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Abstract: A discrete-time LQG control with actuator failure is considered. The control problem is analyzed in terms of
algebraic Riccati equations. Computer simulations of two-input two-output system are given to illustrate the
performance of the reliable LQG controller. An actuator saturation case is also included.

1 INTRODUCTION

Reliable LQG control is an area of some research.
This has been discussed e.g. in (Yang et al., 2000b;
Yang et al., 2000a; Maciejowski, 2009). In (Yang
et al., 2000b) a discrete-time LQ control problem
with actuator failure was considered while in (Yang
et al., 2000a) a continuous-time LQG control problem
with sensor failure was investigated. General ideas on
posssible applications of fault-tolerant control are dis-
cussed in (Maciejowski, 2009).

In this paper, a discrete-time LQG control prob-
lem with actuator failure modelled by a scalling fac-
tor is considered. The aim of the paper is to check
out how the method presented in (Yang et al., 2000b)
for LQ control will work for LQG case. Simultane-
ous scaling and saturation failure case is also analyzed
where the phenomenon similar to the short-term be-
haviour phenomenon (Chen et al., 1993; Chen et al.,
1994) takes place. Numerical comparative simula-
tions for two-input two-output system are given.

2 PROBLEM FORMULATION

Consider the following state-space description of the
multivariable linear discrete-time system

xt+1 = Fxt +Gut +wt (1)

where xt is n-dimennsional state vector,ut is m-
dimensional control vector, and{wt} is a sequence of
independent randomn-dimennsional vector variables
with zero mean and covarianceEwtw

T
s = Σwδt,s.

Consider the stationary loss function

J = E(
∞

∑
t=0

xT
t Qxt +uT

t Rut), (2)

whereQ> 0, R≥ 0 are given weighting matrices.
The following actuator failure model is considered

(Yang et al., 2000b)

uF
t,i = αiut,i i = 1, · · · ,m. (3)

whereuF
t,i denotes the signal from actuator that has

failed and

0≤ αi ≤ αi ≤ ᾱi i = 1, · · · ,m. (4)

with αi ≤ 1, ᾱi ≥ 1. In this modelᾱi = αi means the
normal caseuF

t,i = ut,i , ᾱi = 0 means the outage case
while αi > 0 means the partial failure case.

The control law

ut = Kxt (5)

minimizing the lossJ is determined by optimal feed-
back gain

Kopt =−(GTPoptG+R)−1GTPoptF (6)

wherePopt comes from the Riccati equation

Popt = Q+FTPoptF−

−FTPoptG(GTPoptG+R)−1GTPoptF (7)

The optimal performance is given then by the lossJopt

(Meier et al., 1971)

Jopt = x̄T
0 Poptx̄0+ tr[PoptΣ0]+ tr[PoptΣw] (8)

wherex̄0 is the mean value of the initial state andΣ0
is its covariance matrix.

The control law is said to be a reliable guaranteed
cost associated with a matrixP if P satisfies the equa-
tion

[F +GαK]TP[F +GαK]−P+KTαRαK+

+Q≤ 0 (9)
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for all αi satisfying (4). The aim of the algorithm
given below is to find a reliable state feedback con-
trol law.

The following notations are adopted

ᾱ = diag(ᾱ1, ᾱ2, · · · ᾱm) (10)

α = diag(α1,α2, · · ·αm) (11)

α = diag(α1,α2, · · ·αm) (12)

3 CONTROL ALGORITHM

The following algorithm (Yang et al., 2000b) is taken
for consideration

• Step 1 Solve (7) forPopt, then choose diagonalR0
satisfying

R0 ≤ (GTPoptG+R)−1
. (13)

• Step 2 Solve

P= Q+FTPF−FTPJ0PF (14)

for stabilisingP and then check

R0 ≤ (GTPG+R)−1
, (15)

where

J0 = G(I −β2
0)[(G

TPG+R)(I −β2
0)+R−1

0 β2
0]
−1GT

.

(16)

• Step 3 (i) If eqn.(15) holds forR0 andP then in-
creaseR0 and go to Step 2. (ii) If eqn.(15) does
not hold forR0 andP then decreaseR0 and go to
Step 2.

• Step 4 When eqn.(15) holds forR0 and stabilis-
ing P fulfils (14), but eqns. (14) and (15) have
no positive solution for anyR01 with R0 < R01 ≤
(GTPoptG+R)−1, stop. In this case the feedback
gain is given by

K =−β−1{I − (X−1−R0)[(I −β2
0)+β2

0R−1
0 X−1]−1

×β2
0R−1

0 }X−1GTPF, (17)

whereX = GTPG+R.

The following notations have been adopted

β = diag(β1,β2, · · ·βm), (18)

β0 = diag(β10,β20, · · ·βm0), (19)

where

βi =
ᾱi +αi

2
, (20)

βi0 =
ᾱi −αi

ᾱi +αi
. (21)

Moreover, matrixP is said to be a stabilising solution
to the Riccati equation

P= Q+FTPF−FTPG(GTPG+R)−1GTPF (22)

if it satisfies this equation and the matrixF −
G(GTPG+R)−1GTPF is stable.

4 AMPLITUDE-CONSTRAINED
CONTROL

The case of amplitude-constrained control input
which can be treated as an actuator saturation can also
be considered as a kind of actuator failure (Zuo et al.,
2010). In this case the control input can be expressed
as

uF
t,i = sat(kT

i xt ;βi) i = 1, · · · ,m (23)

whereβi is the value of constraint forut,i andkT
i is

thei− th row of feedback gain matrixK. The method
for calculating optimal feedback gain for stochastic
systems under the saturation constraint was proposed
for example in (Toivonen, 1983; Krolikowski, 2004).

Illustration of actuator failure given by (4) and the
actuator saturation given by (23) is shown in Fig.1 for
single input system.
In this figure the model failure

uF
t,i = sat(αiut,i ;βi) i = 1, · · · ,m (24)

being the superposition of models (3) and (23) is also
illustrated (shadowed area).

Figure 1: Illustration of actuator failure.

5 SIMULATIONS

The following two-input two-output system is given
by matrices

F =

[

1 0.1
−0.5 0.9

]

, G=

[

1 −0.4
−0.8 0.9

]

,
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Table 1: Feedback gains and loss function values; failure
(3).

αi kT
1 −

ᾱi kT
2 J̄

0.9 –0.9004, –0.3319 –
1.1 –0.1572, –1.0898 2.2794
0.7 –0.7492, –0.0924 –
1.3 0.0342, –0.7964 2.4626
0.5 –0.6357, 0.0989 –
1.5 0.1967, –0.5417 2.7634
0.3 –0.6141, 0.1750 –
1.7 0.3034, –0.3381 3.1764
0.1 –0.9880, 0.1943 –
1.9 0.5037, –0.2898 4.6344

Σw =

[

1 0
0 1

]

,

Q= I , R= 0.1I andx0 = 0.
The feedback gainsKT = (k1,k2) and the corre-

sponding values of the loss function for few configu-
rations of system failureαi , ᾱi are shown in Table 1.
The values of the loss function̄J were averaged over
10000 runs.

The feedback gains and the corresponding values
of the loss function for few constraintsβ1,β2 for fail-
ure (23) are shown in Table 2. In this case, the sub-
optimal feedback gainsk1,k2 were calculated with
iterative procedure given in (Toivonen, 1983; Kro-
likowski, 2004) for given constraintsβ1, β2.

The optimal value of the loss function (also seen
from Table 2 forβ1 = β2 = ∞) is Jopt = 2.256. Fi-
nally, the feedback gains and the corresponding val-
ues of the loss function for failure (24) and different
constraintsβ1,β2 are shown in Tables 3, 4, 5, 6. It
should be noticed that in this case the amplitude con-
straint βi in (24) is realized as a simple cut-off that
is obviously not an optimization approach like in the
previous case.

The exemplary run of inputs and outputs with ac-
tuator failure (3) withαi = 0.75, ᾱi = 1.25, i = 1,2
is shown in Fig.2 where the corresponding loss is
J̄ = 2.4018, and the corresponding run under actuator
failure (24) withαi = 0.75, ᾱi = 1.25,βi = 1.5, i =
1,2 is shown in Fig.3 where the corresponding loss is
J̄ = 2.5440.

Analyzing the values of the loss function given
in Tables 3, 4, 5, 6 one can observe a phenomenon
like the short-term behaviour phenomenondescribed
in (Chen et al., 1993; Chen et al., 1994) which takes
place when the minimum variance control is consid-
ered and the cutoff method is used to constrain the
control signal. This means that even though more
control effort is applied to the system, the closed-loop
system performance does not improve. The effect of
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Figure 2: Input and output signals for failure (3).
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Figure 3: Input and output signals for failure (24).

Table 2: Feedback gains and loss function values; failure
(23).

β1 kT
1 −

β2 kT
2 J̄

∞ –0.9322, –0.3821 –
∞ –0.1975, –1.1526 2.2567
1.5 –0.8594, –0.2113 –
1.5 –0.0544, –1.0186 2.4879
1.0 –0.7465, –0.0614 –
1.0 0.1423, –0.8302 2.7932
0.5 –0.5987, 0.1166 –
0.5 0.4141, –0.4282 4.3363
0.3 0.6192, 0.0785 –
0.3 0.5146, –0.2542 9.1401

that kind happens forαi = 0.0,0.1, ᾱi = 2.0,1.9 as
illustrated in Fig.4, where the notationαi = 1− δ,
ᾱi = 1+ δ is used. In Fig.5 whereδ = 0.2,0.3 the
effect is not seen. It can be concluded that the bigger
δ the stronger is the effect.

A similar phenomenon can be observed for given
βi and variableδ, for example forβi = 1.0, βi = 1.5
that is illustrated by Fig.6. Fig.7 shows the caseβi =
0.3, βi = 0.5 where the effect is not seen.
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Table 3: Feedback gains and loss function values; failure
(24),β1 = β2 = 1.5.

αi kT
1 −

ᾱi kT
2 J̄

0.9 –0.9004, –0.3319 –
1.1 –0.1572, –1.0898 2.5658
0.7 –0.7492, –0.0924 –
1.3 0.0342, –0.7964 2.5467
0.5 –0.6357, 0.0989 –
1.5 0.1967, –0.5417 2.7846
0.3 –0.6141, 0.1750 –
1.7 0.3034, –0.3381 3.1765
0.1 –0.9880, 0.1943 –
1.9 0.5037, –0.2898 4.2560

Table 4: Feedback gains and loss function values; failure
(24),β1 = β2 = 1.0.

αi kT
1 −

ᾱi kT
2 J̄

0.9 –0.9004, –0.3319 –
1.1 –0.1572, –1.0898 3.3789
0.7 –0.7492, –0.0924 –
1.3 0.0342, –0.7964 2.9068
0.5 –0.6357, 0.0989 –
1.5 0.1967, –0.5417 2.9351
0.3 –0.6141, 0.1750 –
1.7 0.3034, –0.3381 3.2345
0.1 –0.9880, 0.1943 –
1.9 0.5037, –0.2898 4.0399

6 CONCLUSIONS

The problem of reliable LQG control for discrete-
time stochastic system is presented. An example of
a two-input system described by state-space equation
is taken for simulation. Simulation results show an

Table 5: Feedback gains and loss function values; failure
(24),β1 = β2 = 0.5.

αi kT
1 −

ᾱi kT
2 J̄

0.9 –0.9004, –0.3319 –
1.1 –0.1572, –1.0898 8.7100
0.7 –0.7492, –0.0924 –
1.3 0.0342, –0.7964 5.8636
0.5 –0.6357, 0.0989 –
1.5 0.1967, –0.5417 5.0188
0.3 –0.6141, 0.1750 –
1.7 0.3034, –0.3381 4.8076
0.1 –0.9880, 0.1943 –
1.9 0.5037, –0.2898 4.9832

Table 6: Feedback gains and loss function values; failure
(24),β1 = β2 = 0.3.

αi kT
1 −

ᾱi kT
2 J̄

0.9 –0.9004, –0.3319 –
1.1 –0.1572, –1.0898 18.3355
0.7 –0.7492, –0.0924 –
1.3 0.0342, –0.7964 12.9966
0.5 –0.6357, 0.0989 –
1.5 0.1967, –0.5417 11.3516
0.3 –0.6141, 0.1750 –
1.7 0.3034, –0.3381 10.7430
0.1 –0.9880, 0.1943 –
1.9 0.5037, –0.2898 10.2722

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
4

5

6

7

8

9

10

11

β

J

δ=1

δ=0.9

Figure 4: Loss function vsβ for δ = 1.0,0.9.
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Figure 5: Loss function vsβ for δ = 0.2,0.3.
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Figure 6: Loss function vsδ for β = 1.0,1.5.
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Figure 7: Loss function vsδ for β = 0.3,0.5.

effectivness of the proposed control algorithms as a
method for coping with actuator failure in the case of
state feedback LQG control. A failure in form of ac-
tuator saturation (23) has stronger impact on the loss
function than actuator failure given by (3), especially
for tight constraints. In that case the failure (24) has
even more stronger impact.
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