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Abstract: The paper discusses multi-fidelity design optimization of axisymmetric bodies in incompressible fluid flow. 
The algorithm uses a computationally cheap low-fidelity model to construct a surrogate of an accurate but 
CPU-intensive high-fidelity model. The low-fidelity model is based on the same governing equations as the 
high-fidelity one, but exploits coarser discretization and relaxed convergence criteria. The low-fidelity model is 
corrected by aligning the hull surface pressure and skin friction distributions with the corresponding 
distributions of the high-fidelity model using a multiplicative response correction. Our approach can be 
implemented in both direct and inverse design approaches. Results of two case studies for hull drag 
minimization and target pressure distribution matching show that optimized designs are obtained at 
substantially lower computational cost (over 94%) when compared to the direct high-fidelity model 
optimization. 

1 INTRODUCTION 

Autonomous underwater vehicles (AUVs) are 
becoming increasingly important in various marine 
applications, such as oceanography, pipeline 
inspection, and mine counter measures (Yamamoto, 
2007). Endurance (speed and range) is one of the 
more important attribute of AUVs (Allen et al., 
2000). Vehicle drag reduction and/or an increase in 
the propulsion system efficiency will translate to a 
longer range for a given speed (or the same distance 
in a reduced time). A careful hydrodynamic design 
of the AUVs, including the hull shape, the 
protrutions, and the propulsion system, is therefore 
essential. 

The fluid flow around an underwater vehicle with 
appendages is characterized by flow features such as 
thick boundary layers, vortices and turbulent wakes 
generated due to the hull and the appendages (Huang 
et al., 1992). These flow features can have adverse 
effects on, for example, the performance of the 
propulsion system and the control planes. Moreover, 
the drag depends highly on the vehicle shape, as 
well as on the aforementioned flow features. For that 
reason, it is important to account for these effects 
during the design of the AUVs. 

The prediction of the flow past the full three-
dimensional configuration of the AUVs requires the 
use of computational fluid dynamics (CFD). 
Numerous applications of CFD methods to the flow 
past AUVs and other underwater vehicles are in the 
literature, e.g., Yang and Löhner, 2003; Barros et al. 
2008; and Jagadeesh et al., 2009. The purpose of 
these investigations is to predict properties such as  
added masses, pressure and friction distributions, 
drag, normal force and moment coefficients, wake 
field, and stability derivatives. Comparison with 
experimental measurements show that CFD is 
reliable and can yield accurate results (Yang and 
Löhner, 2003; Barros et al. 2008; and Jagadeesh et 
al., 2009). 

Numerous studies on underwater vehicle design 
and optimization have been reported which focus on 
the clean hull only, i.e., the appendages and the 
propulsion system are neglected and the flow is 
taken to be past an axisymmetric body at a zero 
angle of attack. Examples of such numerical studies 
include Goldschmied (1966), Parsons et al. (1974), 
Myring (1976), Dalton and Zedan (1980), Lutz and 
Wagner (1998), Alvarez et al. (2009), and Solov’ev 
(2009). Allen et al. (2000), however, report an 
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experimental investigation of propulsion system 
enhancements and drag reduction of an AUV. 

The hydrodynamic design optimization of AUVs 
in full configuration, taking into account the 
appendages and the propulsion system, is still an 
open problem. One of the main challenges involved 
is the high computational cost of a CFD simulation. 
A single CFD simulation of the three-dimensional 
flow past an AUV can take a few hours up to several 
days, depending on the computational power, the 
grid density, and the flow conditions. Therefore, the 
direct optimization can be impractial, especially 
using traditional gradient-based methods. 

An important research area in the field of 
aerodynamic optimization is focused on employing 
the surrogate-based optimization (SBO) techniques 
(Queipo et al., 2005; Forrester and Keane, 2009). 
One of the major objectives is to reduce the number 
of high-fidelity model evaluations, and thereby 
making the optimization process more efficient. In 
SBO, the accurate, but computationally expensive, 
high-fidelity CFD simulations are replaced—in the 
optimization process—by a cheap surrogate model.  
SBO has been successfully applied to the 
aerodynamic design optimization of various 
aerospace components, such as airfoils (e.g., 
Leifsson and Koziel, 2010), aircraft wings (e.g., 
Alexandrov et al., 2000), and turbine blades (e.g., 
Braembussche, 2008). 

The surrogate models can be created either by 
approximating the sampled high-fidelity model data 
using regression (so-called function approximation 
surrogates) (see for example Queipo et al., 2005), or 
by correcting physics-based low-fidelity models 
which are less accurate but computationally cheap 
representations of the high-fidelity models (see, e.g., 
Bandler et al., 2004, Alexandrov et al., 2000). The 
latter models are typically more expensive to 
evaluate. However, less high-fidelity model data is 
normally needed to obtain a given accuracy level. 
SBO with physics-based low-fidelity models is 
called multi- or variable-fidelity optimization. 

In this paper, we present a hydrodynamic shape 
optimization methodology based on the SBO 
concept for AUVs. In particular, we adopt the multi-
fidelity approach with the high-fidelity model based 
on the Reynolds-Averaged Navier-Stokes (RANS) 
equations, and the low-fidelity model based on the 
same equations, but with coarse discretization and 
relaxed convergence criteria. We use a simple 
response correction to create the surrogate. Here, we 
choose to focus on the clean hull design, which is a 
convenient case study to implement and test our 
design approach. 

2 PROBLEM FORMULATION 

We constrain the hull shapes to the most common 
AUV shape, namely, the torpedo shape, i.e., a three 
section axisymmetric body with a nose, a cylindrical 
midsection, and a tail. Typically, equipment such as 
the computer, sensors, electronics, batteries, and 
payload are housed in the nose and the midsection, 
whereas the propulsion system is in the tail. Figure 1 
shows a typical torpedo shaped hull with a nose of 
length a, midsection of length b, overall length L, 
and maximum diameter of D. 

2.1 Shape Parameterization 

We parameterize the nose and the tail using Bézier 
curves (Lepine et al., 2001). The Bézier curve, of 
degree n, is defined as 
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where Pi, i = 0…n, are the control points, and t is an 
1 × m array from 0 to 1. 

We use five control points for the nose and four 
for the tail, as shown in Fig. 2. Control points 
number three and eight are free (x- and y-
coordinates), while the other points are fixed. We, 
therefore, have two design variables for the nose and 
tail curves, a total of four design variables, aside 
from the hull dimensions a, b, L, and D. 

Figure 1: A sketch of a typical axisymmetric torpedo 
shaped hull form. 

2.2 Design Approaches 

The goal of hydrodynamic shape optimization is to 
find an optimal—with respect to given objectives—
hull shape, so that given design constraints are 
satisfied. There are two main approaches two this 
problem. One is to adjust the hull geometrical shape 
to maximize performance. This is called direct 
design, and the most common design goal, when 
considering the clean hull, is drag minimization. An 
alternative approach is to define a priori a specific 
flow behavior that is to be attained. This is called 
inverse design, and, typically in hydrodynamic 
design, a target velocity distribution is prescribed 

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications 

466



 
(a) 

 
(b) 

Figure 2: Bézier curves are used to represent the shapes of 
(a) the nose (5 control points); and (b) the tail (4 control 
points). Control points 3 and 8 are free, while the other 
points are essentially fixed (depend on L, a, b, and D). 

(Dalton and Zedan, 1980). Instead, a target pressure 
distribution can be prescribed a priori, which is more 
common in aerodynamic design (Dulikravich, 1991). 
Typically, inverse design minimizes the norm of the 
difference between the target and design 
distributions. The main difficulty in this approach is 
to define the target distribution. In this paper we 
consider both the direct and the inverse design 
approaches. 

3 COMPUTATIONAL MODELS 

3.1 High-Fidelity CFD Model 

The flow past the hull is considered to be steady and 
incompressible. The Reynolds-Averaged Navier-
Stokes (RANS) equations are assumed as the 
governing flow equations with the two-equation k-ε 
turbulence model with standard wall functions 
(Tannehill et al., 1997). 

The solution domain is axisymmetric around the 
hull centreline axis and extends two body lengths in 
front of the hull, five body lengths behind it, and two 
body lengths above it (Fig. 3). At the inlet, there is a 
velocity boundary condition where the velocity is set 
parallel to the hull axis, i.e., zero angle of attack. 
Pressure is prescribed at the outlet (zero gauge 
pressure). 

Figure 3: The computational solution domain and the 
boundary conditions. 

The CFD computer code FLUENT (2006) is used 
for numerical simulations of the fluid flow. 
Asymptotic convergence to a steady state solution is 
obtained for each case. The iterative convergence of 
each solution is examined by monitoring the overall 
residual, which is the sum (over all the cells in the 
computational domain) of the L2 norm of all the 
governing equations solved in each cell. In addition 
to this, the drag force (defined in Section 3.3) is 
monitored for convergence. A solution is considered 
converged if a residual value of 10-6 has been 
reached for all equations, or the number of iterations 
reaches 1000. 

 
(a) 

 
(b) 

Figure 4: Grid convergence study at a speed of 2 m/s and 
Reynolds number of 2 million; (a) the change in the drag 
coefficient CD (defined in Section 3.3) with the number of 
elements; (b) the variation in the simulation time with 
number of elements. 
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The computational grid is structured with 
quadrilateral elements. The elements are clustered 
around the body and grow in size with distance from 
the body. The grids are generated using ICEM CFD 
(2006). A grid convergence study was performed to 
determine the necessary grid density (Fig. 4). A 
torpedo shaped body with L/D = 5 was used in the 
study. The inlet speed was 2 m/s and the Reynolds 
number was 2 million. Clearly, the drag coefficient 
value has converged at the finest grids (number 1 
and 2) (Fig. 4(a)). There is, however, a large 
difference in the simulation time between the two 
finest grids (Fig. 4(b)). Therefore, we selected grid 
number 2, with 42,763 elements, to use for the high-
fidelity CFD model in the optimization process. 

The velocity contours, pressure and skin friction 
distributions are shown in Figs. 5 and 6 for 
illustration purposes. 

 
Figure 5: Velocity contours of the flow past an 
axisymmetric torpedo shape hull at 2 m/s and Reynolds 
number of 2 million. Grid 5 of Fig. 4 was used in the 
simulation. 

 
(a) 

 
(b) 

Figure 6: Flow distributions (from the high-fidelity and 
low-fidelity models (defined in Section 3.2)) on the hull 
surface of the flow shown in Fig. 5; (a) the pressure 
distribution; and (b) the skin friction distribution. 

3.2 Low-Fidelity CFD Model 

The low-fidelity model is based on the same CFD 
model as the high-fidelity one. However, as the low-
fidelity model will be used in place of the high-
fidelity model in the optimization process, it needs 
to be faster than the high-fidelity one. The 
simulation time is substantially reduced by making 
the grid coarser (Fig. 4(b)). Grid number 6 needs the 
lowest simulation time and is the least accurate. A 
closer look at that grid reveals that it is too coarse 
(the responses were too “grainy”). Consequently, we 
selected grid number 5, with 504 elements, to be 
used for the low-fidelity model. 

The simulation time can be reduced further by 
reducing the number of iterations. Figure 7 shows 
how the drag coefficient reaches a converged value 
after approximately 50 iterations. We therefore relax 
the convergence criteria for the low-fidelity model 
by setting it to 50 iterations. The ratio of simulation 
time of the high-fidelity model to the low-fidelity 
model is around 15. 

 
Figure 7: Variation of the drag coefficient with number of 
iterations for the case shown in Fig. 5. 

3.3 Hull Drag Calculation 

For a body in incompressible flow, the total drag is 
due to pressure and friction forces, which are 
calculated by integrating the pressure (Cp) and skin 
friction (Cf) distributions over the hull surface. The 
pressure coefficient is defined as Cp ≡ (p-p∞)/q∞, 
where p is the local static pressure, p∞ is free-stream 
static pressure, and q∞ = (1/2ρ∞V∞

2) is the dynamic 
pressure, with ρ∞ as the free-stream density, and the 
V∞ free-stream velocity. The skin friction coefficient 
is defined as Cf ≡ τ/q∞, where τ is the shear stress. 
Typical Cp and Cf distributions are shown in Fig. 6. 

The total drag coefficient is defined as 
CD ≡ d/(q∞S), where d is the total drag force, and S is 
the reference area. Here, we use the frontal-area of 
the hull as the reference area. The drag coefficient is 
the sum of the pressure and friction drag, or  
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DfDpD CCC += ,                             (2) 
 

where CDp is the pressure drag coefficient and CDf is 
the skin friction drag coefficient. The CFD analysis 
yields static pressure and wall shear stress values 
(which are non-dimensionalized to give Cp and Cf) at 
the element nodes (Fig. 8). The pressure acts normal 
to the surface and the shear stress parallel to it. The 
pressure drag coefficient is calculated by integrating 
from the leading-edge of the nose to the trailing-
edge of the tail 

 

∫=
L

pDp dxxrxxCC
0

)()(sin)(2 θπ ,            (3) 
 

where Cp(x) is assumed to vary linear between the 
element nodes, θ(x) is angle of each element relative 
to the x-axis, and L is the length of the hull. 
Similarly, the skin friction drag coefficient is 
calculated as 

∫=
L

fDf dxxrxxCC
0

)()(cos)(2 θπ .            (4) 

4 OPTIMIZATION PROCEDURE 

4.1 Design Problem Formulation 

Our design task is formulated as a nonlinear 
minimization problem of the form 

* arg min ( )f
≤ ≤

=
l x u

x x
                        

(5) 

where f(x) is the objective function, x is the design 
variable vector, whereas l and u are the lower and 
upper bounds, respectively. Here, no nonlinear 
constraints are present, the design variables are control 
parameters that parameterize the hull shape (cf. Section 
2.1). The objective function depends on the particular 
design scenario. For direct design (see Section 2.2), the 
objective function is just a drag coefficient as defined 
in Section 3.3. For inverse design (see Section 2.2), the 
objective is defined as a norm of the difference 
between the current and the target pressure 
distributions.  

4.2 Surrogate-based Optimization 

The high-fidelity model evaluation is CPU-intensive 
so that solving the problem (5) directly, by plugging 
in the high-fidelity model into the optimization loop, 
may be impractical. Instead, we would like to 
exploit surrogate-based optimization (SBO) 
(Bandler et al., 2004; Queipo et al., 2005) that shifts 
the optimization burden into the computationally 

cheap surrogate, and, thus, allows us to solve (5) at a 
low computational cost.  

 
Figure 8: Edge of an element on the hull surface at radius 
r. The element length is Δx and it makes an angle θ to the 
x-axis. Pressure p acts normal to the hull surface. Shear 
stress τ acts parallel to the surface. 

The generic SBO optimization scheme is the 
following 

( 1) ( )arg min ( )i is+ =
x

x x                      (6) 

where x(i), i = 0, 1, ..., is a sequence of approximate 
solutions to (5), whereas s(i) is the surrogate model at 
iteration i. If the surrogate model is sufficiently good 
representation of the high-fidelity model f, the 
number of iterations required to find a satisfactory 
design is small (Koziel et al., 2006). 

The surrogate model can be constructed either 
from sampled high-fidelity model data using an 
appropriate approximation technique (Simpson et 
al., 2001), or by utilizing a physically-based low-
fidelity model (Bandler et al., 2004). Here, we 
exploit the latter approach as we have a reliable low-
fidelity model at our disposal (see Section 3.2). 
Also, good physically-based surrogates can be 
constructed using a fraction of high-fidelity model 
data necessary to build accurate approximation 
models (Koziel and Bandler, 2010a). 

There are several methods of constructing the 
surrogate from a physically-based low-fidelity 
model. They include, among others, space mapping 
(SM) (Bandler et al., 2004), various response 
correction techniques (Søndergaard, 2003), manifold 
mapping (Echeverría and Hemker, 2008), and shape-
preserving response prediction (Koziel, 2010b). In 
this paper, the surrogate model is created using a 
simple multiplicative response correction, which 
turns out to be sufficient for our purposes. An 
advantage of such an approach is that the surrogate 
is constructed using a single high-fidelity model 
evaluation, and it is very easy to implement. 

4.3 Surrogate Model Construction 

Recall that Cp.f(x) and Cf.f(x) denote the pressure and 
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skin friction distributions of the high-fidelity model. 
The respective distributions of the low-fidelity model 
are denoted as Cp.c(x) and Cf.c(x). We will use the 
notation Cp.f(x) = [Cp.f.1(x) Cp.f.2(x) ... Cp.f.m(x)]T, where 
Cp.f.j(x) is the jth component of Cp.f(x), with the 
components corresponding to different coordinates 
along the x/L axis. 

At iteration i, the surrogate model Cp.s
(i) of the 

pressure distribution Cp.f is constructed using the 
multiplicative response correction of the form: 
 

( ) ( ) ( ) ( )
. . .1 . .2 . .( ) [ ( ) ( ) ... ( )]i i i i T

p s p s p s p s mC C C C=x x x x     (7) 

 
( ) ( )

. . . . .( ) ( )i i
p s j p j p c jC A C= ⋅x x

      
              (8) 

 

j = 1, 2, ..., m, where 
( ) ( )

. .( )
. ( ) ( )

. .

( )
( )

i i
p f ji

p j i i
p c j

C
A

C
=

x
x             

              (9) 

Similar definition holds for the skin friction 
distribution model Cf.s

(i). Note that the formulation 
(7)-(9) ensures zero-order consistency (Alexandrov 
and Lewis, 2001) between the surrogate and the 
high-fidelity model, i.e., Cp.f(x(i)) = Cp.s

(i)(x(i)). 
Rigorously speaking, this is not sufficient to ensure the 
convergence of the surrogate-based scheme (6) to the 
optimal solution of (5). However, because of being 
constructed from the physically-based low-fidelity 
model, the surrogate (7)-(9) exhibits quite good 
generalization capability. As demonstrated in Section 
5, this is sufficient for good performance of the 
surrogate-based design process. 

One of the issues of model (7)-(9) is that (9) is not 
defined whenever Cp.c.j(x(i)) equals zero, and that the 
values of Ap.j

(i) are very large when Cp.c.j(x(i)) is close to 
zero. This may be a source of substantial distortion of 
the surrogate model response as illustrated in Fig. 9. In 
order to alleviate this problem, the original surrogate 
model response is “smoothened” in the vicinity of the 
regions where Ap.j

(i) is large (which indicates the 
problems mentioned above). Let jmax be such that 
|Ap.jmax

(i)| >> 1 assumes (locally) the largest value. Let 
Δj be the user-defined index range (typically, Δj = 
0.01⋅m). The original values of Ap.j

(i) are replaced, for j 
= jmax–Δj, ..., jmax–1, jmax, jmax+1, ..., jmax+Δj, by the 
interpolated values: 

max max

max max

( )
. max max

max max

( ) ( )
. 2 . 1

( ) ( )
. 2 . 1

({[ 2 ... 1]

[ 1... 2 ]},

{[ ... ]

[ ... ]}, )
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p j

i i
p j j p j j

i i
p j j p j j

A I j j j j

j j j j

A A

A A j
− Δ −Δ −

− Δ −Δ −

= − Δ − Δ − ∪

∪ + Δ − + Δ

∪

∪

        (10) 

 

 
Figure 9: Surrogate model Cp.s

(i) (7)-(9) at x(i) (- - -), and at 
some other design x (▬). By definition, Cp.s

(i)(x(i)) = 
Cp.f(x(i)). Note that Cp.s

(i)(x) has large spikes around the 
points where Cp.s

(i)(x(i)) is close to zero. 

 

 
(a)  

 

 
(b) 

Figure 10: (a) Smoothened surrogate model (7)-(10) 
Cp.s

(i)(x(i)) = Cp.f(x(i)) (—), Cp.s
(i)(x) (- - -), Cp.c(x) (⋅ ⋅ ⋅), and 

Cp.s(x) (▬); (b) Smoothened responses Cf.s
(i)(x(i)) = Cf.f(x(i)) 

(—), Cf.s
(i)(x) (- - -), Cf.c(x) (⋅ ⋅ ⋅), and Cf.s(x) (▬). 

where I(X,Y,Z) is a function that interpolates the 
function values Y defined over the domain X onto 
the set Z. Here, we use cubic splines. In other words, 
the values of Ap.j

(i) in the neighbourhood of jmax are 
“restored” using the values of Ap.j

(i) from the 
surrounding of j = jmax–Δj, ..., jmax+Δj. 
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Figure 10(a) shows the “smoothened” surrogate 
model response corresponding to that of Fig. 9. 
Figure 10 shows the surrogate and the high-fidelity 
model responses, both Cp and Cf, at x(i) and at some 
other design x. 

5 NUMERICAL EXAMPLES 

5.1 General Setup 

The proposed approach is applied to the 
hydrodynamic shape optimization of torpedo-type 
hulls, involving both the direct and inverse design 
approaches. Designs are obtained using the 
algorithm proposed in Section 4, where the surrogate 
model optimization is performed using the pattern-
search algorithm (Koziel, 2010c). For comparison 
purposes, designs obtained through direct 
optimization of the high-fidelity model using the 
pattern-search algorithm (Koziel, 2010c) are also 
presented. 

For both the direct and the inverse design 
approaches, the design variable vector is x = [a xn yn 
xt yt]T, where a is the nose length, (xn,yn) and (xt,yt) 
are the coordinates of the free control points on the 
nose and tail Bézier curves, respectively, i.e., points 
3 and 8 in Fig. 2. See Section 2.1 for a description of 
the shape parameterization. The lower and upper 
bounds of design variables are l = [0 0 0 80 0]T cm 
and u = [30 30 10 100 10]T cm, respectively. Other 
geometrical shape parameters are, for both cases, L 
= 100 cm, d = 20 cm, and b = 50 cm. The flow speed 
is 2 m/s and the Reynolds number is 2 million. 

5.2 Direct Design 

Numerical results for a direct design case are 
presented in Table 1. The hull drag coefficient is 
minimized by finding the appropriate shape and 
length of the nose and tail sections for a given hull 
length, diameter, and cylindrical section length. In 
this case, the drag coefficient is reduced by 6.3%. 
This drag reduction comes from a reduction in skin 
friction and a lower pressure peak where the nose 
and tail connect with the midsection (Figs. 11(a) and 
11(b)). These changes are due to a more streamlined 
nose (longer by 6 cm) and a fuller tail, when 
compared to the initial design (Fig. 11(c)). 
 

Table 1: Numerical results for direct drag minimization. 
The flow speed is 2 m/s and the Reynolds number is 2 × 
106. All the numerical values are from the high-fidelity 
model. Nc and Nf  are the number of low- and high-fidelity 
model evaluations, respectively. 

Variable Initial Pattern-search This work
a 15.0000 21.8611 20.9945 
xn 5.0000 5.6758 5.6676 
yn 5.0000 2.7022 2.7531 
xt 90.0000 98.000 96.6701 
yt 5.0000 0.8214 3.0290 

CD 0.0915 0.0853 0.0857 
Nc N/A 0 300 
Nf N/A 282 3 

Total cost N/A 282 13 

 
(a) 

 
(b) 

 
(c) 

Figure 11: Direct hull drag minimization results showing 
initial and optimized (a) pressure distributions; (b) skin 
friction distributions; and (c) hull shapes. 

The proposed method requires 3 high-fidelity and 
300 low-fidelity model evaluations. The ratio of the 
high-fidelity model evaluation time to the corrected 
low-fidelity model evaluation time varies between 
11 to 45, depending on whether the flow solver 
converges to the residual limit of 10-6, or the 
maximum iteration limit of 1000. We express the 
total optimization cost of the proposed method in the 
equivalent number of high-fidelity model 
evaluations. For the sake of simplicity, we use a 
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fixed value of 30 as the high- to low-fidelity model 
evaluation time ratio. The results show that the total 
optimization cost of the proposed method is around 
13 equivalent high-fidelity model evaluations. The 
direct optimization method, using the pattern-search 
algorithm (Koziel, 2010c), yields very similar 
design, but at the substantially higher computational 
cost of 282 high-fidelity model evaluations. 

5.3 Inverse Design 

Inverse design of the hull shape was performed by 
prescribing a target pressure distribution. The 
objective is to minimize the norm of the difference 
between the pressure distribution of the hull design 
and the target pressure distribution. The design 
variables and constraints are shown in Section 5.1. 

The numerical results are of the inverse design 
are presented in Table 2. The proposed algorithm 
matched the target pressure distribution (the norm of 
the distributions is less than 2 × 10-5) using less than 
22 equivalent high-fidelity model evaluations. The 
direct optimization of the high-fidelity model using 
the pattern-search algorithm required 401 function 
calls to yield a comparable matching with the target. 

 
Table 2: Numerical results for inverse design optimization 
with a target pressure distribution. Nc and Nf are the 
number of low- and high-fidelity model evaluations, 
respectively. F is the norm of the difference between the 
target and the design shapes. 
 

Variable Initial Pattern-search This work 
A 18.000 24.7407 24.7667 
xn 7.0000 7.3704 6.8333 
yn 8.0000 4.7407 4.5667 
xt 85.0000 88.1111 88.6333 
yt 7.0000 5.5926 5.3000 
F 0.0204 1.64E-5 1.93E-5 

CD 0.0925 0.0894 0.0893 
Nc N/A 0 500 
Nf N/A 401 5 

Total cost N/A 401 < 22 

6 CONCLUSIONS 

Computationally efficient simulation-driven multi-
fidelity design optimization algorithm for 
axisymmetric hulls in incompressible fluid flow is 
presented. Our algorithm exploits a low-fidelity 
model, obtained through a coarse-discretization CFD 
simulation, and a response correction method, to 
construct a cheap  and reliable surrogate of  the fluid 

 

 
(a) 

 
(b) 

Figure 12: Results of the inverse design optimization with 
a prescribed target pressure distribution; (a) the target, 
initial, and optimized pressure distributions; (b) initial and 
optimized hull shapes. 

flow. The algorithm can be applied to both direct 
and inverse design approaches. We demonstrate that 
the optimized designs can be obtained at a low 
computational cost corresponding to a few high-
fidelity CFD simulations. 
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