
A SEMANTIC APPROACH FOR WEB WIDGET MASHUP

Jinan Fiaidhi, Adam McLellan and Sabah Mohammed
Department of Computer Science, Lakehead University

955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada

Keywords: Gadgets, Mashup, Semantic web, Widgets.

Abstract: The current status of the most popular web widget formats was examined with regard to composition of
existing widgets into more complex mashups. A prototype was created demonstrating the creation of a
mashup in web widget format using other web widgets as components. A search tool was developed which
crawls and indexes in semantic format the metadata of web widgets found in a public repository. This tool
provides a web widget interface to find other web widgets, and serves as the first pre-requisite tool for
further work in this area. A likely path towards further results in this area is discussed.

1 INTRODUCTION

Web Widgets/gadgets are serving an important role
in the modern web. For example, content producers
seek to syndicate their content in order to reach a
broader audience, as well as attracting visitors to
their main sites. Portal providers seek to provide a
variety of interesting content to make their website a
valuable destination for their visitors. These goals
can be achieved through the use of web widgets.

A web widget is a portable, self-contained
program module which can be inserted into and used
on any standard webpage, without special
installation requirements. It is essentially a small
program designed for syndication on the web. Web
widgets are most commonly found on the websites
of portal providers and other content aggregators,
including popular social networking sites, since they
provide a modular way to provide a wide variety of
user-customizable content.

Mashups are composite applications that
combine elements of existing applications to
produce a result which is more than the sum of its
parts (Hoyer et al., 2008). Mashups typically provide
increased usability and/or functionality compared to
using the components separately (Yu et al., 2008).
Although mashups are not always formed from web
widgets as components, it is those mashups which
shall be a focus in this paper.

Although the popularity of web widgets and web
mashups has been growing rapidly, both with users

and developers, the development methodology has
had little time to mature as yet.

There remains a great deal of duplicated effort in
web widget development, with tens of thousands of
widgets available which independently implement
common functionality. New tools which could
provide a more modular approach to web widget
development would be invaluable, both in reducing
costs of new development, and in speeding new
ideas’ transition to implementation and widespread
use.

This paper reviews currently popular web widget
standards, tests the applicability of the proposed
development advances, and provides the first tools
needed on the path to simpler, modular development
of web widget mashups.

2 WEB WIDGET STANDARDS

2.1 Criteria of Comparison

In order to develop advancements in web widget
creation and mashup techniques, it is first necessary
to examine and compare the various available
standards for web widgets. Several key criteria were
considered in this comparison.

Capability for mashup is the foremost
consideration, since a standard unable to support
even rudimentary re-use of its widgets would be
unsuitable for the purposes of this paper. A standard

178 Fiaidhi J., McLellan A. and Mohammed S..
A SEMANTIC APPROACH FOR WEB WIDGET MASHUP.
DOI: 10.5220/0003646301780184
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 178-184
ISBN: 978-989-8425-76-8
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

may provide varying levels of support for this
possibility depending upon its API and security
model. Since the goal is a modular standard of
development, ideally the standard should provide the
capability for multiple widgets to be instantiated and
to communicate with each other.

Finally, the level of openness of the standard and
its associated development tools must be considered.
Creation of mashups using web widgets as
components is most useful with a large body of fresh
and innovative component widgets to build upon.
Thus the possibilities for mashup are best served
when the standard is easily accessible to the widest
possible range of developers who can provide these
components.

2.2 Rich Internet Application
Frameworks

Rich internet application frameworks are widely
known on the web and are certainly put to many
uses, including web widgets. The most popular rich
internet application (RIA) frameworks are Adobe®
Flash®, Microsoft® Silverlight™, and Oracle®
JavaFX™. Each of these is well capable of
producing a wide variety of powerful internet
applications, including web widgets.

However, none are intended specifically as a web
widget standard; these frameworks are designed as
general-purpose programming environments. Cross-
widget communication could be implemented via
some form of shared client-server networking, but it
is not provided out of the box. There is no
centralized repository of widget-like applications
with detailed and standardized metadata.

Although any of these frameworks could be used
as a basis for further work, they would require re-
implementation of features already provided by
existing widget standards intended for that purpose.

2.3 Web Widget Standards

There are many web widget standards; only those
considered the most widely used are examined.

2.3.1 Widgetbox™

Widgetbox provides a very large repository of web
widgets, well over 200,000. Most widgets provide a
visually-attractive array of user customization
options. Also provides tools to allow end-users to
easily create certain types of widgets from templates
with no programming knowledge.

Table 1: Summary of Popular Web Widget Standards.

Standard Cross-Widget
Communicatio

n Support

Licensing

Widgetbox No Commercial
SpringWidge No Free1

Yahoo
Konfabulator

Widgets

Yes Open

Microsoft
Windows Live
Web Gadgets

Unknown2 Unknown2

Google
Gadgets

(OpenSocial)

Yes, Multiple
Types

Open

2.3.2 SpringWidgets™

SpringWidgets provides a large repository of
approximately 50,000 widgets. Some metadata is
available for each widget. Internally, the widget
engine provides a number of Flash methods; widgets
using this standard must be implemented using
Adobe Flash.

2.3.3 Yahoo!® Widgets

Widgets are defined using an XML-based format
and can provide various items of metadata. The
widget engine provides an extensive API exposing
numerous features to widget developers, including
some items with potential to be used for cross-
widget communication. Approximately 6,000
widgets are listed in the Yahoo! Widgets repository.

2.3.4 Microsoft® Windows Live™ Web
Gadgets

Currently, it is difficult to find developer
documentation on Microsoft’s Web Gadgets.
However, like Yahoo! Widgets, this standard
appears to lack popular support, with approximately
5,000 gadgets listed in the Live Web Gadgets
repository.

2.3.5 Google™ Gadgets (OpenSocial)

Google Gadgets were originally developed as a
standard for Google’s portal site, iGoogle. However,
the standard has since been opened and used as the
basis for the OpenSocial gadget standard.
OpenSocial is now a widely-accepted format
accepted on other well-known sites including
Yahoo!, MySpace, orkut, hi5, and LinkedIn. The
repository of Google Gadgets available for
syndication lists over 200,000 gadgets.

A SEMANTIC APPROACH FOR WEB WIDGET MASHUP

179

3 SELECTION OF A STANDARD

After considering the criteria of comparison, the
Google Gadget standard was selected as the most
appropriate for continuing this research. The Google
Gadget standard is an open standard, widely-
accepted across popular websites, and able to be
embedded in those without native support. It is
easily accessible to developers at no cost, and is
well-supported with a base body of over 200,000
gadgets to work from as potential components.
Perhaps most critically, the standard provides
multiple methods of cross-gadget communication.
These communication channels can be utilized to
make possible the use of Google Gadgets as
components in a mashup gadget.

The Google Gadget standard requires use of a
gadget server which can render the XML-based
gadget specification into the appropriate HTML and
JavaScript content for a web browser’s use.
Google’s iGoogle portal site provides one publicly
available option. The Apache Shindig project also
provides a free, open-source implementation of a
gadget server according to the OpenSocial
specification. For the purposes of this research, most
development and testing was done using WSO2
Gadget Server, a much expanded open-source
project which builds upon Apache Shindig as a base,
but also provides a portal interface much like the
iGoogle site. This will be addressed further when
discussing the gadget search tool.

4 GADGET IMPLEMENTATION

4.1 Implementation
Language - Criteria of Comparison

The implementation option must be capable of
supporting the Google Gadget JavaScript API. This
API provides important features which were a major
criterion of selecting the Google Gadget standard. In
fact, this criterion is so critical that an
implementation option was not considered unless it
was capable of interfacing with JavaScript to utilize
the Google Gadget API.

User accessibility is another primary criterion.
Finally, developer accessibility was considered. This
includes factors such as whether the developments
tools are free or commercial products, as well as
whether both client and server code can be
developed in one IDE.

4.2 Implementation Options

There are many options including

1- Adobe Flash which is the most widely installed
RIA framework on the web. It is available for a wide
variety of browsers and operating systems. Notably
unable to view Flash content are Apple’s popular
iOS devices: the iPhone, iPad, and iPod Touch.

2- Microsoft® Silverlight ™ that has the lowest
install base of the major three RIA frameworks
(Flash, Java, and Silverlight). Additionally,
Silverlight is not supported under Linux or iOS
based platforms.

3- Google® Web Toolkit (GWT) is yet again
different from all other options. This free, open-
source project by Google consists of a compiler and
supporting libraries which transform developer-
written Java code into JavaScript. As developers
write code in Java, the software is strongly-typed,
permits use of most Java as well as JavaScript
libraries, and can be seamlessly integrated with
server-side code using the same shared object
definitions. When the client-side code is compiled,
multiple permutations are generated for different
browser and platform combinations, and a small
section of bootstrap JavaScript selects and launches
the most compatible version at runtime according to
the user’s environment.

4.3 Selection of Implementation
Language

After careful consideration, GWT was selected due
to providing many features of full Java, such as
strong typing and support for many Java libraries,
yet not requiring framework installation by the end-
user.

5 PROTOTYPE MASHUP

5.1 Google Gadget Structure and
Environment

Google Gadgets are defined using an XML
specification file including three primary sections:
the Module Preferences section, container standard
gadget metadata, such as details of any special
features that will be requested of the server, the User
Preferences Section, which defines user-specific
gadget data the server will need to store, and the
Content section, which provides the actual

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

180

implementation of the gadget.
Google Gadgets are parsed and then rendered

into their final form by a gadget server. Originally
the only gadget server was the iGoogle portal server,
but as the Google Gadgets standard is open, the
Apache Shindig project was soon started to provide
an implementation which can be deployed
anywhere. For the purposes of this research, the
focus will be upon the base Google Gadget standard,
since the additional features provided by the
OpenSocial specification are not needed for the
items implemented. The Google Gadget API
provides two primary methods to communicate with
other content on the same web page: The
Publisher/Subscriber (Pubsub) feature, and the
Gadgets RPC feature.

Gadget containers typically render gadgets inside
IFRAME elements for reasons of security. By using
an IFRAME, the container can take advantage of
browsers’ security features to avoid problems with
cross-site scripting attacks, which could compromise
data from other gadgets or non-gadget content. All
cross-gadget communication desired by this paper
was found to be perfectly achievable using the two
communication methods in combination. See Figure
1.

Figure 1: A graphical display of which cross-gadget
communication methods are functional in which
circumstances. This is shown as tested using WSO2
Gadget Server 1.10.

The Pubsub communication feature can be used
to send text messages between sibling gadgets,
under the condition that these sibling gadgets are
found at the root level, contained only inside the
gadget container itself. The Gadget RPC
communication feature can be used to
asynchronously invoke arbitrary JavaScript methods
found either one level up, in the running gadget’s
container, or one level down, in a gadget rendered

inside the currently running gadget. To invoke a
method of a child gadget, the child’s IFRAME’s ID
attribute must be passed as the target parameter into
the Google Gadgets API call. To invoke a method of
the parent, the page containing the currently gadget,
the target parameter is omitted. Through careful
combination of both methods of gadget
communication, it is in fact possible to pass
messages between any two gadgets.

The Gadget RPC feature’s capability of allowing
a parent gadget to communicate with those gadgets
it contains fulfills most use cases being considered
for this project. This will be the focus of our
prototype mashup gadget using gadgets and
components.

5.2 Component Gadgets

The purpose behind such focus on cross-gadget
communication is to enable the possibility of using
gadgets as components in designing new, more
powerful gadgets. Currently gadget developers may
utilize some shared libraries, but this imposes
restrictions such as using the same implementation
language as the library or developing a wrapper.
Additionally, unlike gadgets there is no central,
searchable repository for shared libraries, and few
libraries provide user interfaces.

Gadgets as re-usable components show a great
deal of potential. Due to the Google Gadgets
standardized specification, component gadgets can
be written using entirely different implementation
languages, with the Google Gadgets API providing a
wrapper. Gadgets can be listed in a central
repository to make them easier to find, and gadgets
can provide complete user-facing interfaces to their
functionality.

There are two primary limitations to keep in
mind when developing mashups using gadget
components. First, to use a gadget as a component, it
must expose functionality to Gadget RPC, which
requires action on the part of the original developer.
The second limitation is that it quickly becomes
non-trivial to keep track of the various mini-APIs
that component gadgets can provide via Gadget
RPC. This problem can be alleviated by
standardizing component gadget interfaces, a matter
which is discussed in more detail in the Future Work
section of this paper. The prototype mashup
developed here serves as a proof-of-concept, and is
built using gadgets intended as suitable components.

A SEMANTIC APPROACH FOR WEB WIDGET MASHUP

181

5.3 Mashup Design

The mashup prototype developed is based upon
three components. The first component gadget is a
tool which accepts a telephone number as input, and
produces neighbouring telephone numbers as output.
Optionally, users can choose to include possible
common misdials of the number which are not
numerically adjacent.

The second component gadget is a tool which
takes a telephone number as input, and performs a
reverse lookup to produce the publically listed
associated address, if any.

The third component gadget is a tool which
marks any set of addresses on a map. The resulting
mashup gadget, which coordinates the layout of
these components and passes messages between
them, is a tool which takes a phone number as input,
and produces a map of the locations of neighbouring
phone numbers.

This demonstrates the capability of this style of
gadget development to take advantage of existing
component gadgets to produce a more useful
composite, while minimizing development time. A
screenshot of this gadget can be seen in Figure 2,
below.

Figure 2: A screenshot of the developed prototype mashup
in action.

A pair of diagrams showing the internal struc-
ture of the mashup follows in Figure 3.

6 GADGET SEARCH

6.1 Purpose of Gadget Search

The next stage of this paper was to develop tools
necessary to search for and find gadgets. As Google
already provides basic search functionality as part of
their public gadget directory, it may not at first be
obvious why further search capability is

Figure 3: Above: A generalized diagram of the
architecture of the Phone Number Mapper Gadget. Below:
An execution flow diagram shows how the program
control moves between the different software layers and
the components within them.

necessary. There are two primary reasons for
developing search tools: intranet gadget search, and
semantic feature search.

The first reason, intranet gadget search, is to
provide search capabilities to organizations which
cannot publically publish some or all of their
internally developed gadgets. Although Google
provides the ability to search their public gadget
directory, it can only return results which have been
published for all on the internet to see. For numerous
reasons, organizations may want to design and
develop gadgets for internal use which cannot be
made available to the general public, and perhaps
which cannot even be made accessible outside that
organization’s own secured intranet.

The second reason for new search tools is to
provide more precise search capabilities than what
Google can provide as part of their public directory.
As an example, if one searches for “map” on the
Google Gadget public directory, the top results
include a simple graphics editor, games, weather
listings, and other miscellaneous gadgets which
mention the term “map” only in passing. Many of
these results are not actually gadgets providing the
user with a map. This is the expected behaviour of a
general-purpose search tool; however for the

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

182

purpose of locating appropriate component gadgets
to use in a mashup, far more precision is required.
By indexing all available metadata in a semantic
format, it will be possible to locate suitable
candidates using very specific criteria.

6.2 Indexing Gadget Metadata

The first step in providing search results must be to
identify and index the data which will provide such
results. Google provides a directory of gadgets
available for public syndication purposes. The
primary item of interest for each item in this
directory is the web address where the gadget’s
specification file can be located; this is where the
gadget’s full metadata and details can be found.

Also it provides access to its gadget directory in
two formats: the standard, graphical interface for
end users, and an RSS feed more suitable for
programmatic access. It is this second which is used
for retrieving the list of gadget specification file
URLs. Since both this RSS feed and the listed
gadget specification files meet specific XML
schema requirements, Java’s JAXB (Java
Architecture for XML Binding) was used to access
the target data elements within the files.

As threads run to retrieve these lists of gadget
specification file URLs, 100 results at a time, other
threads run to request those XML files from the
various hosts across the internet where their authors
uploaded them. Using the official XSD (XML
Schema Document) provided as the standard by
Google, JAXB is used to validate those specification
files. Some of the files are now missing from their
web host, contain syntax errors, or for various other
reasons do not meet the Google Gadget standard;
those gadgets are discarded before proceeding
further.

Those gadgets meeting the standard are then
processed. The Jena library is used to store all
gadgets’ metadata in a semantic format, with TDB
providing the high-speed storage backend. For each
gadget, each item of metadata is treated as a 3-tuple
(triple), with the XML specification file’s URL as
the subject, the name of the metadata item as the
predicate, and the gadget author’s provided data as
the object.

Once all gadgets have been processed, this
database of metadata of publically listed gadgets is
exported into RDF format. While not strictly
necessary for the indexing phase, this allows the data
to potentially be used in other ways in the future.

With this summary of all gadget metadata to
work from, an index suitable for search engine use is

built next. Lucene is a powerful search engine
library, and SIREn provides a semantic extension
which preserves the semantic nature of the data
rather than requiring a specific, structured set of
fields. Lucene organizes data in a different manner
than a triple-based system such as that provided by
Jena; any item which the user wishes to retrieve as a
result must be a “document”. Thus the data is
indexed by considering each gadget XML
specification file as a document, with all of the
associated metadata statements being filed as
contents of that document.

At this point, with all of the metadata having
been indexed by Lucene through the semantic filter
of SIREn, the search pre-processing is complete. It
must be noted that this crawling and indexing
process is distinct from the gadget and associated
servlet that the user accesses to make use of this
data. Additionally, this entire process must be re-run
periodically to take into account new entries into the
public gadget directory.

7 CONCLUSIONS

The creation of composite web widgets – mashups –
using other web widgets and components shows
great promise. Though most web widgets have not
been developed with the intent of re-use as a
component, there are an enormous number of web
widgets available which serve a multitude of
purposes. Component use of web widgets can result
in highly useful end products while taking advantage
of the benefits of a modular design.

The prerequisite tools developed as part of this
paper provide a crucial stepping stone towards
further work in this area.

ACKNOWLEDGEMENTS

The first author would like to thank NSERC for
funding this project as well as funding Mr. Adam
McLellan to work on this project under the first
author supervision.

REFERENCES

Hoyer, V., Stanoevska-Slabeva, K., Janner, T., and
Schroth, C. 2008. Enterprise Mashups: Design
Principles towards the Long Tail of User Needs. In

A SEMANTIC APPROACH FOR WEB WIDGET MASHUP

183

IEEE International Conference on Service Computing
(SCC’08). Volume 2, 601-602.

Yu, J., Benatallah, B., Casati, F., Daniel, F. 2008.
Understanding Mashup Development. IEEE Internet
Computing, 12(5), 44-52.

APPENDIX A

THIRD-PARTY LIBRARIES AND TOOLS

Here follows the list of the primary third-party
libraries and tools used for this paper.

Software Website
Java JDK http://www.oracle.com/techne

twork/java/javase/downloads/
index.html

Eclipse http://www.eclipse.org/
Apache Ant http://ant.apache.org/

Google Web Toolkit http://code.google.com/
webtoolkit/

GWT-Gadgets http://code.google.com/p/
gwt-google-apis/wiki/
GadgetsGettingStarted

WSO2 Gadget Server http://wso2.com/products/
gadget-server/

Apache Shindig http://shindig.apache.org/
Apache Tomcat http://tomcat.apache.org/
SIREn http://siren.sindice.com/
Apache Lucene http://lucene.apache.org/
Jena http://jena.sourceforge.net/
TDB http://openjena.org/TDB/
GWT-Maps http://code.google.com/p/

gwt-google-apis/wiki/
MapsGettingStarted

Firebug http://getfirebug.com/

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

184

