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Abstract: An adaptive discrete-time LQG control with loop transfer recovery is considered using shift and delta op-
erators. The control problem is analyzed using state-spacemodel and the parameter estimation problem is
implemented for corresponding ARMAX model. Analysis of asymptotic performance of delta model ap-
proach and continuous-time model case is presented. Computer simulations of third-order system modeled by
a second-order model are given to illustrate the robustnessproperties of the adaptive LQG/LTR controller.

1 INTRODUCTION

Adaptive LQG control is not an area of a great deal of
research, in particular for adaptive LQG control with
loop transfer recovery (LTR). Adaptive LQG control
has been discussed e.g. in (Bitmead et al., 1990; Tay
and Moore, 1991; Krolikowski, 1995; Mäkilä et al.,
1984), where in (Tay and Moore, 1991) an adaptive
LQG/LTR problem was solved augmenting the basic
estimator-based controller with a stable proper linear
system feeding back the estimation residuals. This
idea was also used for non-adaptive continuous-time
systems in (Tay and More, 1989) using theH∞/H2

optimization technique.
In this paper, an application of LTR technique to adap-
tive control of discrete-time systems for bothz and
δ operators is presented. The adaptive continuous-
time LQG control algorithm is proposed where the
controller/filter parameters are tuned on the basis of
δ model identification. Asymptotic performance for
limTs→ 0 is analyzed. The robustness issue is touched
and simulated for third-order ARX system considered
as a second-order model.

2 PRELIMINARIES

Consider the following state-space description of the
multivariable linear discrete-time system

xt+1 = Fxt +Gut +wt (1)

y
t

= Hxt + vt (2)

obtained with ZOH where{wt} and {vt} are se-
quences of independent random vector variables with

zero mean and covariancesEwtw
T
s = Σwδt,s, vtv

T
s =

Σvδt,s.
The Kalman predictor in steady-state is given by

x̂t+1/t = Fx̂t/t−1+Gut +Kpỹp
t

(3)

whereỹp
t
= y

t
−Hx̂t/t−1 is an innovation of output at

time t. The predictor gain is given by

Kp = FPHT [HPHT +Σv]
−1 (4)

whereP is the solution of Riccati equation

P= FPFT +Σw−FPHT [HPHT +Σv]
−1HPFT (5)

The covariance of the innovation ˜yp
t

is Σỹ = HPHT +
Σv.
Filtered estimate ˆxt/t in terms ofx̂t/t−1 is

x̂t/t = x̂t/t−1+K f ỹ
p
t

(6)

and the recursive equation for ˆxt/t is

x̂t+1/t+1 = Fx̂t/t +(I −K f H)Gut +K f ỹ
f
t+1

(7)

whereỹf
t+1 = y

t+1
−HFx̂t/t and the filter gain

K f = PHT [HPHT +Σv]
−1, (8)

soKp = FK f in view of (4). An alternative version of
(7) is

x̂t+1/t+1 = Fx̂t/t +Gut +K f ỹ
p
t+1

(9)

3 LOOP TRANSFER RECOVERY:
z OPERATOR FORMULATION

Consider the stationary loss function

J = E
∞

∑
t=0

yT
t

y
t

(10)
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and assume that the system is square and det(HG) 6=
0.
The control law

ut = Kcxt/t (11)

minimizing the lossJ is then determined by

Kc =−(HG)−1HF (12)

and the matrixHTH is the solution of the correspond-
ing Riccati equation.
The transfer function inz operatorGf (z) of compen-
sator defined by (7) and (11) can be manipulated into
the form

Gf (z) = zKc[zI− (I −K f H)(F −GKc)]
−1K f (13)

The filter’s open-loop return ratio is

Φ(z) = H(zI−F)−1Kp (14)

In (Maciejowski, 1985) it was shown that ifG(z) =
H(zI−F)−1G is minimum-phase andKc takes a form
of (12) then the perfect recovery takes place, that is

∆(z) = G(z)Gf (z)−Φ(z) = 0. (15)

WhenG(z) is nonminimum-phase then the perfect re-
covery is in general not possible, however the possi-
bility of recovery is frequently realized in closed-loop
bandwidth (Maciejowski, 1985).
In the case of the Kalman predictor feedback, the con-
troller is

ut = Kcxt/t−1 (16)

and its transfer function is

Gp(z) = Kc[zI−F +GKc+KpH]−1Kp (17)

Again the perfect recovery cannot be achieved in this
case even for minimum-phase system.

4 LOOP TRANSFER RECOVERY:
δ OPERATOR FORMULATION

State equation (1) inδ operator formulation takes a
form

δxt = Fδxt +Gδut +w
′

t (18)

where in view of (1)Fδ = 1
Ts
(F − I), Gδ = 1

Ts
G and

w
′

t =
1
Ts

wt , v
′

t =
1
Ts

vt are sequences with spectral den-
sitiesW andV, respectively. Usually, theδ opera-
tor discretization is used for smallTs when ZOH dis-
cretization makes numerical problems. The filter’s
open-loop return ratio at the output node of the plant
is

Φ(γ) = H(γI −Fδ)
−1Kp (19)

whereδ transform operator with the sampling period
Ts is γ = z−1

Ts
.

The LQG controller is defined by the control law

ut = Kcxt/t (20)

with the Kalman filter given by

x̂t/t = x̂t/t−1++TsK f ỹ
p
t

(21)

where

δx̂t/t−1 = Fδx̂t/t−1+Gδut +Kpỹp
t

(22)

Moreover, it holdsKp = (I +TsFδ)K f , and an explicit
recursive equation for Kalman filter is

δx̂t/t = Fδx̂t/t +Gδut +K f ỹ
p
t+1

. (23)

In (Tadjine et al., 1994) it was shown that if the system
(18), (2) is stabilizable, detectable, left invertible and
inversely stable, and weighting matrices in the perfor-
mance indexQ = HTH, R= ρI then asymptotically
asρ → 0, Kc takes the forms

Kc =−
1
Ts
(HGδ)

−1H(I +TsFδ) (24)

and the perfect recovery takes place, that is

∆(γ) = G(γ)Gf (γ)−Φ(γ) = 0, (25)

whereG(γ) = H(γI −Fδ)
−1Gδ, and

Gf (γ) = (1+Tsγ)Kc[γI −Fδ+GδKc)]
−1K f (26)

is the transfer function of the controller

ut = Kcxt/t (27)

where now

x̂t/t = x̂t/t−1++TsK f yt
(28)

and
δx̂t/t−1 = Fδx̂t/t−1+Kpy

t
. (29)

The above results from the fact that as soon as recov-
ery is obtained the coupling between the observation
error and the observer output should vanish.

5 LOOP TRANSFER RECOVERY:
CONTINUOUS-TIME
FORMULATION

The dynamics of the system is given by the transfer
function matrix from control input to the output

G(s) =C(sI−A)−1B, (30)

whereA,B,C are matrices in the standard state-space
equation, andC= H. It is worthy to note that asymp-
totically i.e. for Ts → 0, G(γ) → G(s), however
G(z)→ 0.
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Transfer matrix of the controller is

Gf (s) = Kc
c [sI−A+BKc

c +Kc
fC]

−1Kc
f (31)

To computeKc
c for the LQG/LTR controller the fol-

lowing Riccati equation is to be solved

PρA+ATPρ +CTC−
1
ρ

PρBBTPρ = 0 (32)

for ρ→ 0 and then the controller gainKc
c is calculated

as

Kc
c,ρ =−

1
ρ

BTPρ. (33)

The following LTR result holds (Athans,
1986): if the plant G(s) is minimum-phase
then limρ→0 G(s)Gf ,ρ(s) = Φ(s), where
Φ(s) = C(sI − A)−1Kc

f and Gf ,ρ(s) is calculated
from (31) for Kc

c,ρ. The dual LTR result, i.e. when
the weighting matrixQ= Q0+ρM for ρ → ∞ can be
found in (Kulcsar, 2000). It is easy to see from (26)
that asymptotically

lim
Ts→0

Gf (γ) = Gf (s) = Kc[sI−A+BKc)]
−1K f (34)

and full recovery holds that isG(s)Gf (s) = Φ(s), so
the δ model approach and continuous-time case are
asymptotically equivalent. Obviously, it holdsKp =
K f for Ts → 0.
To computeKc

f in (31) the following Riccati equation
is to be solved

APµ+PµA
T +LTL−

1
µ

PµC
TCPµ = 0 (35)

and then the filter gainKc
f is calculated as

Kc
f ,µ =

1
µ

PµC
T . (36)

whereµI andLTL are intensity matrices for measure-
ment and system noise, respectively.

6 ADAPTIVE CONTROL

The SISO ARMAX model is given by

A(q−1)yt = B(q−1)ut +C(q−1)et (37)

where A(q−1),B(q−1) and C(q−1) are polynomials
in the backward shift operatorq−1, i.e. A(q−1) =
1 + a1q−1 + ... + anq−n,B(q−1) = b1q−1 + ... +
bnq−n,C(q−1) = 1+ c1q−1+ ...+ cnq−n andyt is the
output ,ut is the control input, and{et} is assumed
to be a sequence of independent variables with zero
mean and varianceσ2

e. Unknown system parameters
θ = (a1, ...,an,b1, ...,bn,c1, ...,cn)

T (or corresponding

parameters ofδ model) are estimated on-line to ob-
tain an updated model at timet, i.e. θ̂t (or corre-
spondingδ model) which is in turn used for updat-
ing the lqg adaptive control of the system. The pa-
rameter estimates ofδ model can be used for tun-
ing the continuous-time LQG/LTR control assuming
the sampling period is small enough. In this way a
continuous-time system identification problem can be
omitted.
ARMAX model (31) has an equivalent innovation
state space representation

xt+1 = Fxt +gut + kpet (38)

yt = hTxt +et (39)

where g = (b1, ...,bn)
T , kp = (c1 − a1, ...,cn −

an)
T , hT = (1,0, ...,0)

F =







−a1 1 ... 0
. . ... 0

−an−1 . ... 1
−an . ... 0






,

kp is the stationary gain vector for the associated
Kalman predictor corresponding to (3)

x̂t+1/t = Fx̂t/t−1+gut + kpỹp
t (40)

whereỹp
t = yt −hT x̂t/t−1 andσ2

ỹ,p is the variance of
ỹp

t for which it holdsσ2
ỹ,p = σ2

e.
The actual model used for LQG/LTR control signal
ut calculation is obtained for current parameter esti-
matesθ̂t .
The investigated problem is to check out how the
approximatedδ model used in adaptive LQG/LTR
control can be used in tuning the continuous-time
LQG/LTR control.
The issue of stability of the proposed adaptive
LQG/LTR control system is of course crucial. This
depends on the asymptotic convergence of parameter
estimates, particularly taking into account that in gen-
eral the parameter estimation in LQG adaptive control
even in the lack of modelling error, does not assure
the convergence to the true parameters. Closed loop
stability and good performance cannot be guaranteed
especially during the transient stage.

7 SIMULATIONS

Consider as an example a third-order minimum-
phase actual system obtained by discretizing the
continuous-time system

G(s) =
s+5

(s+1)(s+2)(s+3)
=

−s+1
(s+1)(s+2)

+
1

s+3
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with ZOH and sampling periodTs= 0.5swhose nom-
inal part has a standard state space representation

A=

[

−3 1
−2 0

]

, B=

[

−1
1

]

, C=
[

1 0
]

and which yields the following transfer function in
q−1 operator

G(q−1) =
0.09771q−1 +0.06925q−2 −0.005945q−3

1−1.198q−1 +0.4406q−2 −0.04979q−3 =

=
−0.1612q−1+0.2856−2

1−0.9744q−1 +0.223−2 +
0.259−1

1−0.223−1 . (41)

The first part ofG(q−1) is taken for undermod-
elling. Substitutingq−1 = (1+ δTs)

−1 the corre-
sponding discrete-timeδ model is obtained as

yδ
t +α1yδ

t−1+α2yδ
t−2 = β1uδ

t−1+β2u
δ
t−2. (42)

whereα1 =
2+a1

Tp
, α2 =

1+a1+a2
T2

p
, β1 =

b1
Tp

, β2 =
b1+b2

T2
p

andyδ
t =

yt−2yt−1+yt−2
T2

p
, yδ

t−1 =
yt−1−yt−2

Tp
, yδ

t−2 = yt−2,

uδ
t−1 =

ut−1−ut−2
Tp

, uδ
t−2 = ut−2.

As already mentioned, in both cases, a second-order
ARX model was taken for identification andcer-
tainty equivalence principlewas used to implement
the adaptive control system to demonstrate the robust-
ness of adaptive LQG/LTR controller with respect to
undermodelling. The simulation of continuous -time
adaptive LQG control with LTR and estimation based
on theδ model are shown in Figs.1,2 forρ = 0.001
and Ts = 0.5,0.2, respectively. An output variance
in steady state was calculated: for the case of Fig.1 it
equals to 0.2090, and for the case of Fig.2 it is 0.6051.

The case withδ model is shown in Figs.3,4
for Ts = 0.5,0.2, and corresponding variances equal
to 0.2956,0.5584, respectively. In both cases the
adaptive control system performs well, however the
continuous-time LQG/LTR adaptive control system
with δ model tuning is superior with respect to out-
put variance.

System parameters were identified using the stan-
dard recursive least squares (RLS) algorithm fort =
1, ...,300 andσ2

e = 0.1. Obviously, in the general case
of ARMAX model the recursive pseudolinear regres-
sion (RPLR) or recursive prediction error (RPEM) al-
gorithm must be used. It was shown in (Nilsson and
Egardt, 2010), that RPEM is more suitable in the con-
sidered undermodelled situations taking into account
the asymptotic properties of the algorithm.

8 CONCLUSIONS

The problem of using loop transfer recovery for adap-
tive LQG control is presented in bothz and γ do-
mains. In the latter case an asymptotic equivalence

(Ts → 0) with the continuous-time system is inves-
tigated. Example of third-order actual system de-
scribed by a second-order ARX model is taken for
simulation. Simulation results show an effectivness
of the LTR technique as a method for robustifying the
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Figure 1: Output signal and estimates forTs = 0.5, ρ =
0.001.
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Figure 2: Output signal and estimates forTs = 0.2, ρ =
0.001.
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Figure 3: Output signals and estimates forTs = 0.5, δ
model.
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Figure 4: Output signals and estimates forTs = 0.2, δ
model.
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adaptive LQG control.
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