
A FOUR-CONCERN-ORIENTED SECURE IS DEVELOPMENT
APPROACH

Michel Embe Jiague1,2, Marc Frappier1, Frédéric Gervais2, Pierre Konopacki1,2, Régine Laleau2,
Jérémy Milhau1,2 and Richard St-Denis1

1GRIL, Département d’informatique, Université de Sherbrooke, 2500 boulevard de l’Université
Sherbrooke J1K 2R1, Québec, Canada

2Université Paris-Est, LACL, IUT Sénart Fontainebleau, Département Informatique
Route Hurtault, 77300 Fontainebleau, France

Keywords: Information system, Security policy, Access control, Formal method, Model checking, Process algebra,ASTD.

Abstract: In this paper, we advocate a strong separation of four aspects of information systems: data, dynamic behavior,
security data and access control behavior. We describe how to model each of these aspects using formal
methods. An abstract specification of each part of an information system is defined. The presented approach
can be used when building a system from scratch but can also be applied to implement a security controller for
an existing system. In parallel with models, properties of the system are written. These properties are checked
against the system’s models to ensure they hold using model checking techniques.

1 INTRODUCTION

Our aim is the formal specification of information
systems (IS). Roughly speaking, an IS helps an or-
ganization to collect and manipulate all its relevant
data. In this context, several characteristics and prop-
erties must be captured by the specification: defini-
tion and structuration of data collected and used in the
IS, data integrity constraints, list of actions that can
be invoked by end-users, views that can be displayed
by end-users, action ordering constraints, data access
control, security policies, etc. We strongly believe
that formal methods can improve the quality of IS.
Formal notations being amenable to automated anal-
ysis, they can be used for model-based software de-
velopment, code generation and efficient interpreta-
tion, automated verification and testing, thereby re-
ducing development costs, fostering reuse and in-
creasing quality. In order to capture all these aspects,
it seems that several layers of modeling should be
considered. The proposed approach is inspired from
the concept ofseparation of concerns(Parnas, 1972).
The latter is generally used in the context of program-
ming, like in aspect-oriented software development
(AOSD) (Win et al., 2002). It consists in separating a
program into distinctconcernslike security, data log-
ging, optimizations, etc. However, this paradigm can
imply cross-cutting effects. For instance, the imple-

mentation of a concern can be dispatched over several
parts, in that case, the program is no longer modular.
The code of a concern can also be merged with code
that implements other concerns. Such negative effects
are common issues in aspect-oriented programming,
probably because of the low level of abstraction. A
survey of AOSD methods is available in (Schauerhu-
ber et al., 2007). The main contribution of this paper
is to model with formal notations the functional part
and the access control part of an IS, verify proper-
ties on each part independently and on the union of
all parts ensuring quality and reliability, and derive an
implementation of the complete IS using systematic
translations or symbolic execution of models.

1.1 The SELKIS and EB3SEC Projects

The SELKIS project (ANR-08-SEGI-018)1 from the
French national research agency aims to define a de-
velopment strategy for secure health care networks
IS from requirements engineering to implementation.
The results of this project can be applied to any type
of secure IS, but the medical field was chosen because
of the complexity and diversity of security require-
ments.EB3SEC is a project of the Canadian research
agency NSERC which aims to secure IS by enforcing

1http://lacl.fr/selkis/

464 Embe Jiague M., Frappier M., Gervais F., Konopacki P., Laleau R., Milhau J. and St-Denis R..
A FOUR-CONCERN-ORIENTED SECURE IS DEVELOPMENT APPROACH.
DOI: 10.5220/0003619604640471
In Proceedings of the International Conference on Security and Cryptography (MPEIS-2011), pages 464-471
ISBN: 978-989-8425-71-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



an access control policy modeled using formal nota-
tions without modifying a currently deployed system.
Use cases of theEB3SECproject are about banking IS
that can involve many access control rules. For both
projects, an approach based on formal methods was
chosen in order to build specifications which can be
rigorously validated by proofs and model checking
over properties of the specification. In the approach
of these projects, a separation is made between access
control rules and the functional model at the require-
ment, specification and implementation levels. An ac-
cess control filter is produced. It intercepts actions
before they are executed. If the action and other pa-
rameters match access control rules, the action can be
executed by the IS. In the other case, the execution is
rejected and an error message is returned to the user.

1.2 The Approach

The key idea of our approach is to reuse the AOSD
paradigm, but at a higher level of abstraction, more
precisely at the specification level. We aim at dividing
the IS specification into four concerns, which are here
calledmodels:

1. Functional Models:

(a) TheFunctional Data Model: this concern deals
with the definition of entities, associations,
their attributes and the actions related to them.
It also includes the safety properties (invari-
ants) that the data attributes must satisfy.

(b) TheFunctional Dynamic Model: this part de-
scribes the event ordering constraints and the
dynamic properties. It provides a specification
of the IS behavior.

2. Access Control Security Models:

(a) TheSecurity Data Model: this third part also
deals with entities, associations and attributes
and defines a static access control policy com-
posed of rules which describeswhocan dowhat
in the system. Static rules are state invariant,
i.e. they are not based on the state of the sys-
tem.

(b) TheSecurity Dynamic Modelalso called access
control model: this last concern also deals with
access control policies, but adds the description
of when(in which context) an action can be per-
formed. Such rules can refers to previously ex-
ecuted actions or previous states of the IS. This
kind of policy allows the IS to be more secure,
enabling access only to those that are entitled to
at the right moment in the business process of
the organization.

By using formal notations, verification techniques
may be used to check properties on each model and to
verify consistency between the four parts. The chosen
separation of models is justified as follows. Since we
are dealing with IS, end-users are naturally focused on
data. The dynamic model provides more information
than the sole data model. It can be viewed as the con-
troller of the IS. Data and dynamic models constitute
the functional model of the system. Distinguishing
these two parts is somehow analogous to comparing
state-based and event-based models. The two secu-
rity models are justified by the dependency of most
organizations on the proper functioning of their IS, to
prevent corruption, loss of data or breaches in con-
fidentiality, which may have serious consequences.
Such a separation of concerns also simplify system
evolution. Access control policies often change in-
dependently of the functional model of the system.
Maintenance teams experience a high turnover rate
during the lifetime of an IS. These four models pro-
vide a well-decomposed specification which is easier
to grasp and maintain.

Even if other choices could have been made (for
instance, security could be split into several distinct
models, one for each ACIT - Availability, Confiden-
tiality, Integrity, Traceability - feature), one of the key
elements in our approach is the incremental building
of IS models. First, the data model only provides data
definition and structure. Hence, there is no restriction
on the potential behavior of the IS, only excluding
data values violating integrity constraints. Then, the
dynamic behavior restricts the potential IS event or-
derings. Finally, the security dynamic model reduces
the number of possible behaviors by taking the secu-
rity facets into account.

Fig. 1 summarizes our proposal and introduces
properties such as INV, SCE, SCEF and NCE that
will be explained in Section 4. The rest of this pa-
per is structured as follows. Section 2 describes the
software development process of the 4CO approach,
putting a special emphasis on model-driven engineer-
ing, rather than traditional software design and imple-
mentation. Section 3 describes the techniques used
for specifying data, behavior and security policies.
Section 4 describes the techniques used for specify-
ing properties on data, behavior and security policies,
and for verifying them. Finally, Section 5 reviews re-
lated approaches and research projects.

2 IS DEVELOPMENT PROCESS

A four-concern-oriented approach is proposed to for-
mally specify safe and secure IS. This section pro-

A FOUR-CONCERN-ORIENTED SECURE IS DEVELOPMENT APPROACH

465



Figure 1: Our proposal: a four-concern-oriented secure IS development approach.

vides a general overview of the target methodology,
which consists of nine steps. Most of them can al-
ready be supported by existing languages and tools
from the EB3SEC (Embe Jiague et al., 2010) project
that we have developed in our research groups.

The whole specification is intended to be built
incrementally, but some exceptions may occur, es-
pecially when maintenance or monitoring issues are
considered. For the moment, we only consider an IS
specification from scratch. Specifying concerns for
an existing IS is discussed at the end of this section.

Our approach is composed of the following steps:

1. Specifying the Functional Data Model.The first
step consists in defining the main entity types, as-
sociations and attributes. In our approach, this
part is described with class diagrams and attribute
definitions.

2. Specifying the Functional Dynamic Model.The
next step is the definition of the IS controller, ex-
pressing ordering constraints on actions. We have
a choice of two complementary, but equivalent
notations. TheEB3 process algebra allows us to
represent the dynamic behavior using purely alge-
braic expressions (Frappier and St-Denis, 2003).
Algebraic state transition diagram (ASTD) (Frap-
pier et al., 2008) is an hybrid automata-based and
algebra-based formal language with a graphical
notation which allows the specifier to describe
behavior using hierarchical automata that can be
freely combined with process algebra operators.
These formal languages can be used to specify the
functional dynamic model.

3. Verifying Data Integrity Constraints. Once the
functional data model is defined, we use a transla-
tion into Event-B (Abrial, 2010) for checking in-

variant properties like data integrity constraints.
We have developed systematic translation rules
from EB3 process expressions toASTD and from
ASTD to Event-B machines (Milhau et al., 2010).

4. Verifying Dynamic Properties. The aim of this
step is to verify safety properties that involve ac-
tions, such as necessary conditions to enable an
action, and liveness properties, such as sufficient
conditions to enable or reach an event. Model
checking and proving dynamic properties on our
models is presented in (Frappier et al., 2010).

5. Specifying Access Control Data.The first two
models constitute the IS functional specification.
Next, security policies have to be defined. We
use a class diagram to represent static access con-
trol policies, in a way similar to *-RBAC ap-
proaches (Ferraiolo et al., 2003).

6. Specifying Access Control Security Policies.
More complex access control rules, involving
workflows and action ordering, can be expressed
in this model as presented in (Konopacki et al.,
2010).

7. Verifying Security Properties. In this step, ver-
ification techniques are performed to verify spe-
cific security properties.

8. Verifying Overall Liveness. Finally, we need to
verify that the functional model coupled with the
security model does not prevent actions from be-
ing executed.

9. Maintaining Models. IS designers may have to
modify the IS models after some time. Our ap-
proach offers a way to update the system without
modifying every models, even if the system is run-
ning.

SECRYPT 2011 - International Conference on Security and Cryptography

466



This process is not linear. Some iterations are
required for obtaining a complete specification. For
instance, if the security requirements are too strong,
some users can no longer perform desired actions. In
that case, IS specifiers have to take some decisions to
weaken the rules of the security model.

Since our approach is incremental, one can apply
steps 2, 4 – 8 to an existing IS. A prerequisite is a data
model coming from the IS documentation. Then, a
controller can be executed for monitoring the valid se-
quence of IS actions. This is relevant, for instance, in
a service-oriented approach, where our development
process could be used for service orchestration and
choreography.

3 SPECIFICATION

In this section we introduce a class diagram, theASTD

notation and a case study that we use to illustrate our
approach. Specification refers to points 2, 5 and 6 of
our approach.

3.1 Security Data Model

We need to model access control policies with various
constraints such as permissions, prohibitions, SoD
(Separation of Duty) and obligations. SoD constraints
are dynamic and defined as a workflow in the next
section. Sometimes only permissions or prohibitions
are sufficient to model a static access control policy.
A more complete description of permissions, prohi-
bitions, SoD and obligations is given in (Konopacki
et al., 2010).

The class diagram depicted in Fig. 2 is highly in-
spired by the RBAC standard (ANSI, 2004). Enti-
ties User, RoleandAction respectively depict users
involved in the IS, the role they play and actions of
the IS. The associationPlaydepicts who is allowed to
play a role in the IS. RelationsPermissionandPro-
hibition depict permission and prohibition in the IS.
Actions are granted or prohibited to a role that can
be played by different persons. The semantics of the
class diagram is expressed by a predicate, called the
static predicatesp(σ), which determines if an event
σ satisfies the constraints expressed in the class di-
agram. For instance, an RBAC-like static predicate
would state that an eventσ =< u, r,a> is valid iff

(u, r)∈Play∧(r,a)∈Permission∧(r,a) 6∈Prohibition

3.2 TheASTD Notation

TheASTD notation is a formal and graphical notation
for specifying IS functional dynamic behaviors. The

notation was introduced in (Frappier et al., 2008) as
an extension of Harel’s Statecharts with process alge-
bra operators. EachASTD type corresponds to either
a process algebra operator or a hierarchical automa-
ton. Automaton states can be elementary or anASTD

of any type.
ASTD specifications combine benefits of graphical

representation and process algebra: easy to read rep-
resentation of states from automata; control behav-
ior, hierarchical structure and the power of abstrac-
tion of process expressions. AnASTD has a static
topology, i.e. its structure, and a state that evolves
according to actions executed. Contrary to a pro-
cess expression, when anASTD is executed, only its
state evolves, whereas the execution of an action on
a process expression returns a new process expres-
sion, whose structure is sometimes more complex due
to unwinding of quantifications, closures and process
calls. Hence, an animation of the specification for val-
idation with end-users is more difficult to understand.
Fig. 3 provides a small example of anASTD spec-
ification for a library IS managing members, books
and loans. Each component is described using an au-
tomaton and combined using process algebra opera-
tors from EB3 (Frappier and St-Denis, 2003). Each
event can has several parameters. The first two pa-
rameters denote security attributes asrole and user
from the security data model. Any relevant attribute
could be added to the class diagram and then used in
ASTD events as a security parameter.

ASTD is an executable notation, with reasonable
performance to handle large numbers of entities and
instances, and thus can be used for controlling IS
with low response time constraints. UsingiASTD, our
ASTD interpreter, an implementation of the model can
be produced. It can stand as a controller of the sys-
tem. It updates its state to reflect the changes induced
by the actions executed.

TheASTD notation can also be used to specify se-
curity dynamic models, by introducing new param-
eters to actions such as user identifier, role, organi-
zation or any additional parameter needed to express
dynamic security rules. Sophisticated access control
rules can be expressed by using process expressions.
In our library IS example, an SoD constraint is added
to request andacquire actions. The separation of duty
comes from the guarduId 6= uId′ implying that the
user performing the actionrequest must be different
from the user performing the actionacquire. For in-
stance, the user must play the roleprofessorto be
granted to make a book request. An obligation con-
straint is also added toacquire anddiscard. In other
words, the request for a book must be done by a pro-
fessor, and another user must acquire it. Those con-

A FOUR-CONCERN-ORIENTED SECURE IS DEVELOPMENT APPROACH

467



Figure 2: Class diagram used to model access control policies.

straints are expressed in theASTD specification pre-
sented in Fig. 4.

Figure 3: A completeASTD specification for a library IS.

Figure 4: An ASTD specification for a security rule of a
library IS.

4 VERIFICATION OF
PROPERTIES

This section describes points 3, 4, 7 and 8 from the ap-
proach where properties are verified against produced
models.

4.1 Classification of Properties

One advantage of using formal methods is the abil-
ity to verify properties over system models, whether
they are functional or security models. Properties are
traditionally partitioned into three categories:

1. Liveness Propertiesstate that something good
eventually happens. They sometimes state that
an action implies a reaction from the system; this
is however rarely used in IS, where actions are
human-driven (one cannot force a user to trig-
ger specific actions). Deadlock, in the traditional
sense of reaching states where no transition is pos-
sible, is rarely an issue.

2. Safety Propertiesstate that something bad does
not happen. IS safety properties usually describe
invariant properties of data,necessary conditions
to enable an action, or what a user isnot allowed
to do with the system at a given point.

3. Fairness Propertiesstate that an enabled action
will be executed at some point. Since end-users
determine which actions they want to execute, IS
typically do not have fairness constraints.

In (Konopacki et al., 2010), we have identified four
sub-categories which frequently occur in IS require-
ments, and for which we want to develop a verifica-
tion strategy.

4.1.1 Liveness

1. SCE: Sufficient State Condition to Enable an
Event. Such properties state that end-users should
be able to execute an action when a condition
holds. “An action is enabled” means that there
is a transition for this action in the current state.
Examples are: i) a book can always be acquired
by the library when it is not currently acquired;
ii) a member can always return a borrowed book.
Thus, the IS must acceptacquire(b) when bookb
does not exist; the IS must acceptreturn(b) when
b is borrowed.

SECRYPT 2011 - International Conference on Security and Cryptography

468



2. SCEF: Sufficient State Condition to Enable an
Event in the Future. Such properties state that
there is a sequence of actions that leads to the ex-
ecution of the desired action. Examples are: i) ul-
timately, there is always a procedure that enables
a member to leave library membership (the proce-
dure depends on the loans and reservations of the
member); ii) a member can always ultimately bor-
row a book (the procedure depends on the status
of the book and its reservations). Thus, the action
can become enabled if proper steps are taken.

4.1.2 Safety

1. INV: Invariant State Property. These properties
hold for each state of the system. For example, a
member cannot borrow more books than a certain
limit.

2. NCE: Necessary State Condition to Enable an
Event. These properties state that if the IS can ac-
cept an action, then a condition must hold. Exam-
ples are: i) a book can only be acquired if the buy-
ing request was made by a professor; ii) a book
cannot be reserved by the member who is borrow-
ing it.

4.2 Specifying Properties

4.2.1 SCE and SCEF

CTL is well suited to specify SCE and SCEF proper-
ties, due to its branching nature which is useful for ex-
pressingenablednessof actions. Ideally, a CTL-like
(i.e., branching) language should support both states
and actions, as in PROB (Leuschel and Butler, 2003),
since SCE and SCEF properties typically refer to both
states and actions in their natural language formula-
tion. Classical LTL is not suitable, because of its
inability to expressenabledness. Particular features
of some model checkers (like the enabled operator in
ProB and location labels in SPIN (Holzmann, 2004))
slightly extend LTL such that some SCE and SCEF
properties can be specified in LTL. Stable-failure re-
finement, as inFDR2, can also be used to specify SCE
and SCEF, but not as easily and naturally as in CTL.
Plain first-order logic can also be used for SCE and
SCEF when actions are specified as before-after state
predicates. In (Frappier et al., 2010), we have shown
how ALLOY (Jackson, 2006),FDR2 and PROB can be
used to specify and check SCE and SCEF properties.

4.2.2 NCE and INV

These properties are more widely supported. For ex-
ample CTL, LTL, first-order logic and trace refine-
ment can all be used.

4.3 Generic Security Properties

Specifying different kinds of properties on a given
model and checking them on this model ensure a high
level of correctness. Properties expressed by design-
ers are calledspecific properties. In addition to these
properties we have identified properties calledgeneric
properties. They can be checked on models to ensure
their consistency and liveness. Ten generic properties
have been identified as for example:

Access Control Policy Typing checks that all events
used in process expressions are also instances of
the classAction, otherwise the static predicate
cannot be verified. This property can be statically
checked over the access control model.

Role Feasibility checks that all instances of the class
Rolecan be used by a user to execute at least one
action. This property is generalized to all classes
of the access control data model. They are used to
check that all instances are useful. Furthermore,
we have equivalent properties for associations of
the access control data model. These verifications
are also used for associationpermission, to check
that all permissions depicted in the data model are
reachable in the dynamic model.

Prohibition Unfeasibility checks that what is pro-
hibited in the classprohibitioncannot be executed
by the access control dynamic model.

Reachability of all Security Events checks that all
instances of classActionin the access control data
model can be executed by the access control dy-
namic model.

Reachability of all IS Events checks that the access
control policy is not too restrictive,i.e.: all events,
that the IS could execute, can be executed at least
once by the access control model.

All these properties can be formalized. For example,
Reachability of all IS eventscan be expressed using
CTL as follows:

∀e∈ ΣFN :
M FN |= EF(e)

⇒
∃σ ∈ ΣSEC: σ.e= e∧sp(σ)∧M SEC |= EF(σ)

In this formula,ΣFN (ΣSEC, resp.) is the set of events
used in the functional dynamic modelM FN (security

A FOUR-CONCERN-ORIENTED SECURE IS DEVELOPMENT APPROACH

469



dynamic modelM SEC, resp.);E andF are symbols
used in CTL to respectively expressexistsandfinally;
σ is a security event (i.e.: a n-tuple) andσ.e is the
event ofσ. There are two problems to make this prop-
erty usable in a model checker : i) the quantification is
over events, and most model checkers do not support
such quantifications; thus they must be unfolded, ii)
two distinct models (i.e.: functional and access con-
trol) are used, thus two checks are done in sequence
in the unfolding.

4.4 Verifying Properties

Model checking is an interesting technique to ver-
ify IS specifications for several reasons: it provides
broader coverage than simulation or testing, it re-
quires less human interaction than theorem proving,
and it has the ability to easily deal with both safety
and liveness properties.

The separation of concerns illustrated in Fig. 1 al-
lows for a modular verification of properties. Invari-
ant properties can be checked separately in the func-
tional model and the security model, since one model
cannot modify the state of the other. NCE can also be
checked locally in each model: the functional model
and the security model are composed in parallel and
must synchronize on common actions; thus the traces
of the parallel composition of these two models are
included in the traces of each component, when re-
stricted to their respective alphabets. SCE and SCEF
can be checked locally, but the parallel composition of
the two models may further restrict the enabledness of
actions, thus violating these properties. The specifier
must identify which properties should still hold in the
parallel combination and re-check them. Some of the
generic properties guaranty liveness of the combina-
tion and must be checked over the parallel composi-
tion of the functional model and the security model.

5 RELATED WORK

Few methods have been developed to formally spec-
ify and verify secure information systems. If we con-
sider only the functional aspect, we have pointed out
in (Fraikin et al., 2005) that it is interesting to com-
bine state-based and event-based models to express all
kinds of properties of IS. State-based methods have
been extensively used because they are suitable to de-
scribe states of IS, with invariant predicates to rep-
resent static integrity constraints, two important as-
pects of IS. Dynamic properties are more tricky to
specify. Even if complex ordering of operations can
be expressed by using additional variables and pre-

conditions, this kind of properties are more naturally
and clearly expressed by event-based methods. In our
work, we combine the B method andEB3. Other com-
binations can be considered. In (Evans et al., 2008),
we propose to combine B and CSP, mainly because of
existing tools.

With regard to the security aspect, there ex-
ist many formalisms to specify security proper-
ties (Konopacki et al., 2010). However most of them
consider basic access controls. Few research projects
deal with separation of duty. The work in (Basin et al.,
2010) uses CSP with an RBAC model. Because CSP
does not support natively state variables, it is not well
adapted for IS. Moreover, the access control model is
RBAC and cannot be extended or tailored to specific
IS as we propose in our work.

Finally, when combining functional and secu-
rity aspects, comparable research projects are (Basin
et al., 2009) and (Kallel et al., 2009). The first one
is based on SecureUML (Basin et al., 2006) and ex-
presses security properties with OCL. OCL being a
state-based method, dynamic properties, such as con-
straints on workflows, may require to encode work-
flow manually and describe the evolution of the state
for each action executed. Moreover, verification tools
associated with OCL are less powerful than PROB,
ALLOY and FDR2. The second one is based on
RBAC, Z, temporal logic (LTL) and aspect-oriented
languages for implementation purposes. Regarding
RBAC, the same limit as mentioned above can be
stated. In addition, LTL is not sufficient to express
important security properties, as described in Sec-
tion 4 where we point out that at least CTL has to
be used.

6 CONCLUSIONS

We presented our approach of secure IS design, in
which a strong separation of four essential parts of
a system is performed at the specification level. Each
of these parts is described by a model expressed with
a formal notation. When writing a model, proper-
ties that must be checked are also expressed. Our
approach alternates between model specification and
model checking in order to ensure consistency and
cohesion between all aspects of the system. Model-
specific and overall verifications are performed. The
relative independency between models also helps IS
designers to update the system after it is deployed. As
validation of our approach, we have developed inter-
preters, systematic translation procedures and imple-
mentations based on models described in this paper.
Presently we can interpret access control policy spec-

SECRYPT 2011 - International Conference on Security and Cryptography

470



ifications in order to provide a filter that will grant or
deny the execution of actions. In (Milhau et al., 2010)
we present systematic translation rules from theASTD

notation to Event-B (Abrial, 2010). We are currently
working on a translation of such Event-B access con-
trol policy specifications into Business Process Ex-
ecution Language (BPEL) that can be enforced in a
service oriented architecture (SOA) system (Embe Ji-
ague et al., 2011). As future work we plan to provide
tools in order to model and verifyASTD specifications
and implement the algorithms of (Milhau et al., 2010).

ACKNOWLEDGEMENTS

This research is funded by ANR (France) as part
of the SELKIS project (ANR-08-SEGI-018) and by
NSERC (Canada).

REFERENCES

Abrial, J.-R. (2010).Modeling in Event-B. Cambridge Uni-
versity Press.

ANSI (2004). American national standard for information
technology – role based access control.ANSI INCITS
359–2004.

Basin, D., Burri, S. J., and Karjoth, G. (2010). Dynamic
enforcement of abstract separation of duty constraints.
In Computer Security – ESORICS 2009, LNCS. vol.
5789, pp. 250–267, Springer, Berlin Heidelberg.

Basin, D., Doser, J., and Lodderstedt, T. (2006). Model
driven security: From UML models to access control
infrastructures.ACM TOSEM, 15(1):39–91.

Basin, D. A., Clavel, M., Doser, J., and Egea, M. (2009).
Automated analysis of security-design models.Infor-
mation & Software Technology, 51(5):815–831.

Embe Jiague, M., Frappier, M., Gervais, F., Konopacki,
P., Milhau, J., Laleau, R., and St-Denis, R. (2010).
Model-driven engineering of functional security poli-
cies. InINSTICC Press, volume Information Systems
Analysis and Specification, pages 374–379, Funchal,
Madeira.

Embe Jiague, M., Frappier, M., Gervais, F., Laleau, R., and
St-Denis, R. (2011). From ASTD access control poli-
cies to WS-BPEL processes deployed in a SOA envi-
ronment. In Chiu, D. K. W. and al., editors,WISS 2010
Workshops, LNCS. vol. 6724, pp. 126–141, Springer,
Berlin Heidelberg.

Evans, N., Treharne, H., Laleau, R., and Frappier, M.
(2008). Applying CSP - B to information systems.
Software and System Modeling, 7(1):85–102.

Ferraiolo, D. F., Kuhn, D. R., and Chandramouli, R. (2003).
Role-Based Access Control. Artech House, Inc., Nor-
wood, MA, USA.

Fraikin, B., Frappier, M., and Laleau, R. (2005). State-
based versus event-based specifications for informa-
tion system specification: a comparison of B andEB3.
Software and Systems Modeling, 4(3):236–257.

Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R.,
and Ouenzar, M. (2010). Comparison of model check-
ing tools for information systems. In Dong, J. and
Zhu, H., editors,Formal Methods and Software En-
gineering, LNCS. vol. 6447, pp. 581–596, Springer,
Berlin Heidelberg.

Frappier, M., Gervais, F., Laleau, R., Fraikin, B., and St-
Denis, R. (2008). Extending statecharts with process
algebra operators.Innovations in Systems and Soft-
ware Engineering, 4(3):285–292.

Frappier, M. and St-Denis, R. (2003).EB3: an entity-based
black-box specification method for information sys-
tems.Software and Systems Modeling, 2(2):134–149.

Holzmann, G. J. (2004).The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley.

Jackson, D. (2006).Software Abstractions. MIT Press.
Kallel, S., Charfi, A., Mezini, M., Jmaiel, M., and Klose, K.

(2009). From formal access control policies to run-
time enforcement aspects. In Massacci, F., Zannone,
N., and Redwine, S. T., editors,Engineering Secure
Software and Systems, LNCS. vol. 5429, pp. 16–31,
Springer, Berlin.

Konopacki, P., Frappier, M., and Laleau, R. (2010).
Expressing access control policies with an event-
based approach. Technical Report TR-LACL-2010-6,
LACL, Université Paris Est.

Leuschel, M. and Butler, M. (2003). ProB: A model checker
for B. In Araki, K., Gnesi, S., and Mandrioli, D., ed-
itors,FME 2003: Formal Methods, LNCS. vol. 2805,
pp. 855–874, Springer, Berlin Heidelberg.

Milhau, J., Frappier, M., Gervais, F., and Laleau, R. (2010).
Systematic translation rules from ASTD to Event-B.
In Méry, D. and Merz, S., editors,Integrated Formal
Methods, LNCS. vol. 6396, pp. 245–259, Springer,
Berlin H.

Parnas, D. (1972). On the criteria to be used in decomposing
systems into modules.Communications of the ACM,
15(12).

Schauerhuber, A., Schwinger, W., Kapsammer, E., Rets-
chitzegger, W., Wimmer, M., and Kappel, G. (2007).
A survey on aspect-oriented modeling approaches.
Technical report, Vienna University of Technology.

Win, B. D., Vanhaute, B., and Decker, B. D. (2002). How
aspect-oriented programming can help to build secure
software.Informatica (Slovenia), 26(2).

A FOUR-CONCERN-ORIENTED SECURE IS DEVELOPMENT APPROACH

471


