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Abstract: The paper presents an improved optimization algorithm for the inverse design of transonic airfoils. Our 
approach replaces the direct optimization of an accurate, but computationally expensive, high-fidelity airfoil 
model by an iterative re-optimization of two different surrogate models. Initially, for a few design iterations, 
a corrected physics-based low-fidelity model is employed, which is subsequently replaced by a response 
surface approximation model. The low-fidelity model is based on the same governing fluid flow equations 
as the high-fidelity one, but uses coarser discretization and relaxed convergence criteria. A shape-preserving 
response prediction technique is utilized to align the pressure distribution of the low-fidelity model with that 
of the high-fidelity one. This alignment process is particularly suitable since the inverse design aims at 
matching a given target pressure distribution. Our algorithm is applied to constrained inverse airfoil design 
in inviscid transonic flow. A comparison with the basic version of the optimization algorithm, exploiting 
only a physics-based low-fidelity model, is also carried out. While the performance of both versions is 
similar with respect to their ability to match the target pressure distribution, the improved algorithm offers 
substantial design cost savings, from 25 to 72 percent, depending on the test case. 

1 INTRODUCTION 

Aerodynamic shape optimization (ASO) involves 
the design of aerodynamic components such as 
aircraft wings and turbine blades (Leoviriyakit et al., 
2003); (Braembussche, 2008). The state-of-the-art 
ASO design methods employ high-fidelity 
computational fluid dynamic (CFD) simulations as a 
part of efficient numerical optimization algorithms 
(Queipo et al., 2005); (Forrester and Keane, 2009); 
(Alexandrov et al., 2000); (Robinson et al., 2008). 
The accurate CFD simulations typically lead to more 
realistic and attainable designs. The downside is that 
the high-fidelity CFD analysis is computationally 
expensive and design optimization normally requires 
a large number of simulations, which leads to a time 
consuming design process. 

The introduction of surrogate-based optimization 
(SBO) methods (Queipo et al., 2005); (Forrester and 
Keane, 2009) to ASO permitted reduction of the 
overall computational cost, as well as handling noisy 
objective functions. Examples of such work can be 
found in the literature (see e.g., Alexandrov et al., 

2000); Robinson et al., 2008); (Booker et al., 1999); 
(Barrett et al., 2006); (Leifsson and Koziel, 2010); 
(Lane and Marshall, 2010). 

A computationally efficient design optimization 
methodology for the inverse ASO of transonic 
airfoils was recently introduced (Leifsson and 
Koziel, 2011). The approach replaces the direct 
optimization of an accurate, but computationally 
expensive, high-fidelity airfoil model by an iterative 
re-optimization of a corrected low-fidelity model. 
The low-fidelity model is based on the same 
governing fluid flow equations as the high-fidelity 
one, but uses coarser discretization and relaxed 
convergence criteria. The shape-preserving response 
prediction technique (Koziel, 2010a) is utilized to 
align the pressure distribution of the low-fidelity 
model with that of the high-fidelity model. This 
alignment process is particularly suitable since a 
target pressure distribution is specified in the inverse 
design problem. 

In this work, we substantially enhance the 
optimization methodology introduced in Leifsson 
and Koziel (2011). More specifically, the low-
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fidelity CFD model is replaced - after a few design 
iterations - by its (local) response surface 
approximation, which allows us to reduce the overall 
design cost and obtain faster convergence when 
compared to the original version of the algorithm. 
Our approach is demonstrated using several 
transonic airfoil design cases. 

2 PROBLEM FORMULATION 

The airfoil shape optimization can be formulated as 
a constrained nonlinear minimization problem. For a 
given set of operating conditions, solve 

 

;;,,1,0)(

;,,1 ,0)(s.t.)( min

uxlx

xx
x





Nkh

Mjgf

k

j




 (1)

 

where f(x) is the objective function, x is the design 
variable vector, gj(x) are the inequality constraints, 
M is the number of the inequality constraints, hk(x) 
are the equality constraints, N is the number of the 
equality constraints, and l and u are the design 
variables lower and upper bounds, respectively. 

There are two main approaches to airfoil design. 
One is to directly adjust the geometry parameters of 
the airfoil section in order to maximize its 
performance. This is called direct design, and the 
most common formulations include lift 
maximization, drag minimization, and lift-to-drag 
ratio maximization (Leifsson and Kozel, 2010). 
Another way is to define a priori a specific flow 
behavior that is to be attained. The airfoil shape is 
then designed to achieve this flow behavior. This is 
called inverse design (Dulikravich, 1991). 

In inverse design, the role of the designer is to 
specify a particular flow feature, which typically is a 
target pressure distribution, Cp.t, on the surface of the 
airfoil. The task is then to find the airfoil shape that 
can give the target pressure distribution at the 
desired flow condition. This can be done by 
minimizing the difference between the pressure 
distribution of the airfoil Cp and the target 
distribution Cp.t.  

The objective function can be formulated as the L2 
norm of the difference between the airfoil pressure 
distribution and the target pressure distribution, or f(x) 
= ½ [Cp(x) - Cp.t]

2 ds. A minimum thickness is 
normally specified so that the optimizer does not 
reduce the airfoil to a thin plate. The thickness 
constraint can be written as g(x) = Amin – A(x) ≤ 0, 
where A(x) is the cross-sectional area of the airfoil 
and Amin is the minimum cross-sectional area. 

In this paper, we use the NACA airfoil shapes. In 

particular, we use the NACA four-digit airfoil 
parameterization method, where the airfoil shape is 
defined by three parameters m (the maximum 
ordinate of the mean camberline as a fraction of 
chord), p (the chordwise position of the maximum 
ordinate) and t/c (the thickness-to-chord ratio). The 
airfoils are denoted by NACA mpxx, where xx 
represents the value of t/c. The shapes are 
constructed using two polynomials, one for the 
thickness distribution and the other for the mean 
camber line. The full details of the NACA four-digit 
parameterization method are given in Abbott and 
Doenhoff (1959). Three example NACA four-digit 
airfoils are shown in Fig. 1. 

3 CFD MODELLING 

A single CFD simulation is, in general, composed of 
four steps; the geometry generation (described here 
in Section 2), meshing of the solution domain, 
numerical solution of the governing fluid flow 
equations, and post-processing of the flow results, 
which involves, in the case of numerical 
optimization, calculating the objectives and 
constraints. In this section we present the high- and 
low-fidelity CFD models. 

3.1 High-fidelity CFD Model 

The flow is assumed to be steady, inviscid, and 
adiabatic with no body forces. The Euler equations 
are taken to be the governing fluid flow equations 
(Tannehill et al., 1997). The computational meshes 
used in this study are all of structured curvilinear 
body-fitted C-topology. 
 

 

Figure 1: Shown are three different NACA four-digit 
airfoil sections; NACA 0012 (m = 0, p = 0, t/c = 0.12) 
solid line (-), NACA 2412 (m = 0.02, p = 0.4, t/c = 0.12) 
dashed line (--), NACA 4608 (m = 0.04, p = 0.6, t/c = 
0.08) dash-dot line (--). 

The solution domain boundaries are placed at 24 
chord lengths in front of the airfoil, 50 chord lengths 
behind it, and 25 chord lengths above and below it. 
The meshes are generated with the computer code 
ICEM CFD (2006). A fine mesh was developed with 
a total of 320 points in the vertical direction, 180 
points on the airfoil surface and 160 points in the 
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wake behind the airfoil, with a total of 106 thousand 
cells. An example computational mesh is shown in 
Fig. 2. 

The numerical fluid flow simulations are 
performed using the computer code FLUENT 
(2006). Asymptotic convergence to a steady state 
solution is obtained for each case. The iterative 
convergence of each solution is examined by 
monitoring the overall residual, which is the sum 
(over all the cells in the computational domain) of 
the L2 norm of all the governing equations solved in 
each cell. In addition to this, the lift and drag forces 
(defined in Section 3.3) are monitored for 
convergence. The criteria used in this work for the 
high-fidelity model is a maximum residual of 10-6, 
or a maximum number of iterations of 1000. 
 

(a)  
 

(b)  

Figure 2: (a) An example computational mesh with a 
structured C-topology for a NACA 0012 airfoil; (b) a view 
close to the airfoil surface. 

3.2 Low-fidelity CFD Model 

The low-fidelity CFD model is constructed using the 
high-fidelity model, but with a coarser 
computational mesh and relaxed convergence 
criteria. The parameters of the mesh and the number 
of solver iterations were obtained by performing a 
parametric study using the NACA 2412 airfoil 
section at M = 0.75 and α = 1 deg. 

Initially the fine mesh is solved to full 
convergence. The solver needed 216 iterations to 

reach a converged solution based on the residuals of 
the governing equations. However, the lift and drag 
coefficient values reached a converged value after 
approximately 50 iterations. Therefore, the number 
of iterations limit was set to 100 hundred iterations 
in the subsequent steps. 

The mesh points were reduced in two steps. First, 
the number of mesh points in the z-direction and the 
number of mesh points behind the airfoil were 
reduced by (approximately) half. This procedure was 
repeated and in each step the pressure distribution 
was plotted. It was observed that the shock location 
moved rearward. After five subsequent steps, the 
pressure distribution became highly distorted near 
the leading-edge. The previous mesh was then 
retained and the number of mesh points on the airfoil 
surface was reduced incrementally. Again, the 
pressure distribution was plotted for each step. It 
was observed that the shock strength reduced in each 
step as the mesh got coarser and coarser on the 
airfoil surface. After three steps the procedure was 
halted. The resulting mesh has 48 points in the z-
direction, 115 points on the airfoil surface, and 20 
points in the wake behind the airfoil, with a total of 
8295 thousand cells. The overall evaluation time is 
reduced to about 34 s, which is approximately 13.5 
times faster than the high-fidelity model using the 
fine mesh and traditional convergence criteria. 

The overall evaluation time of the high-fidelity 
model in this parametric study is 471 s with a total 
of 216 iterations. In many cases the solver does not 
fully converge with respect to the residuals and goes 
on up to 1000 iterations. Then the overall evaluation 
time goes up to 2500 s, and the low-fidelity model is 
approximately 73 times faster. For the sake of 
simplicity, we will use a fixed value of 50 in the 
numerical computations presented later in the paper.  

3.3 Aerodynamic Forces 

The non-dimensional force coefficients parallel to 
the x- and z-axes, Cx and Cz, respectively, are 
calculated by integrating the pressure distribution Cp 
over the surface of the airfoil as (Tannehill et al., 
1997) 
 

 dsCC px sin ,  dsCC pz cos  (2)
 

where ds is the surface panel element of length and  
is the angle the panel makes relative to the x-axis. 
The lift coefficient Cl and the wave drag coefficient 
Cdw are calculated as 
 

 cossin zxl CCC   , 
 sincos zxdw CCC  . 

(3)
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4 SURROGATE MODELING 

In order to use the low-fidelity model as a reliable 
prediction tool in the optimization process, it has to 
be corrected to become a reliable representation of 
the high-fidelity model. The corrected low-fidelity 
model is called a surrogate. The surrogate model can 
replace the high-fidelity one in the optimization 
process and thus reduce the overall optimization 
cost. 

Here, we adopt a shape-preserving response 
prediction (SPRP) methodology introduced in 
(Koziel, 2010a) in the context of microwave 
engineering, and recently applied for direct airfoil 
design (Leifsson and Koziel, 2010). SPRP is easy to 
implement, unlike space mapping it does not need 
any auxiliary transformations or extractable 
parameters (Koziel et al., 2008). Also, it does not 
require high-fidelity model derivative information. 

By formulation, SPRP works directly with the 
model outputs that can be described by certain 
number of design-variable-dependent characteristic 
features (Koziel, 2010a). In the case of a pressure 
distribution, these features may include the location 
and strength of the shock, the pressure at the 
leading- and trailing-edges, and many others. In 
direct airfoil design, the pressure distribution is an 
intermediate simulation result, with the figures of 
interest, such as lift or wave drag, being derived 
from it. In inverse design, the pressure distribution is 
the main object of interest, which makes SPRP well 
suited for this kind of problem. 

We will denote the vector of design variables as 
x. The pressure distribution for the high- and low-
fidelity models will be denoted as Cp.f and Cp.c, 
respectively. The surrogate model is constructed 
assuming that the change of Cp.f due to the 
adjustment of the design variables x can be predicted 
using the actual changes of Cp.c. The change of Cp.c 
is described by the translation vectors corresponding 
to certain (finite) number of its characteristic points. 
These translation vectors are subsequently used to 
predict the change of Cp.f, whereas the actual Cp.f at 
the current design, Cp.f(x

(i)), is treated as a reference. 
Figure 3(a) shows the pressure distribution Cp.c 

of the low-fidelity model at x(i) = [0.02 0.4 0.12]T 
(NACA 2412 airfoil) for M = 0.7 and α = 1 deg, as 
well as Cp.c at x = [0.025 0.56 0.122]T; x(i) will 
denote a current design (at the ith iteration of the 
optimization algorithm; the initial design will be 
denoted as x(0) accordingly). Circles denote 
characteristic points of Cp.c(x

(i)), here, representing, 
among others, x/c equal to 0 and 1 (leading and 
trailing airfoil edges, respectively), the maxima of 

Cp.c for the lower and upper airfoil surfaces, as well 
as the local minimum of Cp.c for the upper surface. 
The last two points are useful to locate the pressure 
shock. Squares denote corresponding characteristic 
points for Cp.c(x), while small line segments 
represent the translation vectors that determine the 
“shift” of the characteristic points of Cp.c when 
changing the design variables from x(i) to x. 

In order to obtain a reliable prediction, the 
number of characteristic points has to be larger than 
illustrated in Fig. 3(a). Additional points are inserted 
in between initial points either uniformly with 
respect to x/c (for those parts of the pressure 
distribution that are almost flat) or based on the 
relative pressure value with respect to corresponding 
initial points (for those parts of the pressure 
distribution that are “steep”). Figure 3(b) shows the 
full set of characteristic points (initial points are 
distinguished using larger markers). 

The pressure distribution of the high-fidelity 
model at the given design, here, x, can be predicted 
using the translation vectors applied to the 
corresponding characteristic points of the pressure 
distribution of the high-fidelity model at x(i), 
Cp.f(x

(i)). This is illustrated in Figure 4(a) where only 
initial characteristic points and translation vectors 
are shown for clarity. Figure 4(b) shows the 
predicted pressure distribution of the high-fidelity 
model at x as well as the actual Cp.f(x). The 
agreement between both curves is very good. 

Rigorous formulation of the SPRP technique can 
be found in Koziel (2010a). We omit the details here 
for the sake of brevity. It should be mentioned that 
the SPRP model assumes that the high- and low-
fidelity model pressure distributions have 
corresponding sets of characteristic points. This is 
usually the case for the practical ranges of design 
variables because the overall shape of the 
distributions is similar for both models. In case of a 
lack of correspondence, original definitions of 
characteristic points are replaced by their closest 
counterparts. The typical example would be non-
existence of the local minimum of the pressure 
distribution for the upper surface for the high- and/or 
low-fidelity model at certain designs. In this case, 
the original point (local minimum) is replaced by the 
points characterized by the largest curvature. 

5 OPTIMIZATION PROCEDURE 

5.1 Objective Function 

In inverse  design, the primary objective is the align- 
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ment between the pressure distribution of the airfoil 
being designed and the prescribed target. The 
alignment can be measured using a norm. 
 

(a)  

(b)  

Figure 3: (a) Example low-fidelity model pressure 
distribution at the design x(i), Cp.c(x

(i)) (solid line), the low-
fidelity model pressure distribution at other design x, 
Cp.c(x) (dotted line), characteristic points of Cp.c(x

(i)) 
(circles) and Cp.c(x) (squares), and the translation vectors 
(short lines); (b) low-fidelity model pressure distributions, 
initial characteristic points (large markers) and translation 
vectors from Fig. 3(a) as well as additional points (small 
markers) inserted in between the initial points either 
uniformly with respect to x/c (for those parts of the 
pressure distribution that are almost flat) or based on the 
relative pressure value with respect to corresponding 
initial points (for those parts of the pressure distribution 
that are “steep”). 

Due to unavoidable misalignment between the 
pressure distributions of the high-fidelity model and 
its SPRP surrogate, it is not convenient to use some 
of the constraints (e.g., a maximum allowable drag) 
directly. This is because the design that is feasible 
for the surrogate model, may not be feasible for the 
high-fidelity model. In particular, the design 
obtained as a result of optimizing the surrogate 
model Cp.s

(i), i.e., x(i+1), will be feasible for Cp.s
(i). 

However, if x(i+1) is not feasible for the high-fidelity 
model, it will not be feasible for Cp.s

(i+1) because we 
have Cp.s

(i+1)(x(i+1)) = Cp.f(x
(i+1)) by the definition of 

the surrogate model. In order to alleviate this 
problem, we shall use the penalty function approach 
to handle the drag constraint. Of course, this does 
not apply to constraints that depend exclusively on 
the airfoil geometry, such as the minimum airfoil 
cross-sectional area. 

(a)  
 

(b)  

Figure 4: (a) High-fidelity model pressure distribution at 
x(i), Cp.f(x

(i)) (solid line) and the predicted high-fidelity 
model Cp at x (dotted line) obtained using SPRP based on 
characteristic points of Fig. 3(b); characteristic points of 
Cp.f(x

(i)) (circles) and the translation vectors (short lines) 
were used to find the characteristic points (squares) of the 
predicted high-fidelity model pressure distribution (only 
initial points are shown for clarity); low-fidelity model 
distributions Cp.c(x

(i)) and Cp.c(x) are plotted using thin 
solid and dotted line, respectively; (b) high-fidelity model 
pressure distribution at x, Cp.f(x) (solid line), and the 
predicted high-fidelity model pressure distribution at x 
obtained using SPRP (dotted line). 

In this work, all the constraints are handled 
through penalty functions so that the objective 
function is defined as follows 
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with F = ||Cp(x) – Cp.t||, where Cp.t is the target 
pressure distribution, Cdw.s = 0 if Cdw.s ≤ Cdw.s.max 
and Cdw.s = Cdw.s – Cdw.s.max otherwise, Cl.s = 0 if 
Cl.s  Cl.s.min and Cl.s = Cl.s – Cl.s.min otherwise, and 
A = 0 if A ≥ Amin and A = A – Amin otherwise. In 
our numerical experiments we use  =  =  = 1000. 
Here, the pressure distribution for the surrogate 
model is Cp = Cp.s, and for the high-fidelity model Cp 
= Cp.f. Also, Cl.s and Cdw.s denote the lift and wave 
drag coefficients (both being functions of the 
pressure distribution). 

5.2 Basic Optimization Algorithm 

The  basic  optimization   algorithm   (Leifsson   and  
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Koziel, 2011) exploits the SPRP-based surrogate 
model and a trust-region convergence safeguard 
(Conn et al., 2000). It can be summarized as follows: 

1. Set i = 0; Select  (initial trust region radius); 
Evaluate Cp.f(x

(0)); 
2. Set up SPRP model; 

3. Obtain x(i+1) = argmin{l ≤ x ≤ u, ||x – x(i)|| ≤  : 
H(Cp.s

(i)(x))}; 
4. Evaluate high-fidelity model to get Cp.f(x

(i)); 
5. If H(Cp.f

(i)(x(i+1))) < H(Cp.f
(i)(x(i))) accept x(i+1); 

Otherwise x(i+1) = x(i); 

6. Update ; 
7. Set i = i + 1; 
8. If termination condition is not satisfied, go to 2. 
9. END 

The SPRP surrogate model is updated before each 
iteration of the optimization algorithm using the 
high-fidelity model data at the design obtained in the 
previous iteration. The trust-region parameter  is 
updated after each iteration, i.e., decreased if the 
new design was rejected or if the improvement of 
the high-fidelity model objective function was too 
small compared to the prediction given by the SPRP 
surrogate, or increased otherwise. We use classical 
updating rules (Conn et al., 2000; Koziel et al., 
2006). The algorithm is terminated if ||x(i+1) – x(i)|| < 
0.001 or  < 0.001. 

5.3 Improved Optimization Scheme 

In algorithm of Section 5.2, the new solution x(i+1) is 
obtained by optimizing the SPRP model, which 
involves multiple evaluations of the low-fidelity 
model. In our case, the low-fidelity model is about 
50 times faster than the high-fidelity one, and a 
typical surrogate model optimization requires 50 to 
100 low-fidelity model calls. Thus, the low-fidelity 
model evaluations are responsible for about 50 to 70 
percent of the total optimization cost. 

In this section, we formulate the improved 
optimization scheme that aims at reducing the 
aforementioned computational overhead. The idea is 
to replace the low-fidelity model—at some point 
during the optimization run—by its response surface 
approximation model. This replacement is executed 
if ||Cp.c(x

(i–1)) – Cp.c(x
(i))|| < max where max is a user-

defined threshold value (here, we use max = 0.05). 
This allows us to avoid constructing the response 
surface model in the entire design space (which 
would be too expensive in terms of the number of 
necessary data points), but only in the vicinity of the 
current solution x(i). In this work, we use kriging 

interpolation (Queipo et al., 2005) as the response 
surface model. The model is set up using Nkr = 20 
low-fidelity model evaluations allocated—using 
Latin Hypercube Sampling (Beachkofski and 
Grandhi, 2002)—in the interval [x(i) – kr, x

(i) + kr], 
where kr = [0.001 0.04 0.005]T. 

The improved algorithm can be summarized as 
follows: 

1. Set i = 0; Select  (initial trust region radius); Set 
the model selector L = 0; Evaluate Cp.f(x

(0)); 
2. If L = 0 set up SPRP model using the low-
fidelity model; Otherwise, set up SPRP model using 
the kriging model of Cp.c; 

3. Obtain x(i+1) = argmin{l ≤ x ≤ u, ||x – x(i)|| ≤  : 
H(Cp.s

(i)(x))}; 
4. Evaluate high-fidelity model to get Cp.f(x

(i)); 
5. If H(Cp.f

(i)(x(i+1))) < H(Cp.f
(i)(x(i))) accept x(i+1); 

Otherwise x(i+1) = x(i); 

6. Update ; 
7. Set i = i + 1; 

8. If L = 0 and ||Cp.c(x
(i–1)) – Cp.c(x

(i))|| < max, set 
L = 1 and set up the kriging model of Cp.c in the 
interval [x(i) – kr, x

(i) + kr]; 
9. If termination condition is not satisfied, go to 2. 
10. END 

In practice (cf. Section 6), the condition ||Cp.c(x
(i–1)) –

 Cp.c(x
(i))|| < max is satisfied after one or two 

iterations which allows us to substantially reduce the 
number of low-fidelity model evaluations in the 
optimization process. 

6 NUMERICAL EXAMPLES 

6.1 General Setup 

The proposed optimization method is applied to the 
inverse design optimization of four cases. Designs 
are obtained using the basic algorithm in Section 
5.2, and the improved algorithm in Section 5.3. The 
surrogate model optimization is performed using the 
pattern-search algorithm (Koziel, 2010b). For 
comparison purposes, designs obtained through 
direct optimization of the high-fidelity model using 
the pattern-search algorithm (Koziel, 2010b) are also 
presented. 

The design variables are the airfoil shape 
parameters in the NACA four-digit parameterization 
(Section 2), i.e., x = [m p t]T. Note that the chord 
length is set to 1. The only inequality constraint is 
the minimum cross-sectional area constraint. There 
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are no equality constraints. The side constraints are 0 
≤ m ≤ 0.1, 0.2 ≤ p ≤ 0.8, and 0.05 ≤ t ≤ 0.20. The test 
cases were chosen only for verification purposes and 
they do not represent optimal airfoil designs. 

6.2 Results of Case Studies 

The numerical results of the case studies are 
presented in Table 1. The target pressure distribution 
is the same for cases 1, 2, and 3, i.e., x = [0.0163 
0.4004 0.1118]T with M = 0.75 and α = 0°. In case 
1 the initial design is NACA 2412 and Amin = 0.078. 
For case 1, both the basic and the improved 
algorithms hit the cross-sectional area constraint and 
match the target pressure distribution only relatively 
closely (F = 0.0243 and F = 0.0246, respectively). 
However, the improved algorithm requires 5 
equivalent high-fidelity model evaluations, while the 
basic algorithm needs 18. The direct optimization of 
the high-fidelity model required 201 model 
evaluations. 

In case 2, the constraint value is lowered to 
Amin = 0.075, while keeping other parameters the 
same. Now the algorithms are able to match the 
target distribution much closer (F = 0.0025 and F = 
0.0011, respectively) with the design cost of about 
13 equivalent high-fidelity function calls for the 
basic algorithm, and 5 for the improved version. 
Figure 5 shows the pressure distributions of the 
initial and optimized designs. The high-fidelity CFD 
model and the pattern-search algorithm required 152 
model evaluations. 

Table 1: Numerical results of four inverse design case 
studies using the proposed optimization methodology. F is 
the norm of the difference of pressure distributions for the 
optimized and the target designs. Nc is the number of low-
fidelity model evaluations and Nf is the number of high-
fidelity model evaluations. All the numerical values are 
from the high-fidelity model. 

 
Case 1 

M = 0.75,  = 0°, Amin = 0.078 
 

Variable Initial Target 
Pattern-
Search# 

SPRP$ 
Improved 

SPRP 
M 0.0200 0.0163 0.0153 0.0154 0.0155 
P 0.4000 0.4004 0.4089 0.4043 0.3985 
T 0.1200 0.1118 0.1159 0.1158 0.1159 
Cl 0.4745 0.3832 0.3663 0.3663 0.3671 

Cdw 0.0115 0.0049 0.0049 0.0050 0.0052 
A 0.0808 0.0753 0.0780 0.0780 0.0781 
F N/A N/A 0.0249 0.0243 0.0246 
Nc N/A N/A 0 330 70 
Nf N/A N/A 201 11 3 

Total 
cost* 

N/A N/A 201 < 18 < 5 

 
 

 
 

Case 2 
M = 0.75,  = 0°, Amin = 0.075 

 

Variable Initial Target 
Pattern-
Search# 

SPRP$ 
Improved 

SPRP 
M 0.0200 0.0163 0.0162 0.0162 0.0163 
P 0.4000 0.4004 0.4007 0.4014 0.4011 
T 0.1200 0.1118 0.1122 0.1121 0.1119 
Cl 0.4745 0.3832 0.3816 0.3822 0.3829 

Cdw 0.0115 0.0049 0.0049 0.0048 0.0049 
A 0.0808 0.0753 0.0756 0.0755 0.0753 
F N/A N/A 0.0025 0.0025 0.0011 
Nc N/A N/A 0 240 70 
Nf N/A N/A 152 8 3 

Total 
cost* 

N/A N/A 152 < 13 < 5 

 

 
Case 3 

M = 0.75,  = 0°, Amin = 0.075 
 

Variable Initial Target 
Pattern-
Search# 

SPRP$ 
Improved 

SPRP 
m 0.0000 0.0163 0.0156 0.0163 0.0161 
p 0.5000 0.4004 0.4252 0.3978 0.4030 
t 0.1000 0.1118 0.1139 0.1117 0.1126 

Cl 0.0005 0.3832 0.3776 0.3835 0.3801 
Cdw 0.0002 0.0049 0.0045 0.0049 0.0048 
A 0.0673 0.0753 0.0767 0.0752 0.0758 
F N/A N/A 0.0181 0.0023 0.0048 
Nc N/A N/A 0 468 70 
Nf N/A N/A 201 6 5 

Total 
cost* 

N/A N/A 201 < 16 < 7 

 

 
Case 4 

M = 0.75,  = 1°, Amin = 0.065 
 

Variable Initial Target 
Pattern-
Search# 

SPRP$ 
Improved 

SPRP 
m 0.0000 0.0300 0.0287 0.0293 0.0300 
p 0.4000 0.2000 0.2067 0.2057 0.2000 
t 0.1200 0.1000 0.1083 0.1022 0.1000 

Cl 0.2082 0.8035 0.7786 0.7905 0.8034 
Cdw 0.0024 0.0410 0.0424 0.0405 0.0410 
A 0.0808 0.0675 0.0731 0.0689 0.0675 
F N/A N/A 0.0492 0.0182 0.00097 
Nc N/A N/A 0 457 120 
Nf N/A N/A 202 6 9 

Total 
cost* 

N/A N/A 202 < 16 < 12 
 
# Design obtained using the high-fidelity model and the grid-
search algorithm (Koziel, 2010b). 
$ Design obtained using the basic algorithm of Section 5.2; 
surrogate model optimization performed using the grid-search 
algorithm (Koziel, 2010b). 
% Design obtained using the improved algorithm proposed in 
Section 5.3; surrogate model optimization performed using the 
grid-search algorithm (Koziel, 2010b). 
* The total optimization cost is expressed in terms of the 
equivalent number of high-fidelity model evaluations. The ratio 
of the high-fidelity model evaluation time to the corrected low-
fidelity model evaluation time varies between 13.5 to 73 
depending on the design. For the sake of simplicity we use a fixed 
value of 50 here. 
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(a)  
 

(b)  

Figure 5: The pressure distributions and airfoil shapes for 
the initial and optimized designs for case 2. 

Case 3 starts with a different initial design, 
namely, the NACA 0010. Here, both algorithms 
match the target closely. The basic algorithm 
requires 16 equivalent high-fidelity function calls, 
whereas the improved algorithm 7. 

In case 4, the target pressure distribution is the 
one of NACA 3210 at M = 0.75 and α = 1°. The 
initial design is NACA 0012 and the minimum 
cross-sectional area is Amin = 0.065. The improved 
algorithm is able to match the target closely in less 
than 12 equivalent high-fidelity model evaluations. 
The basic algorithm and the direct pattern-search are 
both unable to match the target closely. 

7 CONCLUSIONS 

Computationally efficient variable-fidelity design of 
transonic airfoils is presented. The algorithm replaces 
the direct optimization of a CPU-intensive high-
fidelity CFD model by iterative updating and re-
optimization of its fast surrogate. The surrogate is 
constructed using a shape-preserving response 
prediction technique with the underlying low-fidelity 
CFD model, which is replaced—after a few 
iterations—by its local response surface 
approximation. The operation and performance of our 
algorithm is demonstrated using several transonic 
airfoil design cases with the optimized designs 
obtained at a low cost corresponding to a few high-
fidelity CFD simulations. Our results indicate that the 
algorithm presented here is computationally much 
more efficient than its basic version that only exploits 
the corrected CFD low-fidelity model but not the 
response surface one. 
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