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Abstract: On multimedia databases, it is one of important techniques to use the efficient indexing method for the fast
access. Metric indexing methods can apply for various distance measures other than the Euclidean distance.
Then, metric indexing methods have higher flexibility than multi-dimensional indexing methods. We focus on
the Vantage Point tree (VP-tree) which is one of the metric indexing methods. VP-tree is an efficient metric
space indexing method, however the number of distance calculations at leaf nodes tends to increase. In this
paper, we propose an efficient algorithm to reduce the number of distance calculations at leaf nodes of the VP-
tree. The conventional VP-tree uses the triangle inequality at the leaf node in order to reduce the number of
distance calculations. At this point, the vantage point of the VP-tree is used as a reference point of the triangle
inequality. The proposed algorithm uses the nearest neighbor (NN) point for the query instead of the vantage
point as the reference point. By using this method, the selection range by the triangle inequality becomes
small, and the number of distance calculations at leaf nodes can be cut down. Moreover, it is impossible to
specify theNN point in advance. Then, this method regards the nearest point to the query in the result buffer
as the temporaryNN point. If the nearer point is found on the retrieval process, the temporaryNN point is
replaced with new one. From evaluation experiments using 10,000 image data, it was found that our proposed
method could cut 5%∼12% of search time of the conventional VP-tree.

1 INTRODUCTION

In recent years, as a result of the lower price and larger
capacity of main memory and secondary storage de-
vices, it has become possible for personal comput-
ers to store large amounts of multimedia data such
as text, images, music, and videos. Consequently,
there is a growing need for technologies that permit
fast and accurate retrieval of the desired data from a
large amount of stored multimedia data. To improve
the search efficiency, it is necessary to first extract the
desired features of the target data and to create an in-
dex based on these features. During the search pro-
cess, the appropriate data can be obtained by access-
ing only the index. The indexing technology has a
large influence on the retrieval efficiency.

The features extracted from multimedia data are in
general expressed as vectors, and the retrieval process
is executed based on the distances among feature vec-
tors. The methods used to transform feature vectors
into indices, i.e., the methods for indexing multidi-
mensional data, include the R-tree (Guttman, 1984),

R*-tree (Beckmann et al., 1990), SS-tree (White and
Jain, 1996), SR-tree (Katayama and Satoh, 1997), X-
tree (Berchtold et al., 1996), VA-FILE (Weber et al.,
1998), and others. However, these methods take for
granted the use of the Euclidean distance as a dis-
tance measure and they cannot cope with other mea-
sures. Examples of non-Euclidean distance measures
include the quadratic-form distance (Ioka, 1989) that
considers correlations among the dimensions of mul-
tidimensional data, the Edit distance that expresses
the similarity among strings of characters, and the
earth mover’s distance (Rubner et al., 1999).

In order to solve this issue, research on metric-
space indexing has been conducted. The construc-
tion of multidimensional indices is based on the carte-
sian values of the features in multidimensional space.
In contrast, the only requirement of the metric-space
index is the metric space postulates (Zezula et al.,
2006), and therefore it is possible to create such an
index using only information on the distances among
feature vectors. As a consequence, distance measures
other than the Euclidean distance can be used. The
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metric-space index is in general represented as a hi-
erarchical tree structure. The search space is got nar-
row during the search process by a recursive splitting
of the space (data set) based on the distance infor-
mation. Several schemes such as the M-tree (Ciac-
cia et al., 1995), VP-tree (Yianilos, 1993)(Fu et al.,
2000), MVP-tree (Bozkaya and Ozsoyoglu, 1997),
and MI-tree (Ishikawa et al., 1999) have been pro-
posed based on different space-splitting methods. In
the M-tree, the index tree is formed by a bottom-
up process during the space splitting. The disadvan-
tage of this method is that it introduces many com-
mon regions in the spaces resulting from the split,
which implies a lower search efficiency. The VP-
tree uses a pivot point called the vantage point and
splits the space in a top-down manner based on a hy-
persphere. The splitting does not introduce common
regions. During the search process, the nodes in the
search range are traversed starting from the root node.
Eventually, leaf objects linked to leaf nodes are ac-
cessed and their distances are calculated. These dis-
tances are used to decide whether or not the associ-
ated objects are located in the search range. However,
the calculation of the distances of the leaf nodes tra-
versed by the search process tends to increase the total
number of distance calculations, resulting in a lower
search speed. To solve this problem, in the VP-tree
a triangle inequality is applied to the leaf objects to
reduce the number of distance calculations.

In this paper, we propose an algorithm to reduce
the number of distance calculations at leaf nodes of
the VP-tree. In the conventional VP-tree, the van-
tage point is used as a reference point for the triangle
inequality. In the proposed method we note that the
selection range tends to get narrower as the distance
between the reference point of the triangle inequality
and the query object gets smaller, and thus we reduce
the number of distance calculations using the nearest
neighbor (NN) object (with respect to the query ob-
ject) as the reference point for the triangle inequality.

How to specify theNN object as the reference
point? It is impossible to identify in advance theNN
object. Thus, The nearest object to the query in the
result buffer is regarded as the temporaryNN object.
If the nearer object is found on the retrieval process,
the temporaryNN object is replaced with new one.
Furthermore, in order to use the triangle inequality
with the temporaryNN object as the reference point,
we must know all the distances between the tempo-
rary NN object and all the objects related to the leaf
nodes of these objects. Since the temporaryNN ob-
ject cannot be determined in advance, in practice we
need all the distances among the objects. During the
construction of the indexing we construct a distance-

list file by computing the distances among objects. It
is worth noting, however, that the file size is reduced
by splitting this large file into a file for each object.

After explaining the VP-tree construction and
search algorithm in Section 2, we will describe the
selection method for leaf nodes. Section 3 introduces
an improvement to the leaf-node selection algorithm.
Section 4 describes experiments with and an evalua-
tion of the improvement method. Finally, Section 5
provides a summary and points to future issues.

2 VP-TREE

2.1 Construction Algorithm

We now explain the VP-tree construction algorithm.
Suppose that we want to perform indexing of a data
setS containingN data points. At each node of the
tree, the vantage point (hereafter referred to asvp) is
selected using a random algorithm as described be-
low.

1. Select a temporary randomvp from the data set.

2. Calculate the distance from the provisionalvp to
the otherN−1 objects.

3. Calculate the mean and variance of these dis-
tances.

4. Repeat steps 1 through 3 several times and select
as thevp the point that leads to the largest vari-
ance.

Let µ be the mean of the distances from the root
node (selected as thevp) to all data points inS. If
d(p,q) is the distance between pointsp andq, then
the data set s is split intoS1 andS2 as shown below:

S1 = {s∈ S| d(s,vp)< µ}

S2 = {s∈ S| d(s,vp)≥ µ}

Continue by recursively applying this splitting oper-
ation to S1 andS2. All the subsets such asS1 and
S2 correspond to nodes in the VP-tree. Moreover, the
leaf nodes contain a number of objects.

2.2 Search Algorithm

We use the range search andk-nearest neighbor search
algorithms in the VP-tree. Range search involves
specifying the query object and the search radius (the
range) and retrieving the set of objects located at a
distance up to the specified radius from the center of
the circle. K-nearest neighbor search involves des-
ignating the query object and the number of search
hitsk, so that thek objects with the smallest distances
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are obtained in order, starting from the closest one.
The experiments of the present paper are based onk-
nearest neighbor search. However, since thek-nearest
neighbor search algorithm is based on range search,
both methods are explained here.

In the range search method, the nodes within the
search range are traversed starting from the root node.
The distances between the leaf objects linked to leaf
nodes and the query object are calculated, and the ob-
jects located inside the search range are found. On the
other hand, in thek-nearest neighbor search method,
the initial value of the search radius is set to infin-
ity, and the objects that are traversed are appended
to the search-result list, starting from the root. If the
number of retrievals in the search-result list exceeds
a specified limit, the retrieved object with the maxi-
mum distance is removed, so that the number of items
in the list does not exceed the specified value. Here,
the maximum distance in the search-result list is taken
to be the search radius. The search radius is reduced
by repeating this process, resulting eventually in the
specified number of search results.

2.3 Method to Select Candidates on
Leaf-nodes

In the conventional VP-tree, result candidates in the
search range are selected by applying the triangle in-
equality to the objects corresponding to leaf nodes tra-
versed during the search (Yianilos, 1993). We now
describe this process. For each leaf node, the dis-
tances between the node’svpobject and each leaf ob-
ject are stored as a distance list when the VP-tree is
constructed (at the registration phase). By applying
the triangle inequality to the distances between thevp
object and each leaf object, we can reduce the num-
ber of distance calculations. The following theorem
holds, whereq is a query object,r is the search range,
v is avpobject of a leaf node, ando is an object linked
to a leaf node. Moreover,v is called by the reference
point of the triangle inequality.

Theorem 1.
If |d(v,o)− d(v,q)| > r, then leaf objecto is not
in the search range.

Proof.
From the triangle inequalityd(v,q) + d(q,o) ≥
d(v,o) ,
d(v,o)−d(v,q)> r implies thatd(q,o)> r,
and therefore objecto is not in the search range.
Similarly,−d(v,o)+d(v,q)> r
and thusd(q,o)> r.
Therefore, Theorem 1 is proved.

q

r

v

o

Figure 1: Selection of candidates using a vantage point as
the reference point of the triangle inequality.

Input : q , r , L
Output : L
SearchLeaf (q , r , L) 
{
     foreach o (all objects in the leaf node) {
          if ( |d(v , o) ¡Ý d(v , q)| ¡å r ) {    
               if ( d(o , q) ¡å r ) {
                    add o to L, set r to the max distance;   
               }
          }
     } 
}

q : query object
r : radius of search range
o : object in the leaf node
v : vp object
L : search result

Figure 2: Search algorithm on the leaf node fork-nearest
neighbor search.

As for Theorem 1,r is given by the user andd(v,o)
can be obtained from the distance list which is con-
structed at the registration phase. Moreover,d(v,q)
can be computed only once for each leaf node dur-
ing the search process. Therefore, the objects outside
the search range can be specified without calculating
d(q,o) by using the triangle inequality of Theorem
1, and the number of distance calculations can be re-
duced. The result candidate selection for leaf nodes
is shown in Fig.1. Thek-nearest neighbor search al-
gorithm is illustrated in Fig.2. The non-shaded part
of Fig.1 corresponds to the portion where the inequal-
ity of Theorem 1 holds. The distance calculation can
be skipped for objects located in this area. The shaded
area corresponds to the portion where Theorem 1 does
not hold. The distance calculation is necessary for ob-
jects located in this area.
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3 SELECTION METHOD USING
NEAREST NEIGHBOR
OBJECTS

If vp is used as the reference point in the triangle in-
equality explained in the previous section, the effect
of the selection tends to increase as the portion where
Theorem 1 does not hold (shaded area of Fig.1) gets
smaller. The external radius of this portion corre-
sponds to the distance fromvp to the query objectq
added to the search range radiusr. Sincer is fixed
for a given search query, the selection becomes more
effective as the distance betweenvp andq decreases.
On the other hand, the object closest toq is the near-
est neighbor object. By using the object nearest to
q instead ofvp as the reference point in the triangle
inequality, it is possible to reduce the area where The-
orem 1 does not hold. Therefore, we propose a candi-
date selection method that uses the triangle inequality
with the nearest neighbor object as a reference point.
The following theorem holds, whereq is the query
object,r is the search range radius,onn is the neigh-
bor object in the search list closest to the query object,
ando is an object linked to a leaf node.

Theorem 2.
If d(onn,o)− d(onn,q) > r, then leaf objecto is
not in the search range.

Proof.
From the triangle inequalityd(onn,q)+d(q,o)≥
d(onn,o) ,
d(onn,o)−d(onn,q)> r implies thatd(q,o)> r,
and therefore objecto is not in the search range.
Therefore, Theorem 2 is proved.

Thus, if d(onn,o) and d(onn,q) are known, it is
possible to know whether or not an object is in the
search range without calculating the distance to each
leaf object. This situation is illustrated in Fig.3. In
other words, if no leaf object exists in the shaded part
of Fig.3, it is possible to skip the computation of the
distance to the query object. The actual leaf-node
search algorithm is illustrated in Fig.4. It is usually
not possible to identify in advance the nearest neigh-
bor objects. Thus, the nearest neighbor objectonn is
provisionally assumed to be the object in the search
result list L that has the shortest distance from the
query objectq, as shown in Fig.4. The provisional
nearest neighbor objectonn is renewed every time a
new object is found in the search range during the
search process. Theorem 2 also applies to the dis-
tance between the provisional nearest neighbor object
and the query object.

Moreover, the value ofd(onn,o) in Theorem 2 is
known if a list exists containing distances between

q

r

onn

o

Figure 3: Selection of candidates using a nearest neighbor
point as the reference point of the triangle inequality.

Input : q , r , L
Output : L
SearchLeaf (q , r , L) 
{
     foreach o (all objects in the leaf node) {
          if ( d(o1 , q) + r ¡ª d(o1 , o) ) {    
               if ( d(o , q) ¡å r ) {
                     add o to L, set r to the max distance;   
               }
          }
     } 
}

q : query object
r : radius of the search range
o : object in the leaf node
o1 : nearest neighbor object in the search result 
L : search result     

Figure 4: Search algorithm on the leaf node by the proposed
method.

the nearest neighbor object and the objects in the leaf
nodes. However, since it is not possible to know in
advance which object will become the nearest neigh-
bor ofq, in practice all the objects must be considered
as candidates foronn. Therefore, for the indexing it
is necessary to compute the distances from each leaf
object to all the other objects and so create a distance-
list file. Since it is difficult to hold such a large file
in memory, we adopt the file structure of the distance-
list is shown in Fig.5. In the proposed method, as
shown in Fig. 5, the distance-list file is split into a file
for each object and each file is managed separately in
the secondary memory. Thus, only the distance list
related to the provisional nearest neighbor object is
read into the memory. For example, suppose the pro-
visional nearest neighbor object iso2. In this case,
only the distance list related too2 in the second line
of Fig. 5 is read. Moreover, the distance list is read
only when the provisional nearest neighbor object is
renewed. By forming the distance-list file according
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d(O1,O1), d(O1,O2), L , d(O1,On)O1

!
!
!

!
!
!

Secondary Memory

  
d(O2,O1), d(O2,O2), L , d(O2,On)O 2

  
d(On,O1), d(On,O2), L , d(On,On)On

Distance List of O1

Distance List of O2

Distance List of On

Onn

Figure 5: Content of the distance list file.

to this scheme, we can reduce the size of the file and
the number of read accesses.

In the implementation, an ID was assigned to each
object, a distance list was created by considering each
object ID as a file name, and a distance-list file con-
sisting of a group of files was constructed. How-
ever, to avoid OS-related restrictions on the maximum
number of files in a directory, the lowest digits of the
IDs were divided into triples. The three lowest dig-
its formed the file name and the next three formed the
directory. In other words, we restricted the maximum
number of files per directory to 1,000.

4 EVALUATION

4.1 Experimental Method

The proposed method was implemented in a VP-tree
and an experiment with a similar-image search task
was carried out. The computer used ran the Linux OS
and was equipped with a 3.2 GHz PentiumD CPU and
2G of memory. 10,000 photographic images (Corel,
2011) were used as registered images and features
were extracted from HSI histograms of the image fea-
ture vectors. Thek-nearest neighbor search was per-
formed on 1,000 input images that had not been used
for the indexing in order to calculate the time, num-
ber of distance calculations, and average CPU time
required for one image search. The quadratic-form
distance was used as the distance measure.

An similar algorithm using nearest neighbor
objects is AESA(Approximating and Eliminating
Search Algorithm) (Vidal, 1986). The AESA uses a
distance-list file that is previously created and con-
tains the computed distances among objects, without
constructing an index tree such as the VP-tree. Since
the proposed method is based on an algorithm similar
to AESA, we use AESA as a benchmark to evaluate
the VP-tree candidate reduction improvement using
nearest neighbor objects.
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Figure 7: CPU-time on 96 dimensional data.

4.2 Experimental Results

Using the improved method, we conducted an exper-
iment onk-nearest neighbor search. The legends in
the graph correspond to the methods below.

• vp all: reduction method using multiplevp.

• vp nn: reduction method using nearest neighbor
objects.

• vp all nn: reduction method using a combination
of vp all and vpnn.

• AESA: reduction method based on AESA.

Experimental results for the number of distance
calculations for 96 dimensions are shown in Fig.6.
Fig.7 shows experimental results for the cpu time
for 96 dimensions. Fig.8 shows experimental results
for the cpu time using AESA for dimensions rang-
ing from 12 to 96. The horizontal axisk represents
the number of retrievals while the vertical axis “calc
num” shows the number of distance calculations.

The figures show that the number of distance
calculations decreases in the order vpall, vp nn,
vp all nn. Note that there is no significant difference
between vpall and vpnn, but a 10% improvement
is obtained in the case of vpall nn. A possible ex-
planation is that candidate reduction based on nearest
neighbor objects takes place in a different range than
that for the usualvp, and the range reduces more ef-
fectively if the methods are used in parallel.

In terms of execution time, the improvement for
100 retrievals and 48 dimensions is about 5%. For
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Figure 8: CPU-time of AESA on each dimensional data.

100 retrievals and 96 dimensions, the improvement
increases to about 12%. Thus, an effective gain is ob-
tained with the present method even when the num-
ber of dimensions increases. The maximum number
of splits per leaf node was set to 10. The size of the
file that stores the distance list that is needed in the
candidate reduction method based on nearest neigh-
bor objects was 313 MB for all dimensions.

Fig.8 indicates that although AESA outperforms
the VP-tree in terms of the number of distance cal-
culations, the retrieval time is slower. A possible
reason for this is the difference in the number of
read accesses to the distance-list file. For AESA, the
distance-list file must be read at every iteration of the
process. In other words, this file is read as many
times as the number of distance calculations, and this
is thought to have a large influence on the retrieval
time. For the VP-tree, the distance-list file needs to be
read only for the reduction of leaf objects, and there-
fore the number of read accesses can be reduced to a
minimal level. Thus, the VP-tree resulted in a more
significant improvement in the retrieval effectiveness
than did AESA.

5 CONCLUSIONS

We have proposed an improvement to the search al-
gorithm for the leaf nodes of a VP-tree. The results
show that the retrieval times were reduced by 5% to
12% for the task involving retrieval of similar images.
A topic for future work is the creation of a search al-
gorithm that permits further reductions in the distance
calculations with a smaller index size.
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