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Abstract: This paper presents a statistical inversion method used to infer 3D data from 2D imaging. The methodology 
is based on a combination of the Self Organising Maps and the Hidden Markov Models. The method has 
been validated by inferring the oceanic vertical profiles of Chlorophyll-A based on sea-surface data. 

1 INTRODUCTION 

The density of satellite observations allowed a semi-
continuous observation of the global ocean surface. 
The two-dimensional images provided by this 
coverage often contain information on integrated 
quantities whose vertical distribution is unknown. 
Depending on the field of study there exist different 
dynamic approaches for inverting this type of data. 
However, these approaches are often faced with the 
problem of non-linearity, and can also be hampered 
by a lack of knowledge of the complete mechanisms 
that govern the distributions. 

The present paper deals with the inversion of 
observed sea-surface satellite images, noted ݔ௦	௧ ݐ  ∈ ሾ1⋯ܶሿ, for retrieving of the vertical distribution 
of Chlorophyll-A, noted ݔௗ௦	௧ ݐ  ∈ ሾ1⋯ܶሿ, using a 
statistical, non-linear approach. 

The methodology we have developed is a 
mixture of the neuronal algorithms known as Self 
Organizing Topological Maps (SOM) and the 
Hidden Markov Models (HMM). The SOM are 
unsupervised classification algorithms, that allow us 
to cluster our availiable data into classes. The classes 
are arranged on a topological map and connected to 
each other by a topological similarity distance. In the 

present study the SOM classification is applied 
twice, once on the sea-surface data, and once upon 
the vertical profiles connected to these images. The 
resulting topological maps allow us to discretize 
both data spaces into set amounts of classes. 

The second statistical algorithm, the HMM 
allows us to infer the most likely sequence of some 
discrete, unobservable states, given a series of 
discrete, observable states. To do so a set of 
probability matrices are calculated, corresponding to 
the dynamic processes of the unobserved states and 
the links existing between the observed and 
unobserved states. We use the classes created 
through the SOMs to discretize the availiable data 
and therefore represent both the observable and the 
unobservable states. 

In this paper, we present the results obtained 
with the methodology developed on a case study at 
the site of the Bermuda Atlantic Time Series 
(BATS) (32 N -64 W) of the JGOFS campaign. 

2 SELF-ORGANIZING 
TOPOLOGICAL MAPS 

Self-Organising Topological Maps (SOM) are 
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Figure 1: Inversion of ten 5-days steps for the period from 04-04-2005 to 05-19-2005, at BATS. In green, the states 
provided by the inverse method and in blue the vertical distribution of Chlorophyll-A according to the NEMO-PISCES 
model. The horizontal axes are in 106 μmol/L of Chlorophyll-A, while the vertical ones are in meters from the sea surface. 
The numbers on top correspond, after Rec, to the indexes of the classes on Mdis attributed to that 5-day step by the inverse 
method, and, after Mo to the indexes attributed by projection of the total profile on Mdis. These are not show in the figure. 

clustering methods based on neural networks (S, 
Haykin 1999). They provide a discretization of a 
learning dataset A= {	ݔ ∈ ܴ	, k =1...N } into a 
reduced number of subsets, called classes, Pi , { i = 
1...M } that share some common statistical 
characteristics. Each subset is represented by its 
referent vector ri which approaches the mean value 
of the elements in the class Pi. In our case, we 
trained two SOMs, one containing the observations, 
called Mobs and one containing the distributions of 
the unobservable states, called Mdis. The number of 
classes in Mobs and Mdis are respectively noted Nobs 
and Ndis. 

The topological aspect of the maps can be 
justified if we consider the Map as an undirected 
graph on a two-dimensional lattice whose vertices 
are the m classes. This graph structure therefore 
allows the definition of an discrete distance d(i,j) 
between two classes i and j, defined as the length of 
the shortest path between i and j on the map. The 
nature of the SOM training algorithm forces a 
topological ordering upon the map, and therefore 
any neighbouring classes ci and cj on the map have 
referent vectors ri and rj that are close in the 
Euclidian sense in the data space RP.The topological 
ordering constitutes a major element of our inverse 

method, since it allows us to make, latter on, the 
ergodic assumption for our Markov states. 

We define a series of observable events by taking 
the data from observations related to a given period 
of time and we label each observation by the index 
of the class to which it is assigned by using Mobs. 
This classification is done by allocating to each 
observation ݔ௦	௧ ݐ  ∈ ሾ1⋯ܶሿ, in the sequence the 
index of the class of Mobs whose referent is the 
closest to it in the Euclidian sense. Therefore we 
obtain the series 

 
Sobs = ൛ݏ௦௧ = ௦௧ݔ൫ห݊݅݉݃ݎܽ ݅,௦ห൯࢘	− = 1⋯ ܰ௦ൟ (1)

 
In the same way, we obtain the time-series of 

distributions  
 

Sdis = ൛ݏௗ௦௧ = ௗ௦௧ݔ൫ห݊݅݉݃ݎܽ ,ௗ௦ห൯࢘	− ݅ =1⋯ ௗܰ௦ൟ (2)

These series Sobs and Sdis are used by the HMM in 
order to estimate the probabilistic links that exist 
between the observable states and the unobservable 
ones. 

The referents rdis of Mdis are also used as the 
vertical profiles in our sequence reconstructions. 

04-04-2005 09-04-2005 14-04-2005 19-04-2005 24-04-2005 

29-04-2005 04-05-2005 09-05-2005 14-05-2005 19-05-2005 
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Figure 2: The reconstruction at BATS of the validation year 2005, according to, the NEMO-PISCES MODEL (top graph) 
and the inverse method result (bottom graph). The colorbar indicates the Chlorophyll-A concentration in 106 μmol/L. 

3 HIDDEN MARKOV MODELS  

A Markov model is a stochastic model that assumes 
the first order Markovian property, meaning that 
each consecutive state of the model depends solely 
on its previous stat of the model such as 

P(Xt| X1 X2 ... Xt-1) = P(Xt| Xt-1) (3)

Expanding this principle, a Hidden Markov Model 
(HMM) is a stochastic model with two sequences. 
One sequence of unobservable states that follow the 
first order Markovian property, (represented in our 
method by Sdis), and one sequence of observable 
states, (represented by Sobs), that have a statistical 
link with the unobservable states (O. Cappé et al., 
2005). 

We consider two phases, a training one, and a 
retrieval one. During the training, the Transitions 
matrix Tr and the Emissions matrix Em are 
estimated. Tr contains the transition probabilities of 
the unobserved states  

tri,j = P(Cdis(i,t) | Cdis(j,t-1)) (4)

where ∑ ,ݐ = 1ேೞୀଵ 	  (5)

Tr corresponds, in a physical sense, to the 
underlying dynamics that govern the unobserved 
states. 

Em contains the à posteriori probabilities of 
each   observed  state to  have  been  emitted  by   an 
unobserved state,  

ei,j= P(Cdis(i,t) | Cobs(j,t)) (6) 

where ∑ ݁, = 1ேೞୀଵ 	  (7) 

Em corresponds, in a physical sense, to the link 
existing between the observed quantities and the 
dynamics of the unobserved quantities. Another 
probability matrix that needs to be calculated is the 
initial probability matrix Π, with components πi 
which represent the average revisit rate of each 
unobserved state given an infinite sequence. All 
mentioned probabilities are estimated by using the 
Baum-Weltch algorithm (L. E. Baum et al., 1970), 
which is a maximum likelihood optimization 
algorithm, that takes as input the sequences Sobs and 
Sdis and outputs the most likely matrices to have 
generated them through a hidden Markov process. 

During the recognition phase, we used the 
Viterbi algorithm, which is a well-know dynamic 
programming algorithm (Viterbi AJ, 1967), for 
inferring the most likely sequence of indexes Sdis-est 
representing the unobserved states, given the 
previously estimated parameters Tr, Em and Π of the 
HMM and a sequence of observations Sobs-new. It is 
well documented (M.S. Ryan and G.R. Nudd. 1993) 
that the Viterbi algorithm can face problems due to 
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Figure 3: The top image contains the absolute error between the NEMO-PISCES model and the result of the inverse 
method, at BATS for the validation year 2005. The bottom image contains the absolute relative error between the NEMO-
PISCES model and the result of the inverse method. 

transitions that were not observed in the training 
data set. A balance needs to be found between the 
sizes of the SOM maps that will determine the 
amount of discretization provided by the method, 
and the correctness of the allocation of indices. The 
dimensions of each map are therefore optimized 
using a validation set. Yet, even with an 
optimization there will be some situations and 
transitions that are seldomly encountered in the 
training data and result in null probabilities in the 
probability matrices EmB-W and TrB-W that we 
estimated in the first pass of the Baum-Weltch 
algorithm. 

Due to this usual lack of sufficient data in the 
concerned domains, EmB-W and TrB-W need to be 
adjusted. This is done by taking into account the 
properties of the topological maps. A major 
characteristic of the present method is to use the 
topological order in order to improve the accuracy of 
the estimated probabilities matrices. The topological 
maps allow us to modify the probabilities by 
allowing each state to communicate via a diminutive 
probability with each of its neighbouring states. 

This is done by considering the neighbourhood 
matrices NMobs and NMdis, of dimensions (Nobs,Nobs) 
and (Ndis,Ndis), where  

NMSOM(i,j)=ቊ1, if	d൫ܿௌைெ, ܿௌைெ൯ < 20, ݁ݏ݈݁  (8)

 with d(i,j) being the discrete distance of the map. 
Taking into account the neighbourhood consists in 
increasing the probability of reaching a class j from 
a class i, by an ammount proportional to the sum of 
the previously calculated probabilities of reaching 
the neighbour classes of class j on SOM. In order to 
favour the data observed during training, we add a 
weighting term, noted wc, to the initial probabilities, 
and we further multiply it by the total length of the 
training sequences used in the intitial Baum-Weltch 
algorithm’s pass, noted Ttraining, since this length is a 
measure of confidence in the correctness of the 
estimated parameters. The matrices obtained are 
then normalized. The final Em and Tr matrices we 
use, noted Emfinal and Trfinal, are computed by 
applying: ݉ܧሺ݅, ݆ሻ = ݓ ∗ ௧ܶ ,ିௐሺ݅݉ܧ∗ ݆ሻ + ∑ ൫ܰܯ௦ሺ݅, ݇ሻ ∗ே್ೞୀଵ݉ܧሺ݅, ݇ሻ൯ +1  

(9)

Which is normalized to fit the constraint (7), and ܶݎሺ݅, ݆ሻ = ݓ ∗ ௧ܶ ,ିௐሺ݅ݎܶ∗ ݆ሻ + ∑ ൫ܰܯௗ௦ሺ݅, ݇ሻ ∗ேೞୀଵ݉ܧሺ݅, ݇ሻ൯  (10) 

Which is normalized to fit the constraint (5). For this 
application wc is set to 9. 
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These modifications permit the Viterbi algorithm 
to circumvent the problems of impossible 
transitions, or emissions due to insufficient data in 
the training sequences that resulted in nul 
 

probabilities in the estimated parameters. 

4 APPLICATION FOR THE 
RESTITUTION OF THE 
VERTICAL CHLOROPHYLL- 
A CONCENTRATION 
THROUGH SEA SURFACE 
DATA 

The bio-geochemical activity of the oceans and the 
carbon cycle are two parts of a complex feedback 
system. A change in climate and an increase of the 
amount of available carbon can affect the primary 
oceanic production, and in return a change in the 
bio-geochemical activity affects, by modifying the 
albedo and carbon fixation rates, the climate and 
carbon concentration. It is therefore important to be 
able to determine the oceanic primary production. In 
recent years, many algorithms have been developed 
that infer the Chlorophyll-A concentration in ocean 
surface layers through satellite imaging (Brajard et 
al., 2008). It has also been proved that the vertical 
Chlorophyll-A distribution, is correlated with sea 
surface data (Uitz et al., 2006). Therefore, the 
determination of the vertical distribution of 
Chlorophyll-A from sea surface data is a problem 
that can be solved by the methodology we propose. 

One cannot determine the vertical distribution of 
Chlorophyll-A without first understanding the 
parameters that influence the development of 
phytoplankton. It is generally accepted that 
phytoplankton growth depends on 5 parameters: 
available radiation, available nutriments, predators 
and biology, water temperature, water turbidity. 

These parameters cannot easily be monitored 
through a direct approach. Satellite imaging, 
however, can give us proxy information, which can 
be used in an empirical approach for determining the 
vertical distribution of Chlorophyll-A. Specifically, 
in this study we used: Sea Surface Chlorophyll-A 
concentration (SCHL), Sea Surface Temperature 
(SST), Sea Surface Elevation (SSH), Shortwave 
Radiation (SR) and Wind-speed Intensity (WS). 

Since our objective is to validate the theoretical 
methodology, we used simulated data in order to test 
the validity of our approach. We therefore 
approximated the satellite values of the previous 

parameters by using the input and output values 
provided by the NEMO oceanic circulation model 
coupled to the PISCES bio-geochemical model (C. 
Moulin, 2008). In order to better simulate the noise 
and errors inherent to satellite images we added a 
white noise z ~ N(0,ê), ê=1/2 * (σschl, σsst, σssh, σws, 
σsr) to the parameters that could be gathered from 
satellite imaging. σ represents the standard 
derivation of each corresponding surface parameter, 
as computed on the training data. The application 
was set at the site of BATS. 

The unobserved states that were classified, were 
the output data vectors containing the average 
vertical Chlorophyll-A distribution at 17 depth 
levels (from 5 meters to 217) and temperature 
distribution at 9 depth levels. These vertical 
distribution profiles were 5-day averages spanning 
the period from 1991 to 2007 located in a 2°x2° 
square centred on BATS. Therefore Mdis belongs to 
R26 (17 levels of Chlorophyll-A + 9 levels of 
Temperature). Mobs belongs to R5. 

We trained Mobs and Mdis by taking into account 
all available profiles at BATS, as well as any 
adjacent points included in the model. This gave us 
9*73*17=11169 profiles for the construction of the 
maps. The optimum map sizes, Nobs and Ndis were 
determined to be 21*14=294 classes. 

For the estimation of the HHM parameters on 
the other hand, we take a total of 14 years (1991-
2004) for the training, each including seventy-three 
5-day steps. Therefore Ttraining=1022. We maintained 
3 years (2005-2007), or 219 5-day steps, to validate 
our approach. 

The results shown in Figure 1 present the 
temporary evolution of Chlorophyll-A profiles in ten 
5-day steps sequence, from 04-04-2005 to 19-05-
2005, at BATS. In green we see the Chlorophyll-A 
distribution profiles, taken from the referents rdis of 
Mdis, corresponding to the indexes of the 
reconstructed time series Sdis-rec. In blue we can see 
the vertical distribution of Chlorophyll-A according 
to the NEMO-PISCES model at the same 5-day 
steps. 

In Figure 1 we also have, preceded by the 
acronym Rec, the indexes that constitute time series 
Sdis-rec and, preceeded by Mod, the indexes we obtain 
by projecting the corresponding profiles of the 
NEMO-PISCES model on Mdis. In order to avoid 
confusion, the profiles corresponding to the indexes 
after Mod are not displayed. When the vertical 
distribution of Chlorophyll-A is know, these indexes 
would correspond to the optimum reconstruction we 
could get with Mdis. We note this optimum time 
series as Sdis-opt. It is interesting to notice that even 
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when the indexes are not equal, the classes are 
neighbours on Mdis, and the estimated profiles are 
quite similar to the observed ones. 

If we define Sdis-2005to2007 as the reconstructed 
time series of indexes of the validation years from 
2005 to 2007 and as Sdis-opt-2005to2007 the 
corresponding optimum reconstruction we observe 
that they are in agreement 84,59% of the time. This 
perforance reaches 88,58% when applied on the 
reconstruction Sdis-2005 of the year 2005 alone, as 
compared to its optimum reconstruction. This was 
probably due to the validation year 2005 having a 
small variation from the mean year, and presenting 
often-observed transitions. In the training date we 
had on average an agreement of 86,46%  

In Figures 2 and 3, we applied the inverse 
method to the full 73 5-day steps serie of the 
validation year 2005. We can observe that the 
reconstruction closely fits the results provided by the 
NEMO-PISCES model. The correlation index of the 
two images in Figure 2 is 97,30%.  

We can notice that the discretization induced by 
the SOM is apparent, yet the general form and 
intensity are correctly represented, as it becomes 
clear in Figure 3, where the error graphs tend to have 
small values. 

5 CONCLUSIONS 

In the present paper we have introduced an inversion 
method based on SOM and HMM, that is able to 
reconstruct the vertical profiles of Chlorophyll-A 
based on satellite images. One of its main 
advantages in the inversion of Chlrophyll-A is that it 
does not use Gaussian approxiamtions used in other 
methods (Morel 1988, Uitz et al., 2006), allowing 
the reconstruction of situations where the 
distribution is not conforming to a single gaussian 
curve. An additional benefit of the inversion method 
presented, is its efficiency in terms of calculations. 
The method is open ended enough to be applicable 
for the inversion of the profiles of different bio-
geophysical parameters based on satellite imaging. 

We plan to further validate this method by 
testing its robustness with satellite imaging and in-
situ data, as well as to apply it on different types of 
profiles, such as oceanic salinity or temperature 
profiles. A latter goal is to expand the method to 
take spatial constraints into consideration, and 
reconstruct 3D profiles.  
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