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Abstract: A permutational flowshop group scheduling problem (GSP) with sequence dependent set-up times, finite 
interoperational buffer capacity and workers with different skills has been investigated in this paper. The 
set-up times are influenced by the sequence of groups and the worker skill level; the manufacturing tasks on 
a part are completely automated and the working times do not depend on the operator’s skill. The 
minimization of the completion time is the objective of the group scheduling. A Genetic Algorithm is 
proposed as an efficient tool to solve the investigated problem; a benchmark of problems has been generated 
to investigate the influence of the inter-operational buffer capacity and the worker skill level on the 
completion time. 

1 INTRODUCTION 

To be competitive in the worldwide market of 
goods, companies should produce small lots of 
different products at a convenient cost level and 
different quality standards: consequently, their 
manufacturing systems should be flexible and 
reconfigurable in a short time. In this changing 
environment, the workforce plays a strategic role: in 
particular, at the capacity planning level a team of 
operators should be correctly assembled who 
provide for the sufficient skills to manufacture a 
specific lot of production.  

In the investigated manufacturing system, the 
jobs are grouped into families in accordance to the 
group technology principles and should visit an 
identical sequence of machines, whose set-up times 
are sequence dependent. The inter-operational 
buffers between the machines have finite dimension. 
In order to evaluate scheduling conditions as close 
as possible to the actual process configuration, the 
influence of workers is modelled, too. The operators 
are not a critical resource: for this reason, the job 
transfer time from one machine to its downstream 
one is considered as negligible. Conversely, the 
tasks related to the set-up of each group of jobs 
worked on each workstation are carried out by one 
operator randomly selected out from the currently 
available crew of workers; thus, the set-up times 

depend on the sequence of the groups visiting the 
workstation and the operators skills. Finally, the 
worker does not influence the processing time of 
each job because each working machine is 
automated. The objective of the scheduling is the 
minimization of the total completion time. This is a 
frequent scenario encountered in the manufacturing 
of mechanical parts by means of CNC centers. 

Currently, at the best of our knowledge no 
optimization procedure is available from literature to 
solve the investigated scheduling problem. The aim 
of this paper is building the mathematical model and 
designing an optimization tool able to find efficient 
solutions to this problem. A proper genetic 
algorithm has been designed and a benchmark of 
process scenarios characterized by different numbers 
of machines, families and worker skills has been 
generated to study the proposed scheduling problem. 

The remainder of the paper is organized as 
follows: in Section 2 a review of the literature is 
reported; Section 3 presents the problem statement 
and the mathematical notation; then, in Section 4 the 
optimization algorithm is described; the 
computational results are provided and discussed in 
Section 5. Conclusions and future research complete 
the paper. 
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2 LITERATURE REVIEW 

As stated above, the investigated problem can be 
approached as a Group Scheduling Problem with 
sequence dependent set-up times and finite capacity 
of the inter-operational buffers in presence of a multi 
skilled workforce.  

The flowshop Group Scheduling problem has 
been challenged as an evolution of the traditional 
flowshop problem, where the effect of set-up and 
similarities among jobs grouped into families is 
considered into the mathematical model formulation. 
Several approaches to the Group Scheduling 
Problem (GSP) with sequence independent set-ups 
and unlimited buffer capacity have been proposed: 
Wemmerlov and Vakharia (1991) extended the 
implementation of constructive algorithms for the 
group scheduling problem by performing an external 
sequencing of families and then an internal 
scheduling of parts within families. A Simulated 
Annealing algorithm was proposed by Vakharia and 
Chang (1990). Genetic algorithms have been 
developed for the GSP by Shridar and Rajendran 
(1994). Schaller (2000) has presented a comparison 
of heuristics and has proposed new procedures for 
the determination of effective lower bounds for the 
makespan of the sequences. 

Franca et al. (2005) have proposed a Genetic 
Algorithm and a Memetic Algorithm to schedule 
jobs within manufacturing cell modelled as a pure 
flowshop problem with sequence dependent set-up 
times. The scheduling problem with finite inter-
operational buffers also received attention in 
literature. Nowicki (1999) proposed a tabu search 
approach for the m>2 machines problem. Wang et 
al., (2006) have solved the permutational flow shop 
with finite inter-operational buffers by means of 
hybrid GAs. A hybrid algorithm based on 
differential evolution has been proposed in Qian et 
al. (2009) to solve the multi-objective flow shop 
scheduling with finite buffers. 

The role of workforce in a plant has been 
considered as an assignment problem (McDonald 
2009); Diginesi et al. (2009) evaluated the effect of 
the dynamic worker behaviour on the performance 
of a flow line. Fowler et al. (2008) proposed a 
heuristic algorithm for the workforce planning with 
different operators’ skills. 

3 PROBLEM STATEMENT 

A notation similar to that adopted by Nowicki 

(1999) for the flowshop scheduling problem with 
finite interoperational buffer capacity is here 
proposed and extended to the group scheduling 
problem with sequence dependent set-up times, 
finite buffer capacity and skilled workforce. The 
jobs are clustered into g (1…..G) families, (groups), 
to be worked within a line consisting of i (i=1,…..M) 
working machines; for each group g, a job set 
Jg={1g,2g,…,ng} is defined, where ng denotes the 
number of jobs within the group: thus, it holds 

  
n = ng

g =1

G
∑ . All the machines should be visited in the 

same order by the families of jobs within the mix; 
thus, a permutation group flow shop can be 
considered. On the machine i, the processing time of 
job jg clustered within group g is denoted as 

    
pi, j g

>0.  

Between two machines i-1 and i there is an inter-
operational buffer having a finite capacity fi; thus, 
there are M-1 finite capacity inter-operational 
buffers between machines; finally, two unlimited 
capacity buffers are positioned before machine 1 and 
after machine M. The set-up time of the generic g-th 
scheduled group on machine i is denoted as 

  SSi
g −1( ), g( ), (   SSi

g( ), g( ) = SSi
0( ), 1() = 0) and is sequence 

dependent.  
The workers (w=1…W) employed in the 

manufacturing process have different skill levels, 
denoted as SLW.  

The influence of the generic worker w on the set-

up time is modeled as follows:     SSi
g −1( ), g( ) * SLw , 

SLW≥1, when the worker w is assigned to machine i 
to develop the set-up of group g. 

Within each group g, the vector 

  
π

g( ) = π
g( ) 1g( ),...,π g( ) ng( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  represents a permutation 

of jobs, whereas the external permutation of the 

groups is denoted by 
  
Ω = π

1(),...,π G( )⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .  

To determine a feasible sequence of jobs, a set of 
constraints related to jobs, machines and buffer 
availabilities must be defined. Let us denote as 

  
SJ

i,π
g( ) j g( )

 the starting time on machine i for the 

 
π

g( ) j g( ) scheduled job within g-th scheduled group. 
The job routing constraint is expressed as: 

  

SJ
i,π

g( ) j g( )
≥ SJ

i −1,π
g( ) j g( )

+ p
i −1,π

g( ) j g( )
i = 2,.,M j g = 1g ,.,ng g = 1,.,G

 (1) 
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A machine is available to work a job after that 
the preceding job in the sequence belonging to the 
same group has been unloaded or at the completion 
of the set-up activities on the machine, if the 
currently scheduled job is the first within a group: 

if jg>1g 

    
SJ

i,π
g( ) j g( )

≥ SJ
i,π

g( ) j g −1( )
+ p

i,π
g( ) j g −1( ) 

if jg=1g 

(2) 

    

SJ
i,π

g( ) j g( )
≥ SJ

i,π
g −1( ) ng −1( )

+ p
i,π

g −1( ) ng −1( )
+

+SSi
g −1( ), g( ) * SLw

 (3) 

valid for 
GgnjMi gggg ,...,2,1,...,2,1...,2,1 ===  

With reference to the constraints related to the 
generic inter-operational buffer capacity fi+1, the 
following situations can occur.  

i) the inter-operational buffer capacity fi+1 is 
saturated and the machine i is blocked by jobs 
belonging to the same group. The job to be loaded 
on machine i belongs to the same group too. Then, it 
holds: 

    
SJ

i,π
g( ) j g( )

≥ SJ
i +1,π

g( ) j g −1−fi +1( )
if jg-1>fi+1 (4a) 

    
SJ

i,π
g( ) j g( )

≥ SJ
i +1,π

g −1( ) ng −1( )
if jg-1=fi+1 (4b) 

Valid for 
GgnjMi ggg ,...,2,1,...,2...,2,1 ===

 
ii) the inter-operational buffer capacity fi+1 is 
saturated and the machine i is blocked by jobs 
belonging to the same group. The job to be loaded 
on machine i is the first of a new group. Then, it 
holds: 

    
SJ

i,π
g( )1g( )

≥ SJ
i +1,π

g −1( ) ng −1−fi +1( )
+ SSi

g −1( ), g( )* SLw

 
if ng-1>fi+1

(5a) 

    
SJ

i,π
g( )1g( )

≥ SJ
i +1,π

g −2( ) ng −2( )
+ SSi

g −1( ), g( )* SLw

´ 
if ng-1=fi+1

(5b) 

valid for     i = 1,2...,m g = 2,...,G  
iii) the inter-operational buffer capacity fi+1 is 

saturated by different groups of jobs. The job to be 
loaded on machine i is not the first of a new group. 
Then, it holds: 

 

  
SJi,π j g( ) ≥ SJ

i +1,π
g −1( ) ng −1− fi +1− j g −1( )( )( ) 

if ng-1>(fi+1-(jg-1)) 
(6a) 

  

SJi,π j g( ) ≥ SJ
i +1,π

g −r( ) ng −r + ng −x +1
x=2

r
∑ − fi +1− j g −1( )( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

if ng-1≤(fi+1-(jg-1))
(6b) 

valid for 
  
r ng −x +1 < fi +1 − j g −1( )

x =2

r
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , 

and
  i = 1,2..., M j g = 2g ,..., ng g = 2,...,G  

iv) the inter-operational buffer capacity fi+1 is 
saturated by different groups of jobs. The job to be 
loaded on machine i is the first of a new group. 
Then, it holds: 

  

SJi,π 1g( )≥ SJ
i +1,π

g−1( ) ng−1− fi +1− j g −1( )( )( )
+ SSi

g−1( ), g( )* SLw

 
if ng-1>(fi+1-(jg-1)) 

(7a) 

  

SJi,π 1g( )≥ SJ
i +1,π

g−r( ) ng−r + ng−x+1
x=2

r
∑ − fi +1− jg −1( )( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

+SSi
g−1( ), g( )*SLw

 
if ng-1≤(fi+1-(jg-1)) 

(7b) 

valid for 
  
r ng −x +1 < fi +1 − j g −1( )

x =2

r
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , and 

i = 1,2...,M g = 2,...,G  
Equations (1) through (7) are valid under the 

following assumptions: ( )( ) 0=g
g jπ  if jg≤0, 

( )( ) 00
0 =jπ , SJi,0=0 and pi,0=0, f0=fM+1=0  
Given a sequencing of groups and jobs within 

each group, a step-by-step evaluation of the starting 
inspection time 

  
SJ

i,π
g( ) j g( )

 for each job on machine 

i is obtained by computing the maximum value of 

  
SJ

i,π
g( ) j g( )

with respect to the constraints (1)-(7b). 

Then, the completion time  

  
C

i,π
g( ) j g( )

= SJ
i,π

g( ) j g( )
+ p

i,π
g( ) j g( ) 

(8) 

each job on machine i can be easily computed.  
The objective of the group scheduling problem is 

the minimization of the makespan  of the entire mix 
to be worked. 

  

Cmax Ω( )= S
M,π

G( ) nG( )
+ p

M,π
G( ) nG( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 
 (9) 
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4 THE GENETIC ALGORITHM 

The genetic algorithm developed to solve the 
investigated Group Scheduling Problem requires a 
proper chromosome encoding able to work with 
standard genetic operators.  

 The chromosome encoding has been developed 
to map separately the sequence of groups and the 
sequences of jobs within each group: a chromosome 
is coded through a two dimensional decimal array 

seq(r,s), (r=1,G+1; s=1, 
  
max max

g
ng[ ];G⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
). Rows 

(1:G) contain the internal job sequence p(g) within 
each group; the last row G+1 contains the external 
group sequence: each row of the array seq(r,s) is 
here considered as a sub-chromosome. The number 
of columns of a chromosome array coincides with 
the maximum number of jobs assigned to a single 
group. The chromosome fitness is equal to the 
makespan corresponding the schedule it encodes. 
With this notation, a population of chromosomes can 
be coded through a three dimensional array. In 
Figure 1 an example of population for a problem 
with G=4 and n=11 jobs, (n1=4, n2=2, n3=3, n4=2) is 
presented: 

 
Figure 1: Population and chromosome representation. 

Two different kinds of crossover operators with 
an equal probability to be selected have been 
implemented: the position based crossover (PBC) 
and the two point crossover (TPC). 

The mutation operator can work with Pm 
probability on sub-chromosomes representing both 
sequences of jobs within a group or sequences of 
groups. Mutation is performed with an equal 
probability of selecting one among the following 
two operators: an allele swapping operator, which 
performs an exchange on a random number of 
alleles; and a block swapping operator, which 
performs a block exchange of alleles. To prevent 
from the elimination of the current best sequence, 
the survival of a copy of the current fittest individual 
within the population is ensured by an elitist 
strategy. Conversely, the premature convergence of 
the algorithm towards a sub-optimum solution due to 
a rapid increase of the number of copies of «the 

fittest individuals» within the current population can 
occur: thus, a population diversity control technique 
has been embedded in the developed GA. In the 
current population, a mutation operator is applied to 
those copies of chromosomes exceeding an assigned 
number Dmax. To perform consecutive 
intensification-diversification cycles of the 
evolutionary process, after Nip iterations without 
improvements in the fittest individual, the mutation 
probability is increased by ΔPm. When a new 
minimum is found, Pm is reset to its initial value. 
Once a new optimal solution is found, the algorithm 
execution is continued for at least Δit further 
population generations. 

5 COMPUTATIONAL RESULTS 

The model investigation and the GA algorithm test 
have been performed by generating a benchmark of 
problems accordingly to the procedure proposed in 
Schaller et al. (2000) for the GSP with set-up times 
and adapted to cope with finite buffer capacity and 
differently skilled workers. The number ng of jobs 
within a group randomly varies in the interval 
[1 ,10]; the job processing times 

    
pi, j g

 have been 

randomly generated from a uniform distribution 
U [1,10]. The number of groups G and the number 
of machines M range between 3 and 10: totally, ten 
different line configurations have been considered. 
The sequence dependent set-up times are extracted 
out from three different uniform distributions to 
generate three classes of problems for each line 
configuration: the shorter set-up SS, (U [1,20]), the 
medium set-up MS, (U[1,50]), and larger set-up LS, 
(U [1,100]) classes of problems. Each class of 
problems consists of 10 instances: a total number of 
300 problems have been generated. Four available 
buffer capacities fi=1, 2, 4, 20, for i=1,…, M-1, 
between machines have been considered. Four skills 
levels SLw =1.0, 1.1, 1.3, 1.5 have been assumed to 
model the workforce impact on the GS problem: this 
means that a worker with skill level 1.3 complete the 
set-up operation in a time 30% longer than a worker 
with skill 1.0. For each problem, a percentage 
PW=10%, 30%, 50% of available workforce having 
skill level larger then 1.0 has been considered. 
Totally, 10800 scenarios have been investigated. 
The following GA parameters have been selected: 
number of population chromosomes NS=30; 
maximum number of duplicates DMAX=2; equal 
probability for the two crossover operators to be 
selected PCR=0.5; equal probability for the two 
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mutation operators to be selected PCM=0.5; 
mutation probability Pm=0.13; improvement in the 
mutation probability ΔPm=0.05 after 500 iterations 
without a new improvement in the makespan. The 
maximum number of iterations is set equal to 
15.000. The numerical analysis has been carried out 
as follows. First of all, the benchmark of 300 
problems has been optimized by assuming the 
limiting condition of infinite inter-operational buffer 
capacity and uniform skill level equal to SLw=1.0. 
For each problem, the obtained makespan can be 
interpreted as a lower bound LB that can be used to 
quantify the effect of the limited buffer capacity, the 
skill level and the skill variety within the working 
team. Then, for each problem the optimal makespan 
Cmax in presence of the constraints related to limited 
inter-operational buffer capacity and skilled 
workforce has been found. Finally, the percentage 
increase of the makespan with respect to its 
corresponding lower bound has been calculated:  

LB
LBCCMK

−
=Δ max  (10) 

Table 1: Average results for each class of problems. 

  SLw=1.1 SLw=1.3 SLw=1.5
fi=1 PW=10% 8.36% 9.41% 10.27% 

 PW=30% 9.30% 12.68% 16.08% 
 PW=50% 10.39% 16.36% 22.32% 

fi=2 PW=10% 4.78% 5.85% 6.72% 
 PW=30% 5.63% 9.10% 12.33% 
 PW=50% 6.94% 12.49% 18.48% 

fi=4 PW=10% 2.20% 3.02% 4.04% 
 PW=30% 3.09% 6.00% 9.19% 
 PW=50% 4.10% 9.48% 15.40% 

fi=20 PW=10% 0.36% 1.18% 2.04% 
 PW=30% 1.21% 3.80% 7.01% 
 PW=50% 2.06% 6.68% 12.10% 

Thus, a large value of ΔCMK should be 
interpreted as an index of significant makespan 
increase with respect to the limiting condition. Table 
1 shows the obtained results. 

As expected, it turns out that a larger inter-
operational buffer capacity reduces the influence of 
the workforce skill variability; for example, when 
the inter-operational buffer capacity varies from fi=1 
to fi=4, with the same workforce allocation strategy 
the averaged makespan distance from its lower 
bound value decreases from 8.36% to 2.20%. In 
table 1 it is also possible to appreciate the effect of 
the workforce skill and the team mix: both of them 
have a positive effect on the makespan. 

For example, when the workforce skill level is 
reduced from SLw=1.1 to 1.5, the distance from the 
lower bound increases from 4.1% to 15.4% for fi=4 
and PW=50%. In the same way, the variety of team 
composition PW influences the makespan: for 
example, when PW varies from 10% to 50% the 
distance from the lower bound increases from 1.18% 
to 6.68% for fi=20 and SLw=1.3. 

Finally, a second order interaction between the 
worker skill level SLw and the buffer capacity fi is 
evident: in fact, the larger is fi the lighter is the effect 
of SLw on the makespan deterioration. For example, 
given PW=50%, when fi=2 and SLw=1.3 it results 
ΔCMK=12.49%; otherwise, when fi=20 and SLw=1.3 
it results ΔCMK=6.68%, that is ΔCMK is halved. This 
happens because the available buffer capacity 
partially decouples the interactions between 
consecutive machines, thus reducing the probability 
of starving /blocking conditions due to delays in the 
set-up activities. Therefore, the worker skills need to 
be carefully accounted for those manufacturing 
scenarios characterized a finite inter-operational 
buffer capacity. 

Table 2a: variable SLw Table 2b: variable PW. 

i g 1.1 1.3 1.5 10,0% 30,0% 50,0%
3 3 3,3% 5,2% 4,3% 3,3% 4,0% 4,7%
4 3 3,5% 4,4% 6,3% 3,5% 4,2% 5,6%
4 4 5,9% 7,0% 6,6% 5,9% 7,0% 8,1%
5 5 6,2% 6,7% 7,4% 6,2% 6,8% 7,9%
5 6 6,2% 7,3% 7,0% 6,2% 6,5% 7,6%
6 5 8,2% 9,0% 9,4% 8,2% 9,3% 9,7%
6 6 8,0% 8,8% 9,9% 8,0% 9,4% 10,2%
8 8 8,6% 9,9% 10,0% 8,6% 9,4% 10,2%
8 10 10,8% 11,6% 13,5% 10,8% 12,0% 13,1%
# 10 10,7% 12,0% 13,4% 10,7% 11,6% 13,3%
average 8,4% 9,4% 10,3% 8,4% 9,3% 10,4%

fi=1 PW=10%
SLw

fi=1 Slw=1.1
PW

 
Tables 2 and 3 show the same results as Table 1, 

but stratified for each couple (G,M) of groups and 
machines investigated in the benchmark. Table 2a 
considers three levels for SLw, fi=1 and PW=10. 
Similarly, Table 2b considers three levels for PW, 
fi=1 and SLw=1.1. Table 3a shows the same ΔC% 
results when fi is varied at three levels; Table 3b 
considers fi, PW and SLw contemporarily varied at 
three levels. 

In Table 2 the worker effects quantified through 
the skills level and team mix composition are 
equivalent and range between 8.4% and 10.3%. 
Conversely, in Table 3 the buffer effect ranges 
between  2.2%  and  8.4%. The  interaction effect of 
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Table 3a: variable fi 3b: all factors are variable. 

fi=4 fi=2 fi=1
PW=10%PW=30% PW=50%

i g 4 2 1 Slw =1.1 SLw =1.3 SLw =1.5
3 3 1,2% 2,1% 3,3% 1,2% 3,4% 13,5%
4 3 0,3% 1,5% 3,5% 0,3% 4,8% 15,7%
4 4 1,5% 3,3% 5,9% 1,5% 7,0% 18,1%
5 5 1,4% 3,6% 6,2% 1,4% 6,6% 17,0%
5 6 1,6% 2,6% 6,2% 1,6% 5,8% 17,6%
6 5 1,9% 4,8% 8,2% 1,9% 8,0% 18,8%
6 6 2,3% 4,7% 8,0% 2,3% 8,8% 20,9%
8 8 2,3% 4,5% 8,6% 2,3% 8,8% 20,7%
8 10 3,2% 6,3% 10,8% 3,2% 12,4% 28,5%

10 10 2,7% 6,6% 10,7% 2,7% 11,9% 28,2%
average 2,2% 4,8% 8,4% 2,2% 9,1% 22,3%

PW=10% SLw=1.1
fi

 
the three factors is significantly higher and ranges 
between 2.2% and 22.3%. The averaged results 
presented Tables 2 and 3 are graphically shown in 
Figure 2. 

 
Figure 2: Influence of factors. 

6 CONCLUSIONS 

A permutational flowshop group scheduling problem 
(GSP) with sequence dependent set-up times, limited 
interoperational buffer capacity, workers with 
different skills and different mix of the working 
crew has been taken into account. In the model, the 
set-up times depend on both the sequence of groups 
and the worker skill level; the working times have 
been considered independent by the skill of the 
operator because the working operations are 
completely automated. A Genetic Algorithm has 
been proposed as an efficient tool to solve the 
investigated problem with respect to the 

minimization of the total completion time. A 
sensitivity analysis has been carried out on a 
benchmark of problems to show the relevant 
influence of all factors considered in the model. A 
future development of this research will treat the 
scheduling of jobs as well as the workers assignment 
strategy to each machine as independent variables of 
the optimization problem. 
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