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Abstract: In this paper, we propose a new type of information-theoretic method to interact individually treated neurons
with collectively treated neurons. The interaction is determined by the interaction parameter α. As the param-
eter α is increased, the effect of collectiveness is larger. On the other hand, when the parameter α is smaller,
the effect of individuality becomes dominant. We applied this method to the self-organizing maps in which
much attention has been paid to the collectiveness of neurons. This biased attention has, in our view, shown
difficulty in interpreting final SOM knowledge. We conducted an preliminary experiment in which the Iono-
sphere data from the machine learning database was analyzed. Experimental results confirmed that improved
performance could be obtained by controlling the interaction of individuality with collectiveness. In particular,
the trustworthiness and continuity are gradually increased by making the parameter α larger. In addition, the
class boundaries become sharper by using the interaction.

1 INTRODUCTION

Neurons in neural networks have been treated indi-
vidually or collectively in different learning methods.
No attempts have been made to examine the interac-
tion of individuality with collectiveness. In this paper,
we postulate that neurons should be treated individu-
ally and collectively and these two types of neurons
should interact with each other to have special effect
for neural learning. We, in particular, focus upon the
self-organizing maps (SOM) (Kohonen, 1988), (Ko-
honen, 1995). Because only the collectiveness of neu-
rons has been taken into account in the SOM, ignoring
the properties of individual treated neurons. Thus, it
is easy to demonstrate the effect of interaction using
the SOM.

The SOM is a well-known technique for the vec-
tor quantization and the vector projection from high
dimensional input spaces into low dimensional out-
put spaces. However, it is hard to interpret final SOM
knowledge from simple visual inspection. Thus,
many different types of visualization techniques have
been proposed, for example, the U-matrix and its vari-
ants (Ultsch, 2003b), (Ultsch, 2003a) visualization of
component planes (Vesanto, 1999), linear and non-
linear dimensionality reduction methods such as the
principal component analysis (PCA) (Bishop, 1995),
Sammon Map (Sammon, 1969) and many non-linear

methods (Joshua B. Tenenbaum and Langford, 2000),
(Roweis and Saul, 2000), (Demartines and Herault,
1997), and the responses to data samples (Vesanto,
1999). Recently, more advanced visualization tech-
niques were proposed such as gradient field and bor-
derline visualization techniques (Georg Polzlbauer
and Rauber, 2006), the connectivity matrix of proto-
type vectors (Tasdemir and Merenyi, 2009) and the
gradient-based SOM matrix (Costa, 2010) and so on.

Even using these visualization techniques, it re-
mains to be difficult to interpret final SOM knowl-
edge. The detection of class or cluster boundaries is,
in particular, a serious problem. If neurons on both
sides of class boundaries should behave differently, it
is easy to find the boundaries with some visualization
techniques. However, cooperation processes in SOM
diminishes the effect of the boundaries, because the
cooperation processes aim to increase continuity over
the output space. Intuitively, the continuity is contra-
dictory to the boundaries. In the proposed method,
the individuality as well as collectiveness of neurons
is introduced. The introduction of individuality is re-
lated to the more explicit detection of class boundaries
by reducing collectiveness.
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Figure 1: Concept of interaction of individuality with collectivenss.

2 THEORY AND
COMPUTATIONAL METHODS

2.1 Interaction

The individuality and collectiveness are easily im-
plemented in neural network architecture. Figure 1
shows a concept of neurons individually and collec-
tively treated. Neurons are treated individually in Fig-
ure 1(a), and collectively in Figure 1(b). Two types of
neurons are mediated by the interaction parameter α.
In our view, in the conventional SOM, neurons have
been treated collectively or cooperatively. Little atten-
tion has been paid to the individuality of neurons. For
example, the good performance of the self-organizing
maps has been evaluated by the trustworthiness and
continuity on the output and input space (Kiviluoto,
1996), (Villmann et al., 1997), (Bauer and Pawelzik,
1992), (Kaski et al., 2003), (Venna and Kaski, 2001),
(Polzlbauer, 2004), (Lee and Verleysen, 2008). No
attempts have been made to evaluate the good perfor-
mance of the self-organizing maps on the clarity of
the obtained class structure.

The individuality and collectives can be consid-
ered in terms of neighborhood functions. As the range
of the neighbors becomes smaller, the individuality
can be considered. However, those neighborhood
functions are only used for making cooperation pro-
cesses smooth. Thus, we think that it is necessary
to control or reduce the effect of cooperation among
neurons, and much more attention should be paid to
the extraction of explicit class boundaries.

2.2 ITN

When each neuron is individually treated, we can ob-
tain individually treated neurons (ITN) as shown in
Figure 1(a). In actual implementation, the method
corresponds to our information-theoretic competi-
tive learning (Kamimura et al., 2001a), (Kamimura,
2003). In this method, competition processes are sup-
posed to be realized by maximizing mutual informa-
tion between competitive units and input patterns.

Let us compute mutual information for a network
shown in Figure 1(a). The jth competitive unit output
can be computed by

vs
j ∝ exp

{
−1

2
(xs −w j)

T Λ(xs −w j)

}
, (1)

where xs and w j are supposed to represent L-
dimensional input and weight column vectors, where
L denotes the number of input units. The L×L matrix
Λ is called a ”scaling matrix,” and the klth element of
the matrix denoted by (Λ)kl is defined by

(Λ)kl = δkl
p(k)
σ2 , k, l = 1,2, · · · ,L. (2)

where σ is a spread parameter, and p(k) shows a fir-
ing probability of the kth input unit and is initially set
to 1/L, because we have no preference in input units.
The output is increased when connection weights be-
come closer to input patterns. The conditional prob-
ability of the firing of the jth competitive unit, given
the sth input pattern, can be obtained by

p( j | s) =
vs

j

∑M
m−1 vs

m
. (3)

The probability of the firing of the jth competitive
unit is computed by
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p( j) =
S

∑
s=1

p(s)p( j | s). (4)

With these probabilities, we can compute mutual in-
formation between competitive units and input pat-
terns (Kamimura et al., 2001b). Mutual information
is defined by

MI =
S

∑
s=1

M

∑
j=1

p(s)p( j | s) log
p( j | s)

p( j)
. (5)

When this mutual information is maximized, just one
competitive unit fires, while all the other competitive
units cease to do so. Finally, we should note that one
of the main properties of this mutual information is
that it is dependent upon the scaling matrix, or more
concretely, the spread parameter σ. As the spread pa-
rameter is decreased, the mutual information between
competitive units and input patterns tends to be in-
creased.

We can differentiate the mutual information and
obtain update rules, but direct computation of mutual
information is accompanied by computational com-
plexity (Kamimura et al., 2001a), (Kamimura, 2003).
To simplify the computation, we introduce free en-
ergy (Rose et al., 1990). The free energy F can be
defined by

F = −2σ2
S

∑
s=1

p(s) log
M

∑
j=1

p( j)

×exp
{
−1

2
(xs −w j)

T Λ(xs −w j)

}
. (6)

We suppose the following equation

p∗( j | s) =
p( j)vs

j

∑M
m=1 p(m)vs

m
. (7)

Then, the free energy can be expanded as

F =
S

∑
s=1

p(s)
M

∑
j=1

p∗( j | s)∥xs −w j∥2

+2σ2
S

∑
s=1

p(s)
M

∑
j=1

p∗( j | s) log
p∗( j | s)

p∗( j)
.(8)

This equation shows that, by minimizing the free en-
ergy, we can decrease mutual information as well as
quantization errors. We usually set p( j) into 1/M for
simplification, and then

p∗( j | s) =
vs

j

∑M
m=1 vs

m
. (9)

By differentiating the free energy, we have

w j =
∑S

s=1 p∗( j | s)xs

∑S
s=1 p∗( j | s)

. (10)

2.3 CTN

We can extend the information-theoretic competitive
learning to a case where the collectiveness of neurons
is taken into account. For the CTN, we try to borrow
the computational methods developed for the conven-
tional self-organizing maps, and then we use the ordi-
nary neighborhood kernel used for SOM, namely,

h jc ∝ exp
(
−∥r j − rc∥2) , (11)

where r j and rc denote the position of the jth and the
cth unit on the output space. Because the adjustment
of individuality and collectiveness, namely, neighbor-
hood relations, are realized by the interaction. The
neighborhood function has no parameters to be ad-
justed.

The collective outputs can be defined by the sum-
mation of all neighboring competitive units

ys
j ∝

M

∑
c=1

h jc exp
{
−1

2
(xs −wc)

T Λctn(xs −wc)

}
,

(12)
where the klth element of the scaling matrix (Λctn)kl
is given by

(Λctn)kl = δkl
p(k)
σ2

ctn
, (13)

where σctn denotes the spread parameter for the col-
lective neurons. The conditional probability of the fir-
ing of the jth competitive unit, given the sth input pat-
tern, can be obtained by

q( j | s) =
ys

j

∑M
m=1 ys

m
. (14)

Thus, we must decrease the following KL divergence
measure

IKL =
S

∑
s=1

M

∑
j=1

p(s)p( j | s) log
p( j | s)
q( j | s)

. (15)

As already mentioned in the above section, instead
of the direct differentiation, we introduce the free en-
ergy. The free energy can be defined by

F = −2σ2
S

∑
s=1

p(s) log
M

∑
j=1

q( j|s)

×exp
{
−1

2
(xs −w j)

T Λ(xs −w j)

}
.(16)

Then, the free energy can be expanded as
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F =
S

∑
s=1

p(s)
M

∑
j=1

p∗( j | s)∥xs −w j∥2

+2σ2
S

∑
s=1

p(s)
M

∑
j=1

p∗( j | s)

× log
p∗( j | s)
q( j | s)

, (17)

where

p∗( j | s) =
q( j | s)vs

j

∑M
m=1 q(m | s)vs

m
. (18)

By differentiating the free energy, we can have update
rules

w j =
∑S

s=1 p∗( j | s)xs

∑S
s=1 p∗( j | s)

. (19)

2.4 Interaction Procedures

In the interaction ITN with CTN, all neurons com-
pete with other, because our method is based upon
information-theoretic competitive learning. The de-
gree of competition is determined by the spread pa-
rameter σ and σctn for ITN and CTN. The spread pa-
rameter σctn is computed by the competition parame-
ter β

σctn =
1
β
, (20)

where β is larger than zero. As the competition pa-
rameter β is larger, competition among neurons be-
comes stronger.

The spread parameter σ is gradually decreased
from β to a point by the interaction parameter α to
control ITN and CTN. For simplicity’s sake, we sup-
pose that finally the spread parameter σ is propor-
tional to the other parameter σctn. Then, we have a
relation

σ = ασctn, (21)

where α is supposed to be greater than zero. As the
interaction parameter α is larger, the spread parameter
for ITN is larger. This means that the effect of ITN
diminishes and that of CTN augments. Actually, the
spread parameter σ is decreased from the value of β
to ασctn.

3 RESULTS AND DISCUSSION

3.1 Experimental Setting

We present experimental results on the Ionosphere

Table 1: Quantization (QE), topographic (TE), training and
generalization (gene) errors by the conventional SOM and
the interaction method when the interaction parameter α is
changed from one to fifty.

QE TE Training Gene
SOM 0.130 0.009 0.209 0.205

1 0.075 0.496 0.068 0.154
10 0.107 0.051 0.137 0.128
20 0.124 0.000 0.261 0.188
30 0.126 0.004 0.218 0.179
40 0.126 0.000 0.218 0.179
50 0.126 0.004 0.218 0.179

data from the machine learning database1 to show
how well our method performs. We use the SOM
toolbox developed by Vesanto et al. (Vesanto et al.,
2000), because it is easy to reproduce the final re-
sults presented in this paper by using this package.
In the SOM, the Batch method is used, which has
shown better performance than the popular real-time
method in terms of visualization, quantization and to-
pographic errors. To evaluate the validity of the final
results, we tried to use the very conventional meth-
ods as well as modern methods for exact compari-
son. In the conventional methods, we used two types
of errors, namely, quantization and topographic er-
rors. The quantization error is simply the average
distance from each data vector to its BMU (best-
matching unit). The topographic error is the per-
centage of data vectors for which the BMU and the
second-BMU are not neighboring units (Kiviluoto,
1996). For more modern techniques, we used trust-
worthiness and continuity (Venna and Kaski, 2001),
(Venna, 2007) based upon the random method pro-
posed by (Kiviluoto, 1996). In addition, we computed
the error rate for training and testing data. The error
rate was computed by using the k-nearest neighbor
(k=1). For computing the generalization performance
in the error rate, we divided the data into training (2/3)
and testing (1/3) data.

3.2 Ionosphere Data

We applied the method to the ionosphere data from
the machine learning database. This radar data was
collected by a system in Goose Bay, Labrador. The
data should be classified into ”good” and ”bad.” The
number of input units and patterns are 34 and 351
which is divided into the training (2/3) and testing
data (1/3). Table 1 shows quantization, topographic,
training and generalization errors by the conventional
SOM and the interaction method. The quantization
error by the conventional SOM is 0.130. On the other

1http://archive.ics.uci.edu/ml/
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Figure 2: Trustworthiness (a) and continuity (b) as a function of k-neighbors.

hand, when the interaction parameter α is one, the er-
ror is 0.075. Then, the error is gradually increased to
0.126 when the parameter is 50. The topographic er-
ror is 0.496 when the parameter is one, which is much
larger than 0.009 by the conventional SOM. However,
when the parameter is 10, the error becomes 0.051. In
addition, when the parameter is 20 and 40, the errors
are completely zero. Training errors are the lowest
(0.068) when the parameter is one. When the param-
eter is increased, the error becomes larger. The gen-
eralization error is the lowest when the parameter is
ten and the largest when the parameter is 20. Com-
pared with errors (0.205) by the conventional SOM,
all errors by the interaction are much smaller.

Figure 2(a) shows trustworthiness as a function of
k-neighbor. As can be seen in the figure, the trust-
worthiness is the lowest over almost all neighbors
when the parameter is one. As the parameter is in-
creased from 10 to 20, the trustworthiness is gradu-
ally increased. Then, when the k-neighbor is 30, the
trustworthiness is higher than that by the conventional
SOM in red. Figure 2(b) shows the continuity as a
function of k-neighbor. When the parameter is one,
the continuity is the lowest and far from the level by
the conventional SOM. As the parameter is increased,
the continuity is increased over almost all range of k-
neighbor. When the k-neighbor is 30, the continuity
is larger for the majority of k-neighbors.

Figure 3 shows U-matrices by the conventional
SOM (a) and interaction (b)-(f). When the parame-
ter is one in Figure 3(b), boundaries to be represented
in warmer colors seem to be scattered over the matrix.
When the parameter is increased to ten in Figure 3(c),
the boundaries in warmer colors are located on the
both sides. When the parameter is increased further
to twenty in Figure 3(d), the two explicit boundaries
in warmer colors can be seen on the lower side of the

map, which are very close to those obtained by the
conventional SOM in Figure 3(a). When the param-
eter is further increased to thirty and forty in Figure
3(e) and (f), the two boundaries seem to be more ex-
plicit than those by the conventional SOM in Figure
3(a).

4 CONCLUSIONS

In this paper, we have proposed a new type of
information-theoretical model in which the individ-
uality and collectiveness of neurons are controlled
by the interaction parameter α. As the interaction
parameter α is increased, the effect of collective-
ness becomes larger. We have applied the method to
the production of the self-organizing maps with the
ionosphere data from the machine learning database.
Experimental results confirmed that improved per-
formance could be observed in terms of all mea-
sures, namely, quantization, topographical, training
and generalization errors by controlling the interac-
tion parameter α. In addition, the trustworthiness and
continuity over almost all ranges of k-neighbors be-
come gradually larger as the interaction parameter α
is larger. This means that the collectiveness can be
used for neurons to cooperate with others like SOM.
Finally, the feature maps obtained by our method
showed sharper class boundaries compared with those
by the conventional SOM.

The present experimental results are only prelim-
inary ones with an initial condition. Thus, we need
to compare the results more rigorously. However, we
can at least shows a possibility that the flexible inter-
action of ITN and CTN can be used to produce im-
proved performance and explicit class structure.
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(a) SOM (b) Alpha=1 (c) Alpha=10

(d) Alpha=20 (e) Alpha=30 (f) Alpha=40
Figure 3: U-matrices by the conventional SOM (a), and interaction when the interaction parameter is changed from one (a) to
40 (f).
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