hand, in theindividual crossover op-
erator, a crossover point is also chosen in the same

Figure 5: Order crossover operator.

way, but now the field which will be changed (opera-
tor, location or attribute) is randomly selected. There-
fore, in this case only a value of each individual is
modified. Figure 6 has an example of applying an in-
dividual crossover operator.

Figure 6: Individual crossover operator.

Themutation operatorchanges the value of a field
of the individual. There are two types of mutation op-
erators: the order and the individual mutation opera-
tor. Their probabilities are set by the user:pom and
pim, respectively, sopm = pom+ pim.

In the order mutation operator, the parameter
which will be modified is the individual order and it
will be given by:

Order(I) = ocurrent+ rand(−1,1) · (1− pom) (2)

ICE-B 2011 - International Conference on e-Business

146



Figure 7: Order mutation operator.

In the individual mutation operator, a mutation
point is randomly chosen and the field which will
be mutated (operator, location or attribute) is selected
randomly. The value which will be changed is given
by:

Value(I) = vcurrent+ rand(−1,1) · (1− pim) (3)

Figure 8: Individual mutation operator.

The GA will stop when the maximum percentage
of generated mutants is reached.

4 RELATED WORKS

There are many papers on the application of mutation
testing (Jia and Harman, 2010). Research in muta-
tion testing can be classified into four types of activi-
ties (Offutt et al., 2006):

1. Defining mutation operators.

2. Developing mutation systems.

3. Inventing ways to reduce the cost of mutation
analysis.

4. Experimentation with mutation.

This paper focuses on the second activity. Several
mutant generation systems for various programming
languages already exist:

• Mothra (King and Offutt, 1991) for FORTRAN. It
is likely the most widely known mutation testing
system.

• MuJava (Ma et al., 2005) for Java.

• Proteum (Delamaro and Maldonado, 1996) for C.
It implements all mutation operators designed for
the ANSI C programming language.

• M ILU (Jia and Harman, 2008) for C. It can per-
form both first-order and higher-order mutation
testing.

• SQLMutation (Tuya et al., 2007) for database
queries written in SQL.

• GAmera (Domı́nguez-Jiménez et al., 2009) for
WS-BPEL. This generator is the first mutant gen-
eration system based on GA.

We present a new mutant generation system based
on GAmera. This mutant generation system operates
over WS-BPEL process definitions, and it incorpo-
rates the generation of higher-order mutants.

5 CONCLUSIONS AND FUTURE
WORK

This paper presents an approach towards implement-
ing an automatic higher-order mutant generation sys-
tem for WS-BPEL compositions. It improves upon
our previous tool, called GAmera, which only deals
with first-order mutants.

We have also described the changes needed to
adapt the crossover and mutation operators to the new
structure of the mutants. An advantage of this new
approach is that mutants from different orders can be
mixed in the same generation.

The most important contribution of this work is
the proposal of the design of the first framework
which generates higher-order mutants for WS-BPEL
compositions.

Our future lines of work are the implementation
of this framework in Java. This includes the new ar-
chitecture presented in Figure 2, the extension of indi-
vidual representation, and new genetic operators pre-
sented in Section 3.1.3. Finally, we will design an
user-friendly graphical interface.

REFERENCES

Delamaro, M. and Maldonado, J. (1996). Proteum–a tool
for the assessment of test adequacy for C programs.
In Proceedings of the Conference on Performability in
Computing System (PCS 96), pages 79–95.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing
programmer.Computer, 11(4):34–41.

Domı́nguez-Jiménez, J. J., Estero-Botaro, A., Garcı́a-
Domı́nguez, A., and Medina-Bulo, I. (2009).
GAmera: an automatic mutant generation system for
WS-BPEL compositions. InECOWS’09: Proceed-
ings of the Seventh IEEE European Conference on
Web Services.

Goldberg, D. E. (1989).Genetic algorithms in search, op-
timization and machine learning. Addison-Wesley,
Reading.

Hamlet, R. G. (1977). Testing programs with the aid of a
compiler. IEEE Transactions Software Engineering,
3(4):279–290.

TOWARDS HIGHER-ORDER MUTANT GENERATION FOR WS-BPEL

147



Holland, J. H. (1992).Adaptation in natural and artificial
systems. MIT Press, Cambridge.

IDC (2008). Research reports. http://www.idc.com.
Jia, Y. and Harman, M. (2008). MILU: A customizable,

runtime-optimized higher order mutation testing tool
for the full C language. InTAIC-PART ’08: Proceed-
ings of the Testing: Academic & Industrial Confer-
ence - Practice and Research Techniques, pages 94–
98. IEEE Computer Society.

Jia, Y. and Harman, M. (2009). Higher order muta-
tion testing. Information and Software Technology,
51(10):1379–1393.

Jia, Y. and Harman, M. (2010). An analysis and survey of
the development of mutation testing.IEEE Transac-
tions on Software Engineering, 99(PrePrints).

King, K. N. and Offutt, A. J. (1991). A FORTRAN
language system for mutation-based software testing.
Software - Practice and Experience, 21(7):685–718.

Ma, Y.-S., Offutt, J., and Kwon, Y. R. (2005). MuJava: an
automated class mutation system.Software Testing,
Verification & Reliability, 15(2):97–133.

Mathur, A. (1994). Mutation testing. In Marciniak, J. J.,
editor, Encyclopedia of Software Engineering, pages
707–713. Wiley, New York, NY.

OASIS (2007). Web Services Business Process
Execution Language 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
Organization for the Advancement of Structured
Information Standards.

Offutt, J., Ma, Y.-S., and Kwon, Y.-R. (2006). The class-
level mutants of MuJava. InAST ’06: Proceedings
of the 2006 international workshop on Automation
of software test, pages 78–84, New York, NY, USA.
ACM.

Organization for the Advancement of Structured Informa-
tion Standards (2007). Web Services Business Process
Execution Language 2.0. (Last accessed: 2 March
2011).

Tuya, J., Cabal, M. J. S., and de la Riva, C. (2007). Mutating
database queries.Information and Software Technol-
ogy, 49(4):398–417.

Wah, K. S. H. T. (2003). An analysis of the coupling effect
i: single test data.Science of Computer Programming,
48(2–3):119–161.

Zhu, H., Hall, P., and May, J. (1997). Software unit test
coverage and adequacy.ACM Computing Surveys,
29(4):366–427.

ICE-B 2011 - International Conference on e-Business

148


