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Abstract This paper presents a study of using neural networks to model the viscosity of simulated vitrified highly 
active waste over a range of temperatures and compositions. Vitrification is the process of incorporating the 
highly active liquid waste into the glass by chemically changing the structure of the glass for nuclear fuel 
reprocessing. A methodology is needed to determine how the viscosity will change as a result of a new feed. 
Feed forward neural networks are used to model the viscosity of new product glasses. The results are very 
promising, with a Mean Squared Error (MSE) of 1.8x10-4 on the scaled unseen validation data, highlighting 
the high accuracy of the model. Sensitivity analysis of the developed model provides insight on the impact 
of composition on viscosity. 

1 INTRODUCTION 

The wastes from nuclear reactors are radioactive and 
need to be treated for long term storage. Vitrification 
is one of the nuclear waste treatment processes, 
which turns the highly active wastes into a glass 
which is much safer for storage. The understanding 
of what affects the nuclear waste glass viscosity has 
increased due to inactive simulant viscosity tests 
carried out at the National Nuclear Laboratory. It is 
essential to understand how the viscosity is affected 
by the composition using non-active trials. 

The experiments provide an insight for plant 
engineers/operators on what may happen with 
particular feeds. Only a limited number can be 
performed due to cost. It is desirable that a model 
can be built to predict the viscosity saving the 
company a large amount of investment  

Developing a detail mechanistic model has been 
shown to be difficult, time consuming and effort 
demanding. The full mechanism of how various 
compositions affect viscosity is not fully understood. 
Data based empirical modelling can be a very useful 
alternative in this case. Neural networks have been 
shown to be capable of approximating any 
continuous nonlinear functions (Cybenko, 1989); 
(Girosi and Poggio, 1990); (Park and Sandberg, 

1991) and have been applied to nonlinear process 
modelling (Bhat and McAvoy, 1990); (Bulsari, 
1995); (Duchesne et al., 2010); (Narendra and 
Parthasarathy, 1990); (Zhang et al., 1998). 

This paper presents a study on using neural 
networks to model the viscosity of simulated 
vitrified highly active waste over a range of 
temperatures and compositions. Section 2 gives a 
brief description of the processes. Neural network 
modelling of glass viscosity is presented in Section 
3. The obtained results are discussed in Section 4 
and conclusions given in Section 5.  

2 PROCESS DESCRIPTIONS 

2.1 Waste Vitrification Plant 

The Vitrification plant (Figure 1) is responsible for 
converting Highly Active Liquor (HAL) into a 
durable product glass. HAL, consisting of waste 
fission products in nitric acid, and other calcination 
additives are fed into a hot revolving furnace. The 
liquid is evaporated leaving dry particles.  

The particles are dropped into a melter with 
Borosilicate glass frit and heated to high 
temperatures resulting in a new glass matrix being 
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formed, different from waste encapsulating. The 
glass is poured into a container. The container is 
then cooled, lid welded on, decontaminated, 
monitored then taken for long term storage. 

2.2 Inactive Laboratory Experiments 

Experiments were carried out in order to test many 
properties of the glass (Steele et al., 2011.) One 
property of the glass produced is its viscosity, 
relating to the pour rate, which can be measured on 
the active plant. 

There are 4 groups of experiments, in total 
consisting of 28 compositions. The simulant glasses 
were made up in the laboratory with similar 
chemical compositions to what is expected. The 
viscosity readings were from a high temperature 
rotating viscometer. Batches of the glasses were put 
into an alumina crucible. The glass was heated to 
1200°C and held at this temperature for 45 minutes. 
The rotor was lowered 20mm into the glass and 
measurements taken every 10 seconds during the 
cooling period down to 900°C at a rate of 2°C per 
minute. The cleaning process will not be described. 

3 VISCOSITY MODELLING 

By using the estimated compositions and a range of 
temperature, a viscosity curve can be predicted. 
Multiple Linear Regression is used to show that the 
data is non-linear. Neural Networks will be used to 
model viscosity due to the high complexity and time 
consuming nature of mechanistic models.  

3.1 Multiple Linear Regression  

Multiple Linear Regression (MLR) is a linear 
technique used to predict (Montgomery, 2006) and 
takes the following form: 
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where b0 is the regression coefficient, bM is the 
coefficient of the Mth predictor, xi,M is the Mth 
predictor at time i, ei is the error at time i and yi is 
the value of the variable at time i. This method will 
not be explained further, as the MLR approach does 
not predict viscosity. Figure 2 shows the relationship 
between measured and predicted viscosity with the 
line measured viscosity equals predicted viscosity 
shown. It shows that the data is highly non-linear 
and therefore is not the correct approach to use. 

 
Figure 1: A Waste Vitrification Plant. 

3.2 Neural Networks 

In this paper, Neural Networks are analysed as a 
methodology to model viscosity using composition 
and temperature. The most commonly used is the 
multi-layer feed forward neural network. Inputs are 
presented at the input layer, Ii. The data is 
propagated through the network through complex 
connections. The hidden layer structure defines the 
topology of a feed forward network. It is possible to 
have more than one hidden layers and is proven to 
approximate any continuous non linear function with 
sufficient number of hidden neurons (Cybenko, 
1989). Single hidden layer neural networks are used 
in nonlinear system modelling (Pham and Liu, 1995; 
Lennox et al., 1998).  

Each interconnection has a scalar weight, wi 
which modifies the signal strength. The neurons 
within the hidden layer: sum the weighted inputs and 
pass through a non-linear activation function as well 
as a bias, b. The output of a hidden neuron, O known 
as the sigmoidal neuron activation function and its 
output is in the range (0, 1). 
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Figure 2: Measured against predicted viscosity using 
MLR. 
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Table 1: Mean squared errors (scaled) of neural network 
model predictions. 

Data set MSE 
Training 1.0879e-4 
Testing 2.9992e-4 

Validation 1.8430e-4 
 
Network weights are such trained so that the sum 

of squared network prediction errors, Eq(4) is 
minimised. 
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where N is the number of training data points, y  is 
the network prediction, y in the target value, and t is 
an index of the training data. The most commonly 
used network training method is the back 
propagation training method (Rumelhart et al., 
1986), where network weights are adjusted as 
follows. 
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W(k+1) = W(k) + W(k+1) (6)

W(k) and W(k) are the weight and weight 
adaptation at the training step k respectively,  is the 
momentum coefficient, and  is the learning rate. 
Training can be terminated when the error gradient 
is less than a pre-specified value, e.g. 10-6 or by a 
cross validation based stopping criterion. When 
using the latter, data for building a neural network 
model is divided into a training data set and a testing 
data set. The network prediction error on the testing 
data is continuously monitored and terminated when 
the testing error stops decreasing. 

3.3 Neural Networks Viscosity 
Prediction 

The glass contains 24 different components, Ci and 
will be in terms of number of Moles. The 
temperature, T, ranges from 1200 to 900°C in the 
experiment. The output is the viscosity, V which is 
of the form: 

 

V = f(T, C1,...,C24) (7)
 

The data set was split up into training (20%), testing 
(40%), and validation data sets (40%). The data 
were trained using the Levenberg-Marquardt 
optimisation algorithm (Marquardt, 1963) with 
regularisation and early stopping. The purpose of 
regularisation and early stopping is to avoid over-
fitting noise in the training data. A regularisation 

term is added to the training objective function to 
penalise large network weights. A feed forward 
neural network with 25 inputs, 7 hidden nodes in a 
single hidden layer and 1 output was created.  

4 RESULTS 

4.1 Neural Network Predictions 

The model proved to be successful at modelling 
viscosity using composition and temperature. Figure 
3 shows a plot of temperature against viscosity. The 
blue line represents the true values while the red 
lines represents the model predictions. The error 
appears to be small. Table 1 gives the mean squared 
errors (MSE) of the neural network model 
predictions on the training, testing, and unseen 
validation data sets.  

The MSE given in Table 1 are for scaled data, 
i.e. scaled to zero mean and unit variance. The very 
low MSE values in Table 1 indicate that the 
developed neural network model is very accurate.  

4.2 Sensitivity Analysis of the Neural 
Network Model 

Initial work has been carried out to investigate the 
model sensitivity to various model inputs. This study 
uses a numerical method where a small perturbation 
is added to one of the inputs while keeping other 
inputs unchanged. The ratio between the resulting 
change in model output and the applied model input 
is the model sensitivity to that input: 
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Figure 3: Graph showing actual (blue) and predicted 
viscosity curve over time (red). 
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The sensitivity changes, due to the non-linearity. 
If it changes considerably with only small changes 
in the component, then this suggests that the 
component significantly affects the viscosity.  

Figure 4 shows the sensitivity curve when a 
variables is perturbed. Above 0.035Moles, there is 
an increase in viscosity, highlighting that variable 
has a big effect on viscosity. 

5 CONCLUSIONS 

This paper has used a well proven technique, 
multilayer feed forward neural networks, to predict 
the viscosity over a range of temperatures and 
different glass compositions. The prediction error 
(MSE) of the model for this range of feed was found 
to be 1.84x10-4 for the scaled validation data set 
which highlights the model’s accuracy at predicting  
viscosity. 

The model is only valid over a certain range for 
each variable, but in future work the model will be 
adapted for further different compositions and feeds. 
The work carried out so far has provided 
encouraging predictions for a larger range of 
compositions. This will be developed into a user tool 
for a greater understanding of how the composition 
will affect the viscosity. 
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Figure 4: Sensitivity graph for variable 25. 
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