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Abstract: A discrete-time LQG control with actuator failure is coresield. The control problem is analyzed in terms of
algebraic Riccati equations. Computer simulations of immi#t two-output system are given to illustrate the
performance of the reliable LQG controller. An actuatousation case is also included.

1 INTRODUCTION whereQ > 0, R > 0 are given weighting matrices.
The following actuator failure model is considered
Reliable LQG control is an area of some research. (Yang et al., 2000b)
This has been discussed e.g. in (Yang et al., 2000b; E
Yang et al., 2000a; Maciejowski, 2009). In (Yang Ui = Olilh
et al., 2000b) a discrete-time LQ control problem
with actuator failure was considered while in (Yang
etal., 2000a) a continuous-time LQG control problem
with sensor failure was investigated. General ideas on 0<gi<ai<a; i=1,---,m 4)
posssible applications of fault-tolerant control are dis-
cussed in (Maciejowski, 2009).

In this paper, a discrete-time LQG control prob-
lem with actuator failure modelled by a scalling fac-
tor is considered. The aim of the paper is to check
out how the method presented in (Yang et al., 2000b) u = Kx (5)
for LQ control will work for LQG case. Simultane-
ous scaling and saturation failure case is also analyzedninimizing the loss] is determined by optimal feed-
where the phenomenon similar to the short-term be- back gain

i=1,-..,m @)

Whereut'fi denotes the signal from actuator that has
failed and

with a; < 1,a; > 1. In this model; = a; means the
normal caseyf; = w, a; = 0 means the outage case
while a; > 0 means the partial failure case.

The control law

haviour phenomenon (Chen et al., 1993; Chen et al., opt _ _ /~Tpopt 1T popt
1994) takes place. Numerical comparative simula- K =-(GPTC+R G PTF ©)
tions for two-input two-output system are given. whereP°P' comes from the Riccati equation

POpt — Q+ FTpOptF_
2 PROBLEM FORMULATION —FTPP'G(GTPP'G+R)IG'PP'F  (7)

) ] o The optimal performance is given then by the [6%%
Consider the following state-space description of the (\eijer et al., 1971)
multivariable linear discrete-time system

X1 = FX + GU + W 1)

where x, is n-dimennsional state vectoy, is m-
dimensional control vector, arfay, } is a sequence of
independent random-dimennsional vector variables
with zero mean and covarianEeLvtv_vl = 2o s

JOPt— ST POPY + tr [POPIS] + tr[POP's,]  (8)

wherex, is the mean value of the initial state akgl
is its covariance matrix.

The control law is said to be a reliable guaranteed
cost associated with a mattixif P satisfies the equa-

Consider the stationary loss function tion
o [F 4+ GaK]"P[F + GaK] — P+ K aRaK +
J=E(Y ¥ R 2
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for all a; satisfying (4). The aim of the algorithm
given below is to find a reliable state feedback con-
trol law.

The following notations are adopted

a = diag(ay,dy, --0m) (10)
a = diag(glaQZa o gm) (11)
a = diag(as,az, - om) (12)

3 CONTROL ALGORITHM

The following algorithm (Yang et al., 2000b) is taken
for consideration

e Step 1 Solve (7) foP°P, then choose diagonRh
satisfying
Ro < (G'PP'G+R) L. (13)
e Step 2 Solve
P=Q+F'PF—F'PYPF (14)
for stabilisingP and then check
Ry < (G'TPG+R) ™, (15)
where

Jo=G(1 - B3)[(G'PG+R)(I - B3) + Ry *B3] *G'.
(16)

e Step 3 (i) If eqn.(15) holds foRy andP then in-
creaseRy and go to Step 2. (ii) If eqn.(15) does
not hold forRy andP then decreasBy and go to
Step 2.

e Step 4 When eqn.(15) holds f& and stabilis-
ing P fulfils (14), but eqns. (14) and (15) have
no positive solution for anRy; with Ry < Rp1 <
(GTP°P'G 4 R)~1, stop. In this case the feedback
gain is given by

K= =B H1 = (X"~ Ro)[(1 - B§) + BgRy "X 1]

x B3R, LIX1GTPF, (17)
whereX = GTPG+R.
The following notations have been adopted
B = diag(Bla BZ7 e Bm)a (18)
Bo = diag(B1o,Bz0, - Bmo), (19)

where
ai + g
Bi = _I 2_I7 (20)
i — q;
N = = 21
BIO 0i+0| ( )
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Moreover, matrixP is said to be a stabilising solution
to the Riccati equation

P=Q+F'PF-FTPG(G'PG+R)IG'PF (22)

if it satisfies this equation and the matrix —
G(G"PG+R)"IGTPF is stable.

4 AMPLITUDE-CONSTRAINED
CONTROL

The case of amplitude-constrained control input
which can be treated as an actuator saturation can also
be considered as a kind of actuator failure (Zuo et al.,
2010). In this case the control input can be expressed
as

wheref; is the value of constraint fau ; andl_q-T is

thei —th row of feedback gain matriK. The method

for calculating optimal feedback gain for stochastic

systems under the saturation constraint was proposed

for example in (Toivonen, 1983; Krolikowski, 2004).
Illustration of actuator failure given by (4) and the

actuator saturation given by (23) is shown in Fig.1 for

single input system.

In this figure the model failure

uf; =sat(oiu;pi) i=1,--,m (24)

being the superposition of models (3) and (23) is also
illustrated (shadowed area).

Figure 1: lllustration of actuator failure.

5 SIMULATIONS

The following two-input two-output system is given
by matrices

1 01 1 —04
F[0.5 0.9]’ G[o.s 0.9}’
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Table 1: Feedback gains and loss function values; failur

A).

9g; ki ~
[oF |_(-£ J
0.9 | —-0.9004,-0.3319 -
1.1 | -0.1572,-1.0898 2.2794
0.7 | -0.7492,-0.0924 -

1.3 | 0.0342,-0.7964| 2.4626
0.5| -0.6357,0.0989| - 5 9
15| 0.1967,-0.5417 2.7634 e
0.3 | -0.6141,0.1750 -
1.7 | 0.3034,-0.3381 3.1764
0.1| -0.9880, 0.1943 -

1.9 | 0.5037,-0.289§ 4.6344

10
ZW:[O 1]’

Q=I,R=0.1l andxy = 0.

The feedback gaink™ = (k;,k,) and the corre-
sponding values of the loss function for few configu-
rations of system failure;,a; are shown in Table 1.
The values of the loss functiachwere averaged over

10000 runs. . ) Figure 3: Input and output signals for failure (24).
The feedback gains and the corresponding values

of the loss function for few constrainfs, 3, for fail- . . . e
ure (23) are shown in Table 2. In this case, the sub- '(I';\:?)I'e 2: Feedback gains and loss function values; failure
optimal feedback gaing;,k, were calculated with

! L i L
1000 000 000

iterative procedure given in (Toivonen, 1983; Kro- B1 KI —
likowski, 2004) for given constrain, B2. B2 k3 J
The optimal value of the loss function (also seen o | -0.9322,-0.3821 -
from Table 2 forf; = B2 = ») is J°P' = 2.256. Fi- o | —0.1975,-1.1526 2.2567
nally, the feedback gains and the corresponding val- 15| -0.8594,-0.2113 -
ues of the loss function for failure (24) and different 1.5 ] -0.0544,-1.0186 2.4879
constraint{31, 32 are shown in Tables 3, 4, 5, 6. It 1.0| -0.7465,-0.0614 -
should be noticed that in this case the amplitude con- 1.0| 0.1423,-0.8302 2.7932
straintBj in (24) is realized as a simple cut-off that 0.5| -0.5987, 0.1166 -
is obviously not an optimization approach like in the 0.5| 0.4141,-0.4282 4.3363
previous case. 0.3 | 0.6192, 0.0785 -
The exemplary run of inputs and outputs with ac- 0.3 | 0.5146,-0.2542| 9.1401

tuator failure (3) witha; = 0.75,0; = 1.25, i=1,2
is shown in Fig.2 where the corresponding loss is ) _
J=2.4018, and the corresponding run under actuator tat Kind happens fog; = 0.0,0.1, a; = 2.0,1.9 as
failure (24) witha; = 0.75,0; = 1.25,f; = 1.5, i= illustrated in Fig.4, whe_re the notatiam = 1 — 9,
1,2 is shown in Fig.3 where the corresponding loss is % = 1+ is used. In Fig.5 wheré = 0.2,0.3 the
J = 2.5440. effect is not seen. It can be concluded that the bigger

Analyzing the values of the loss function given O the stronger is the effect.

in Tables 3, 4, 5, 6 one can observe a phenomenon A simil_ar phenomenon can be observed for given
like the short-term behaviour phenomertescribed i @nd variabled, for example foff; = 1.0, fi = 1.5

in (Chen et al., 1993; Chen et al., 1994) which takes thatis illustrated by Fig.6. Fig.7 shows the c@se-
place when the minimum variance control is consid- 9-3:Bi = 0.5 where the effectis not seen.

ered and the cutoff method is used to constrain the

control signal. This means that even though more

control effort is applied to the system, the closed-loop

system performance does not improve. The effect of
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Table 3: Feedback gains and loss function values; failure Table 6: Feedback gains and loss function values; failure

(24),B1=B2=15.

(24),B1 =B2=03.

of ki - ol ki —
ai Kl J a; Kl J
0.9 | —0.9004, —-0.3319 - 0.9 | —0.9004, —-0.3319 -
1.1 | -0.1572,-1.0898 2.5658 1.1 | -0.1572,-1.0898 18.3355
0.7 | -0.7492,-0.0924 - 0.7 | —0.7492,-0.0924 -
1.3 | 0.0342,-0.7964| 2.5467 1.3 | 0.0342,-0.7964| 12.9966
0.5| —-0.6357,0.0989 - 0.5| -0.6357,0.0989 -
1.5 0.1967,-0.5417 2.7846 15| 0.1967,-0.5417 11.3516
0.3 | —-0.6141,0.1750 - 0.3 | -0.6141,0.1750 -
1.7 0.3034,-0.3381 3.1765 1.7 | 0.3034,-0.3381 10.7430
0.1 | —0.9880, 0.1943 - 0.1 | —0.9880, 0.1943 -
1.9| 0.5037,-0.2898 4.2560 1.9 0.5037,-0.2898 10.2722
Table 4: Feedback gains and loss function values; failur
(24),B1=B2=1.0.
[of KI -
ai ks J
0.9 | -0.9004, -0.3319 -
1.1 | -0.1572,-1.0898 3.3789
0.7 -0.7492,-0.0924  —
1.3 | 0.0342,-0.7964| 2.9068
0.5| -0.6357,0.0989 -
1.5 0.1967,-0.5417 2.9351
23 _003%15;1,”—%]53735801 3.2_345 Figure 4: Loss function vB for 3= 1.0,0.9.
0.1 | —0.9880, 0.1943 -
1.9| 0.5037,-0.2898 4.0399

6 CONCLUSIONS

The problem of reliable LQG control for discrete-
time stochastic system is presented. An example c
a two-input system described by state-space equatic
is taken for simulation. Simulation results show an

0,3 0‘,4 O.‘S O.‘G 017 GjB 0é9 i 111 112 113 1‘,4 15
Figure 5: Loss function vg for 6= 0.2,0.3.

Table 5: Feedback gains and loss function values; failur

(24),B1 =B2=0.5.
[of ki - *
a K J
0.9 | —0.9004, —-0.3319 -
1.1 | -0.1572,-1.0898 8.7100
0.7 | =0.7492,-0.0924 -
1.3 | 0.0342,-0.7964| 5.8636
0.5| —-0.6357,0.0989 -
1.5 0.1967,-0.5417 5.0188 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.3 | -0.6141,0.1750 - Tt e e e e
1.7 0.3034, —0.3381 4.8076 Figure 6: Loss function v& for 3 =1.0,1.5.
0.1 | —0.9880, 0.1943 -
1.9| 0.5037,-0.2898 4.9832
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Figure 7: Loss function v& for 3 = 0.3,0.5.

effectivness of the proposed control algorithms as a
method for coping with actuator failure in the case of
state feedback LQG control. A failure in form of ac-
tuator saturation (23) has stronger impact on the loss
function than actuator failure given by (3), especially
for tight constraints. In that case the failure (24) has
even more stronger impact.
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