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Abstract: The machining quality and efficiency may be improved significantly by using appropriate tool wear 
prediction techniques. A new approach based on wavelet transform and support vector machine is proposed 
to improve the accuracy of tool wear prediction in this paper. Firstly, the wavelet transform is introduced to 
decompose sensory signals into different scales to reduce the dimensionality of original signals and extract 
features associated with different tool wear condition. Secondly, the least square support vector machine is 
further presented to construct predictive model due to its high convergence rate and powerful generalization 
ability. Thirdly, the possibility to employ power sensor rather than delicate dynamometer for the tool wear 
monitoring is explored. Finally, the effectiveness of proposed tool wear prediction approach is demonstrated 
by extensive experimental turning trials. 

1 INTRODUCTION 

Tool wear will progress with the proceeding of the 
machining process due to the involvement of 
fracturing, abrasion, plastic deformation, diffusion 
and grain-pullout. The dimensional accuracy and 
surface quality of machined component may be 
deteriorated by excessive worn tool. Consequently, 
the online tool wear monitoring is required within 
aero-engine manufacturing industry to improve the 
machining quality of critical components made of 
Titanium or Nickel alloys. Due to high corrosion 
resistance associated with those super alloys, the 
wear of machining tool deteriorates rapidly. Through 
the utilization of tool wear prediction technique, the 
worn tool can be detected and replaced in time to 
avoid scrapping critical components. Moreover, 
common industrial practice by replacing or 
regrinding tools according to a conservative 
schedule is not cost-effective. By implementation of 
tool wear prediction technique, the tooling cost may 
be reduced and tool life may be prolonged 
significantly.  

Several indirect tool wear predictive approaches 
have been investigated by modelling the correlation 
between tool wear and sensory signals, namely 

force, vibration and acoustic emission, acquired in 
machining processes (Sick, 2002). However, further 
efforts are still required in the following aspects 
despite the fact that several achievements have been 
made in tool wear prediction so far. Firstly, although 
several different types of sensor, e.g. accelerometer, 
dynamometer, acoustic emission and motor current 
sensor have been employed to measure the responses 
in machining processes, the overall performance of 
these sensors in terms of accuracy, robustness and 
cost-effectiveness is still not satisfaction. In general, 
the cutting force acquired from dynamometers is 
regarded as one of significant variables in the 
machining processes due to its direct relation with 
tool wear. However, the implementation of 
dynamometers in shop floor is restricted due to high 
cost, negative impact on machining system rigidity, 
the requirement for a wiring harness and extra space 
for installation (Shi et al., 2006). Recently, indirect 
sensing cutting force through the feed or spindle 
motor current of a machining tool has been 
investigated extensively due to the ease of 
installation and low cost (Stein and Wang, 1990, 
Altintas, 1992, Lee et al., 1995). However, this 
indirect approach has been reported not sensitive and 
accurate enough to measure the cutting force in 
machining process due to limited frequency range 
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(Altintas, 1992). As a result, for the purpose of 
implementation of tool wear monitoring system in 
industrial environment, alternative sensing solutions 
have to be investigated to strike the balance between 
effectiveness and cost. Secondly, feature extraction 
plays crucial role in the improvement of accuracy 
and robustness of tool wear predictive model since 
the original sensory signals usually are interfered 
with noise, disturbance and redundant information. 
Normally, statistical moments based features, i.e. 
mean value, standard deviation, extracted from 
sensory signal have been always employed to predict 
tool wear. However, this feature extraction 
technique is not effective enough to explore the 
instinct features associated with tool wear. 
Consequently, a more advanced feature extraction 
technique is required to filter out the noise 
component and reduce the dimensionality of the 
original data to improve prediction accuracy. 
Finally, neural network has been extensively used to 
model the correlation between sensory signals and 
tool wear. However, the prediction results were not 
satisfied due to some disadvantages, i.e. low 
convergence rate, obvious ‘over-fitting’ and 
especially poor generalization when few samples are 
available. Support Vector Machines (SVM) based on 
statistical learning theory is a new achievement in 
the field of data-driven modelling and implemented 
successfully in classification, regression and 
function estimation (Kwok, 1999, Cao and Tay, 
2003, Goethals and Pelckmans, 2005). SVM has 
been proved less vulnerable to overfitting problem 
and higher generalization ability since SVM is 
designed to minimize structural risk whereas 
previous neural networks techniques, i.e. MLP, are 
usually based on minimization of empirical risk 
(Kwok, 1999). Consequently, the applicability of 
SVM in the tool wear modeling will be explored in 
this paper.  

The objective of this paper is to develop a new 
monitoring approach to predict tool wear using 
sensory signals acquired in machining processes. 
The organization of the work is as follows. In 
Section 2, wavelet transform is explored to extract 
features from sensory signals. The SVM is further 
introduced to model the correlation between tool 
wear and extracted features in Section 3. The 
performance of proposed approach is demonstrated 
by experimental data acquired from turning 
processes in Section 4. The conclusions are given in 
last Section. 

2 WAVELET TRANSFORM 
BASED FEATURE 
EXTRACTION 

The sensory signals acquired in machining process 
are typical non-stationary multi-componential 
signals caused by uneven material removing process. 
Different tool malfunctions, i.e. tool wear, tool 
chipping and tool breakage, may possess different 
frequency characteristics in sensory signals. For 
instance, the cutting force will increase gradually 
with the increase of tool wear and will be obviously 
reflected in the lower frequency band or so-called 
static component of sensory signals. On the contrary, 
tool chipping or breakage will cause cutting force 
changed suddenly and may be observed in higher 
frequency band or so-called dynamic component of 
sensory signals. As a result, the features associated 
with different tool malfunctions may be extracted 
from either static or dynamic component of sensory 
signals. Several techniques, i.e. band-pass filtering, 
resample and wavelet transform, may be employed 
to decompose sensory signals. From the point of 
view of filter design, wavelet transform is a typical 
cascade band-pass filter with a varying bandwidth. 
The sensory signals can be decomposed into 
different frequency bands or scales to capture 
localized features i.e. abrupt or gradual changes 
within the sensory signals by analysis corresponding 
wavelet coefficients. Wavelet transform provides an 
efficient way to identify the location and possible 
root cause of the malfunction within the machining 
processes because of powerful decomposition 
ability. Additionally, by implementation wavelet 
transform at specified scale, the sensory signal can 
be descried as few wavelet coefficients and the 
dimensionality of sensory signals can be 
dramatically reduced. Hence, in comparison with 
other two decomposition techniques, wavelet 
transform is more powerful and flexible due to its 
multi-resolution capability and hence explored to 
obtain static component for feature extractions. The 
wavelet transform of signal s(t) is defined as the 
inner product in the Hilbert space of L2 norm as 
follows (Mallat, 1997): 

1/2 *
,( , ) ( ) ( )a bC a b a s t t dtψ

+∞−

−∞
= ∫  (1) 

where )(*
, tbaψ  is the complex conjugate of )(, tbaψ  

generated by scaling and shifting from so-called a 
‘mother wavelet’ function expressed as 

1/2
, ( ) ( )a b

t bt a
a

ψ ψ− −
=   (2) 
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where a is a scale factor and b is a translation or 
time shift parameter. The factor 2/1−a is used to 
ensure energy preservation. A family of scaled and 
shifted wavelets can be produced through varying 
the parameters a and b. Therefore, the time-scale 
characteristics of the signal s(t) can be analyzed by 
the inner product to the series of scaled and shifted 
wavelets. In order to obtain the numerical result of 
wavelet transform, the parameter of scale a and shift 
b must be discretized. Discrete wavelet transform 
normally is conducted by dyadic discretization, 
a=2j, b=k2j, (i, j)∈Z2. Additionally, regarding the 
possibility of time-frequency localization, the 
mother wavelet must be compactly supported and 
satisfied with the admissibility condition: 

2
( ) /C dω ω ω

+∞
Ψ

−∞
= Ψ < ∞∫   (3) 

where )(ωΨ  is the Fourier transform of )(tψ . 
Then, the discrete synthesis of wavelet transform is 
expressed as 

,( ) ( , ) ( )j k
j Z k Z

s t C j k tψ
∈ ∈

= ∑∑   (4) 

At specified scale J, the discrete synthesis can be 
further rewritten as 

( ) ( ) ( )J j
j J

s t A t D t
≤

= + ∑   (5) 

where Dj(t) is called the detail of the signal s(t) at 
scale j and expressed as 

( ) ,( ) , ( )j j k
k Z

D t C j k tψ
∈

= ∑   (6) 

and AJ(t) is called an approximation of the signal s(t) 
at scale J and expressed as 

( ) ( )J j
j J

A t D t
>

= ∑   (7) 
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Figure 1: Illustration of decomposition tree of wavelet 
transform. 

As a result, a decomposition tree is formed where 
the signal is decomposed to a number of details and 
one approximation as shown in Figure 1. The 
approximation captures the low frequency content 
which corresponds to static component of the signal 
and details reflect the high frequency contents which 
correspond to dynamic components of the signal. As 
described earlier, wavelet transform is a typical set 
of cascade band-pass filters with varying bandwidth. 
The central frequency and bandwidth of the wavelet-
based cascade filter depends on the choice of scale. 
If Daubechies-wavelet, i.e. db5, is selected as a 
mother wavelet, the wavelet-based band-pass filter 
at scale J will be centred at the quotient between 
sampling frequency and 2J. In this paper, the 
decomposition scale of sensory signals is specified 
as J=8 since the highest frequency of static 
component of sensory signal (sampled at 1000Hz) is 
found less than 4Hz. Additionally, the 
dimensionality of sensory signal can be reduced 
significantly since the length of the static component 
is only 1/2J times of the length of original sensory 
signal. Hence, the corresponding wavelet 
coefficients at specified scale J can be formed as 
feature vectors to feed into SVM-based tool wear 
predictive model as introduced in Section 3.   

3 LS-SVM BASED TOOL WEAR 
PREDICTIVE MODEL 

SVM is a novel machine-learning tool and especially 
useful for the classification and prediction with 
small-sample cases (Vapnik, 1999). This novel 
approach motivated by statistical learning theory led 
to a class of algorithms characterized by the use of 
nonlinear kernels, high generalization ability and the 
sparseness of the solution. Unlike the classical 
neural networks approach the SVM formulation of 
the learning problem leads to quadratic 
programming (QP) with linear constraint. However, 
the size of matrix involved in the QP problem is 
directly proportional to the number of training 
points. Hence, to reduce the complexity of 
optimization processes, a modified version, called 
LS-SVM is proposed by taking with equality instead 
of inequality constraints to obtain a linear set of 
equations instead of a QP problem in the dual space 
(Suykens et al., 2002, Suykens and Vandewalle, 
1999). Instead of solving a quadratic programming 
problem as in SVM, LS-SVM can obtain the 
solutions of a set of linear equations. The 
formulation of LS-SVM is introduced as follows. 
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Consider a given training set { } Nkkk yx ,1, = with 

input data n
kx ℜ∈ and output data ℜ∈ky . The 

following regression model can be constructed by 
using nonlinear mapping function )(⋅ϕ  

bxwxy T += )()( ϕ    (8) 
where w is the weight vector and b is the bias term. 
By mapping the original input data into a high-
dimensional space, the nonlinear separable problem 
becomes linearly separable in space. Then, the 
following cost function is formulated in the 
framework of empirical risk minimization.  

2

1

1 1min ( , )
2 2

N
T

k
k

J w e w w eγ
=

= + ∑ ;  (9) 

subject to equality constraints 
( ) 1, ,T

k k ky w x b e k Nφ= + + =  (10) 
where ek is the random errors and γ is a 
regularization parameter in determining the trade-off 
between minimizing the training errors and 
minimizing the model complexity. To solve this 
optimization problem, Lagrange function is 
constructed as  

1
( , , ; ) ( , ) { ( ) }

N
T

k k k k
k

L w b e J w e w x b e yα α φ
=

= − + + −∑     (11) 

where ak are Lagrange multipliers. The solution of 
Equation (11) can be obtained by partially 
differentiating with respect to w, b, ek and ak 

1
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The Equations (12)-(15) can be rewritten as  

1

0 1 0

1

T b
yI αγ −
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Finally, b and ak can be obtained by the solution to 
the linear system 

1 1

1 1
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n
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1 1 ˆˆ ( ) ( 1 )I y bα γ − −= Ω + −   (18) 
According to Mercer’s theorem, the resulting LS-
SVM model can be expressed as:  

( )
1

( ) ,
N

k k
k

y x K x x bα
=

= +∑   (19) 

where ),( kxxK is the nonlinear kernel function. In 
comparison with some other feasible kernel 
functions, the RBF function is a more compact 
supported kernel and able to reduce computational 
complexity of the training process and improve 
generalization performance of LS-SVM. As a result, 
RBF kernel was selected as kernel function as 

2 2
2( , ) exp( )k kK x x x x σ −= − ⋅ ,  (20) 

where σ is the scale factor for tuning.  
To achieve a high level of performance with LS-
SVM models, some parameters have to be tuned, 
including the regularization parameter γ and the 
kernel parameter corresponding to the kernel type, 
i.e. σ. Finally, the features extracted in Section 2 and 
actual tool wear measured by optical scan 
microscope can be employed to construct input-
output pairs to train LS-SVM. In the training stage, 
the correlation between sensory signals and tool 
wear is learned by LS-SVM. Once the training stage 
is accomplished, the trained LS-SVM is used to 
predict tool wear by using the features extracted 
from wavelet transform.  

4 EXPERIMENTAL RESULTS 
AND DISCUSSIONS 

4.1 Experimental Configuration 

Two types of sensors, namely, dynamometers 
(Kistler 9257B) and power sensor (Load control LC-
PH-3A-10V) are employed to conduct experiments 
in turning processes. The possibility of the 
utilization of power sensor rather than delicate 
dynamometer will be investigated based on critical 
analysis of experimental results. The power sensor 
was installed with spindle motor to measure the 
machining power. The power is estimated by vector 
multiplications between current and voltage samples 
sensed by Hall-effect sensors. In comparison with 
well-known motor current sensor, the power sensor 
is more accurate and appropriate to measure power 
consuming in machining process due to the con- 
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Figure 2: Schematic diagram of the online turning 
monitoring system. 

sideration of power factor variation with the 
changing load. 
National Instruments PXI modules, namely, NI PXI-
1031 chassis, 3.0GHz Pentium 4 Rack-mount PXI 
controller and 16-Bit NI PXI-6251 with 16 analog 
inputs and 24 digital I/Os, have been specified as the 
hardware platform to construct DAQ package. 
LabVIEW has been selected as software platform to 
develop the whole package due to its powerful 
performance in data acquisition, graphical user 
interface (GUI) design, and hardware connectivity. 
The developed process monitoring software is 
capable to acquire, analyze and present the data 
simultaneously due to the utilization of multithread 
programming techniques i.e. queue technique. For 
the purpose of the reduction the manual interference, 
data can be automatically stored in specified file and 
the name of file can be stamped according to the 
starting time of sampling. Moreover, the power 
sensory signal has been selected as the triggering 
source to conduct self-triggering by using the 
impulse generated by the starting of spindle motor. 
The corresponding software has been developed to 
run in re-triggerable manner to acquire signals 
successively without manual interferences. By the 
implementation of self-triggering  
technique, the acquired signals are started at exact 
same moment without the requirement for further 
alignment. The whole online machining process 
monitoring system is shown schematically in Figure 
2. 

4.2 Tool Wear Prediction in Turning 
Process 

A Swedturn 4-axes CNC twin lathe was employed to 
manufacture Inconel 718 disc. Ceramic tools were 
used in the experimental trials due to the 
performance in terms of high melting point, 
excellent hardness and wear resistance for the 

machining of hard materials. Ceramic insert RCGX 
35T-0320 with constant tool edge preparation 
(clearance angle 1° and rake angle 13°) and different 
tooling conditions were employed to conduct turning 
trials. To meet industrial requirements, the Inconel 
718 disc with complicated profile as shown in 
Figure 3 was specified to manufacture.  

40

250 240

75

 
Figure 3: Geometrical parameter of Inconel 718 disc for 
turning. 

Additionally, the dynamometer Kistler 9257B and 
power sensor Load control LC-PH-3A-10V were 
installed to acquire force and power signals 
respectively. To demonstrate the effectiveness of 
proposed prediction approach based on wavelet 
transform and SVM, several turning trials have been 
performed to acquire sensory signals under different 
tool wear conditions. The tool wear in terms of VB 
was measured by optical scan microscope after each 
cutting as shown in Figure 4.  

 
Figure 4: Photo of turning tool wear taken by optical scan 
microscope. 

The original force and power signals acquired from 
initial fresh tool toward to excessive tool wear are 
shown in Figure 5 and 6 respectively. It can be seen 
that the power signals have the same pattern as force 
signals acquired from dynamometer. Both signals  
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Figure 5: Original force acquired from dynamometer with 
different wear. 

 
Figure 6: Original power signals with different tool wear.  

possess different characteristics at different segment 
of the profile caused by the variation of effective 
cutting length between insert and workpiece. The 
power sensor is recognized as an appropriate 
alternative sensor for machining process monitoring 
due to the ease of installation and low cost. 
However, it seems that the power signal is less 
sensitive than force signal in the detection of tool 
wear due to the interference from dynamic 
components. Hence, the wavelet transform is further 
employed to decompose power signals into static 
and dynamic components. It can be seen that 
amplitude of static components of power signals 
increased with the proceeding of tool wear as shown 
in Figure 7. 
Additionally, for the purpose of feature extraction, 
the dimensionality or length of sensory signal can be 
reduced significantly by the utilization of wavelet 
transform. Finally, the data sets composed features 
extracted by wavelet transform and corresponding 
tool wear measured by optical scan microscope were 
obtained. The desired output of the LS-SVM 

represents wear states of the cutting tool in terms of 
VB. Then all features were normalized against their 
respective standard deviations. The whole data sets 
can be further divide into two sub-sets, i.e. training 
sets and validation sets. Then, the SVM-based tool 
wear model was trained by training sets and two 
turning parameters γ and σ was selected as 10 and 
0.3 respectively. By application of training 
algorithm for training sets, the b and ak can be 
obtained and stored to construct predictive model. 
Once the training stage is accomplished, the SVM-
based tool wear model was validated by validation 
sets. The predicted tool wear by using SVM model 
and actual tool wear measured by optical scan 
microscope is compared in the Figure 8. A good 
agreement between them can be found at each level 
of tool wear. The experimental results show that 
SVM-based model is effective to predict tool wear 
by using features extracted from wavelet transform. 

 
Figure 7: Static components of power signals extracted by 
wavelet transform. 

  
Figure 8: Comparisons between predicted and actual tool 
wear measured by optical scan microscope. 
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5 CONCLUSIONS 

A new tool wear prediction approach based on 
wavelet transform and LS-SVM has been developed 
and demonstrated in turning trials. The major 
contributions of this work can be summarized as 
follows: 

1. Wavelet transform has been implemented in 
dimensionally reduction and feature extraction for 
sensory signals acquired in machining processes. In 
comparison with conventional feature extraction 
approaches, wavelet transform technique is capable 
of exploring the instinct correlation between the 
sensory signals and tool wear due to its powerful 
multi-scale decomposition capability. 
2. LS-SVM technique has been developed to predict 
tool wear by using extracted features from wavelet 
transform. Due to the utilization of statistical 
learning theory, LS-SVM can overcome several 
disadvantages with traditional machine learning 
techniques, e.g. local optimal solution, low 
convergence rate and poor generalization ability 
when few samples are available. 
3. It has been proved that the sensory signal 
measured by alternative sensors, i.e. power sensor, 
correlate with dynamometer signal very well and is 
sensitive enough to detect tool wear. As a result, the 
power signals have been selected to conduct feature 
extraction due to the cost-effectiveness and the ease 
of installation.  
4. The effectiveness of proposed prediction approach 
has been demonstrated in experimental turning trials. 
A good agreement can be found between predicted 
tool wear obtained by LS-SVM and actual tool wear 
measured by optical scan microscope. 
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