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Abstract: Recent feature constraint scores, that analyse must-link and cannot-link constraints between learning samples,
reach good performances for semi-supervised feature selection. The performance evaluation is generally based
on classification accuracy and is performed in a supervised learning context. In this paper, we propose a
semi-supervised performance evaluation procedure, so that both feature selection and classification take into
account the constraints given by the user. Extensive experiments on benchmark datasets are carried out in the
last section. They demonstrate the effectiveness of feature selection based on constraint analysis.

1 INTRODUCTION

In machine learning and pattern recognition appli-
cations, the processing of high dimensional data re-
quires large computation time and capacity storage.
Though, it leads to poor performances when the di-
mensionality to sample size ratio is high. To im-
prove performances of data classification, the sample
dimensionality is reduced thanks to a feature selec-
tion scheme. It consists in selecting the most relevant
features in order to build a low dimensional feature
space. One generally assumes that a classifier scheme
operating in this low dimensional feature space out-
performs the same classifier operating in the initial
feature space

The feature subspace can be selected thanks to a
non-exhaustive sequential feature selection procedure
which iteratively adds selected features (Kudo and
Sklansky, 2000). However, such a strategy is time
consuming since it evaluates properties of different
multi-dimensional sub-spaces. That leads authors to
sort the score of each feature, so that the feature sub-
space is composed of the most relevant ones (Liu and
Motoda, 1998).

During the training step, the score of each feature
is evaluated thanks to the subset of training samples.
They can be either unlabelled or labelled, leading to
the development of unsupervised and supervised fea-
ture selection techniques. Unsupervised feature score
measures the feature ability of keeping the intrinsic

data structure. In the supervised learning context, the
feature score is based on the correlation between the
feature and the class labels of the training samples.

However, in the supervised learning context, the
sample labelling process achieved by the user is fas-
tidious and expensive. That is the reason why for
many real applications, the training data subset is
composed of a few labelled samples and huge unla-
belled ones. To deal with this ’lack labelled-sample
problem’, recent semi-supervised feature scores have
been developed (Zhao and Liu, 2007),(Zhao et al.,
2008).

Beside class labels of samples, there is another
kind of user supervision information called the pair-
wise constraints. The user simply specifies whether
a pair of training samples must be regrouped to-
gether (must-link constraints) or cannot be regrouped
together (cannot-link constraints). Recent feature
scores called constraint scores, that analyse must-link
and cannot link constraints, have shown excellent per-
formance of semi-supervised learning with a lot of
datasets (Zhao et al., 2008),(Zhang et al., 2008).

To measure the performances reached by feature
selection schemes based on constraint scores, authors
use benchmark datasets composed of labeled samples.
Each dataset is divided into the training and the test
subsets according to the holdout strategy. A small
number of must-link and cannot-link constraints are
deduced from the labeled samples of the training sub-
set. Finally, the training subset is only composed of
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constrained and unconstrained samples without any
knowledge about their label. First, the features are se-
lected by sorting their constraint scores obtained with
the training samples. Then, the performance of the
feature selection algorithm based on each constraint
score is measured by the classification accuracy of test
samples reached by a classifier operating in the fea-
ture space defined by the selected features. The near-
est neighbor classifier is the most used for this pur-
pose. As it requires a lot of prototypes of the classes,
it uses training samples with their labels as proto-
types whereas these labels have not been exploited
by the constraint scores. Indeed, a constraint score
only analyses unconstrained data samples and/or a
few pairwise constraints. So, the test samples are clas-
sified in a supervised learning context (the prototypes
are the training samples with their labels) whereas
the features are selected in a semi-supervised learn-
ing context (only constraints on a few training sam-
ples are considered).

In this paper, we propose a semi-supervised evalu-
ation procedure of performance reached with the con-
straint scores, so that both feature selection and test
sample classification take into account the constraints
given by the user.

The paper is organized as follows. Constraint
scores used by semi-supervised feature selection
schemes, are introduced in section 2. In section 3, we
describe our semi-supervised procedure of constraint
score evaluation. Finally, experiments presented in
section 4, compare the performances of the different
constraint scores thanks to the semi-supervised eval-
uation.

2 CONSTRAINT SCORES

Given the training subset composed ofn samples de-
fined in ad-dimensional feature space, let us denote
X = (xir ) i = 1, . . . ,n; r = 1, . . . ,d; the associated
data matrix wherexir is the rth feature value of the
ith data. Each of then rows of the matrixX rep-
resents a data samplexi = (xi1, . . . ,xid) ∈ R

d, while
each of thed columns ofX defines the feature values
fr = (x1r , . . . ,xnr)

T ∈ R
n.

2.1 Constraints

In the semi-supervised learning context, the prior
knowledge about the data is usually represented by
sample labels. Furthermore, another kind of knowl-
edge is represented by pairwise constraints. Pairwise
constraints simply mention for some pairs of data

samples that they are similar, i.e. must be grouped to-
gether (must-link constraints), or that they are dissim-
ilar, i.e. cannot be grouped together (cannot-link con-
straints). These pairwise constraints arise naturally in
many applications since they are easier to be obtained
by the user than the class labels. They simply formal-
ize that two data samples belong or not to the same
class without detailed information about the different
classes.
The user has to build the subsetM of must-link con-
straints and the subsetC of cannot-link constraints de-
fined as:
M =

{

(xi ,x j), such as xi and xj must be linked
}

,
C =

{

(xi ,x j), such as xi and xj cannot be linked
}

.
The cardinals of these subsets are usually much

lower than the numbern(n−1)/2 of all possible pair-
wise constraints defined by the data.
In the context of the spectral theory, two specific
graphs are built from these two subsets:

• The must-link graphGM where a connection is
established between two nodesi and j if there is a
must-link constraint between their corresponding
samples (nodes)xi andx j .

• The cannot-link graphGC where two nodesi and
j are connected if there is a cannot-link constraint
between their corresponding samples (nodes)xi
andx j .

The connection weights between two nodes of the
graphsGM andGC are respectively stored by the sim-
ilarity matricesSM (n× n) andSC (n× n), and are
built as:

sMi j =

{

1 if (xi ,x j) ∈M or (x j ,xi) ∈M
0 otherwise, (1)

sCi j =

{

1 if (xi ,x j) ∈ C or (x j ,xi) ∈ C
0 otherwise. (2)

2.2 Scores

This prior knowledge represented by the constraints
has been integrated in many recent feature scores
(Zhang et al., 2008) (Zhao et al., 2008) (Kalakech
et al., 2011).

Zhang et al. propose two constraint scoresC1
r and

C2
r which use only the subset of must-link and cannot-

link constraints (Zhang et al., 2008):

C1
r =

∑i ∑ j (xir − x jr )
2sMi j

∑i ∑ j (xir − x jr )
2sCi j

=
f T
r LM fr
f T
r LC f r

, (3)

C2
r = ∑i ∑ j (xir − x jr )

2sMi j −λ∑i ∑ j (xir − x jr )
2sCi j

= f T
r LM fr −λ f T

r LC fr ,
(4)
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whereLM = DM −SM andLC = DC −SC , are the
constraint Laplacian matrices,DM andDC are the de-
gree matrices defined byDMii = dMi (dMi = ∑n

j=1sMi j )

andDCii = dCi ( dCi = ∑n
j=1sCi j ) andλ is a regulariza-

tion coefficient used to balance the contribution of
must-link and cannot-link constraints. Must-link con-
straints are favored by setting 0< λ < 1 and the lower
these two scores are, the more efficient the feature is.

Zhao et al. define another score which uses both
unconstrained data and pairwise constraints in order
to retrieve both locality properties and discriminat-
ing structures of the data samples (Zhao et al., 2008).
They build a new graphGW that connects samples
having high probability of sharing the same label:

• GW is the within-class graph: two nodesi and j
are connected if(xi ,x j) or (x j ,xi) belongs toM ,
or if one of the two samples is unconstrained but
they are sufficiently close to each other (by using
thek-nearest neighbor graph denoted kNN)

The edges in the graphGW are weighted by using the
similarity matrixSW (n×n) expressed as:

sWi j =



















γ if (xi ,x j) ∈M or (x j ,xi) ∈M

1 if xi or x j is unlabeled
butxi ∈ kNN(x j ) or x j ∈ kNN(xi)

0 otherwise

(5)

whereγ is a suitable constant parameter which has
been empirically set to 100 in (Zhao et al., 2008).

Zhao et al. also introduce a Laplacian score, called
the locality sensitive discriminant analysis score and
defined as:

C3
r =

∑i ∑ j (xir − x jr )
2sWi j

∑i ∑ j (xir − x jr )
2sCi j

=
f T
r LW fr
f T
r LC fr

. (6)

whereLW = DW −SW , DW being the degree matrix
defined byDWii = dWi (dWi = ∑n

j=1sWi j ). The lower

the scoreC3 is, the more relevant the feature is.
The scoresC1 andC2 do not take into account the

unconstrained samples since they are only based on
the must-link and cannot link constraints.C3 consid-
ers mainly the must-link constraints, so it seems to be
very close toC2 and both neglect the unconstrained
samples.

Though, taking into account the unconstrained
samples should catch the data structure and make
less sensitive a feature score against the given con-
straint subsets. That is why we have proposed a semi-
supervised constraint scoreC4 defined as (Kalakech
et al., 2011):

C4
r =

f̃ T
r L f̃r

f̃ T
r D f̃r

.
f T
r LM fr
f T
r LC fr

, (7)

where D and L are respectively the degree and the
Laplacian matrices (L=D−S) deduced from the sim-
ilarity matrix S. S (n×n) is the similarity matrix be-
tween all the samples, expressed as:

si j = exp

(

−

∥

∥xi − x j
∥

∥

2

2t2

)

. (8)

t is a Gaussian parameter ajusted by the user.
The scoreC4

r is the simple product between the
unsupervised Laplacian score processed with samples
(He et al., 2005) and the constraint scoreC1

r (see
Equation (3)) (Zhang et al., 2008). As for the other
scores, the features are ranked in ascending order ac-
cording to scoreC4 in order to select the most relevant
ones. We have experimentally demonstrated that this
score is less sensitive to the constraint changes than
the classical scores while selecting features with com-
parable classification performances (Kalakech et al.,
2011) (Kalakech et al., 2010).

3 EVALUATION SCHEME

In this section, we present the classical supervised
evaluation scheme used to evaluate the performances
of the features selected by the constraint scores, and
propose our new semi-supervised evaluation scheme.

3.1 Supervised Evaluation

In order to compare different feature scores, the
dataset is divided into training and test subsets. The
feature selection procedure is performed with the
training subset. Then, the performance of each con-
straint score is measured by the accuracy rates of test
sample obtained by a classifier such as kNN classifier
operating in the feature space defined by the selected
features.

The training samples with their true labels are
used by the nearest neighbor classifier to classify the
test data, whereas these true labels have not been
used by the constraint scores. Indeed, these scores
use only the unconstrained data and/or a few pairwise
constraints given by the user. So, the test samples
are classified in the supervised learning context (the
prototypes are the training samples with their true la-
bels) whereas the features are selected in the semi-
supervised learning context (only constraints on a few
training samples are analyzed).

Though, the selection and the evaluation should
operate in the same learning context. That is why,
unlike to classical supervised evaluation, we propose
to perform the score evaluation in a semi-supervised
context.
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Algorithm 1: Constrained K-means.

1: Choose randomlyK samples as the initial class
centers.

2: Assign each sample to the closet class while ver-
ifying that constraint subsetsM and C are not
violated.

3: Update the center of each class.
4: Iterate 2 and 3 until converge.

3.2 Semi-supervised Evaluation

To compare the performances reached by differ-
ent feature selection schemes operating in the semi-
supervised learning context, the test samples are also
classified in the semi-supervised context. For this pur-
pose, feature selection and test sample classification
take into account only the constraints given by the
user as prior knowledge. To classify the test samples,
the nearest neighbor classifier needs to define the la-
bels of the training samples.

In the semi-supervised context, we have no prior
knowledge about labels of these training samples. So,
to build the prototypes of classes, we propose to esti-
mate the labels of the training samples. As the prior
knowledge is described by a few constraints between
training samples, we propose to cluster the training
samples thanks to the constrained K-means scheme
developed by Wagstaff et al. (Wagstaff et al., 2001)
(see Algorithm 1). The desired number of classes is
set by the user and this scheme operates in the selected
features space.

Once the labels of the training samples have been
estimated, the nearest neighbor classifier use them as
prototypes of classes to classify the test samples.

Since the true classes of the training samples can
be different from those determined by the constrained
K-means, we cannot directly use these labels to mea-
sure the classification accuracy of the test samples.
For this purpose, we propose to match the true and
estimated labels of the training samples thanks to
Carpaneto and Toth algorithm (Carpaneto and Toth,
1980).

4 EXPERIMENTS

In this section, we compare the different constraint
scores performances thanks to the semi-supervised
evaluation. Experiments are achieved with six well
known and largely used benchmark databases, and
more precisely the ’Wine’, ’Image segmentation’
and ’Vehicle’ databases from the UCI repository
((Blake et al., 1998)), the face database ’ORL’

((Samaria and Hartert, 1994)) and the two gene ex-
pression databases, i.e., ’Colon Cancer’((Alon et al.,
1999)) and ’Leukemia’((Golub et al., 1999)). These
databases have been retained since the features are nu-
meric and since the label information of each sample
is clearly defined.

4.1 Datasets

In our experiments, we first normalize the features be-
tween 0 and 1, so that the scale of the different fea-
tures is the same. For each dataset, we follow a Hold-
out partition and choose the half of samples from each
class as the training data and the remaining data for
testing.

Here is a brief description of the six considered
databases:

• ’Wine’ Database
This database contains 178 samples characterized
by 13 features (d=13) composed of 3 classes hav-
ing 59, 71 and 48 instances, respectively. We ran-
domly select 30, 36 and 24 samples from each
class to build the training subset. The remaining
samples are considered as the test subset.

• ’Image Segmentation’ Database
This database contains 210 samples characterized
by 19 features (d=19) regrouped into 7 classes,
each class having 30 instances. We randomly se-
lect 15 samples from each class to build the train-
ing subset and the remaining samples constitute
the test subset.

• ’Vehicle’ Database
This database contains 846 samples characterized
by 18 features (d=18) regrouped into 4 classes,
having 212, 217, 218 and 199 instances, respec-
tively. We randomly select 106, 109, 109 and 100
samples from each class to build the training sub-
set.

Figure 1: Sample face images from the ORL database (2
subjects).

The ’ORL’ database (Olivetti Research Labora-
tory) contains a set of face images representing
40 distinct subjects. There are 10 different im-
ages per subject, so that the database contains 400
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images. For each subject, the images have been
acquired according to different conditions: light-
ing, facial expressions (open / closed eyes, smil-
ing / not smiling) and facial details (glasses / no
glasses) (see Figure 1).
In our experiments, original images are normal-
ized (in scale and orientation) so that the two eyes
are aligned at the same horizontal position. Then,
the facial areas are cropped in order to build im-
ages of size 32× 32 pixels, whose gray level is
quantified with 256 levels. Thus, each image
can be represented by a 1024-dimensional sam-
ple data.
We randomly select 5 images from each class
(subject) to build the training subset. The remain-
ing samples are organized as the test subset.

• ’Colon Cancer’ database
This database contains 62 tissues (40 tumors and
22 normals) characterized by the expression of
2000 genes. We randomly select 20 and 11 sam-
ples from each class to build the training subset.
The remaining data are organized as the test sub-
set.

• ’Leukemia’ database
This database contains information on gene-
expression in samples from human acute myeloid
(AML) and acute lymphoblastic leukemias
(ALL). From the originally measured 6817 genes,
the genes that are not measured in at least one
sample, are removed. So a total of 5147 genes are
examined in the experiments.
Because Leukemia has a predefined partition of
the data into training (27 ALL and 11 AML) and
test (20 ALL and 14 AML) subsets ((Golub et al.,
1999)), all the experiments on this dataset are
performed on these predefined training and test
subsets.

4.2 Experimental Procedure

In our experiments, the feature selection is performed
on the training samples and features are ranked ac-
cording to the different scores. At each feature se-
lection runq, q=1,..., p, we simulate the generation
of pairwise constraints as follow: we randomly se-
lect pairs of samples from the training subset and cre-
ate must-link or cannot-link constraints depending on
whether the underlying classes of the two samples are
the same or different. We iterate this scheme until we
obtain l must-link constraints andl cannot-link con-
straints,l being set by the user.

The classification accuracies of the test samples
are used to evaluate the performance of each score.
The rates of good classification are averaged overp=

100 runs with different generations of constraints. 10
constraints (l=5) have been considered for the ’Wine’,
’Image segmentation’, ’Vehicle’ and ’ORL’ databases
and 60 constraints (l=30) have been considered for the
’Colon Cancer’ and ’Leukemia’ ones.

4.3 Accuracy vs. Number of Features

We compare the accuracy rates of the different scores
C1, C2, C3 andC4 thanks to our semi-supervised eval-
uation procedure. The labels of the training data are
estimated by the constrained K-means algorithm op-
erating in the selected feature space. These estimated
labels are then used by the nearest neighbor classi-
fier in order to measure the accuracy of the different
scores.

Figure 2 shows the accuracy rates vs the de-
sired number of selected features on the databases
of ’Wine’,’Image segmentation’, ’Vehicle’, ’ORL’,
’Colon cancer’ and ’Leukemia.

From this figure, we can see that the accuracy rates
of C1, C2, C3 andC4 are very close, because the dif-
ferent curves overlap. Since these results are averaged
over 100 runs, it is hard to compare them.

That leads us to compare these scores by exam-
ining their accuracies at each of the 100 runs. For a
fixed number of selected features, in each of the 100
runs, we propose to rank the 4 scores in descending
order of their accuracy.

Let us denoterank∗q the rank of the criterionC∗

at the runq. This rank takes the values 1, 2, 3 or 4.
At each runq, the score having the highest accuracy
is ranked as 1 and the score with the lowest accuracy
value, is ranked as 4. Scores with the same accuracy
have the same rank.

We calculate the rank sumT∗ for each semi-
supervised constraint score as follow:

T∗ =
100

∑
q=1

rank∗q, (9)

where * is 1, 2, 3 or 4 corresponding to the scoreC1,
C2, C3 or C4 respectively. The method with the low-
est rank sum is considered as being the score which
provides the best results.

Table 1 shows the rank sumT∗ for the different
databases ’Wine’, ’Image segmentation’, ’Vehicle’,
’ORL’, ’Colon Cancer’ et ’Leukemia’. The rank sum
of each score is computed by considering respectively
the first 6, 5, 8, 300, 1000 and 2576 features on the
’Wine’, ’Image segmentation’, ’Vehicle’ and ’ORL’
databases.

Our scoreC4 has the lowest value 3 times (indi-
cated as bold) over the 6 rows of table 1. The other
three scores share each one a row.
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(a) ’Wine’.
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(b) ’Image segmentation’.
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(c) ’Vehicle’.
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(d) ’ORL’.
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(e) ’Colon Cancer’.
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(f) ’Leukemia’.

Figure 2: Accuracy rates vs. the desired number of selected features on the 6 databases. 10 constraints composed of 5
must-link et 5 cannot-link was used for the ’Wine’, ’Image segmentation’, ’Vehicle’ and ’ORL’ databases and 60 constraints
composed of 30 must-link and 30 cannot-link was used for the ’Colon Cancer’ and ’Leukemia’ databases. The evaluation is
performed in a semi-supervised learning context: the one nearest neighbor classifier uses the estimated labels of the training
samples as prototypes of classes.
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Table 1: The rank sum of the constraint scores on different
databases.

Database\T T1 T2 T3 T4

’Wine’ 191 277 206 157
’Image segmentation’ 165 219 161 196

’Vehicle’ 261 239 238 209
’ORL’ 230 200 264 228

’Colon Cancer’ 150 216 162 150
’Leukemia’ 140 240 140 176

These results show that the features selected by
C4 provide accuracy rates that are higher than those
obtained by features selected by the classical scores.
This same conclusion was found in our earlier work
that follows the classical supervised evaluation of the
constraint scores (Kalakech et al., 2011) (Kalakech
et al., 2010).

4.4 Accuracy vs. Number of
Constraints

We compare the accuracy rates of the different scores
with a fixed number of features vs. number of pair-
wise constraints.

Figure 3 displays the plot of accuracy with a fixed
number of selected features (half of the number of
original features (Sun and Zhang, 2010) vs. differ-
ent number of pairwise constraints on the two gene
expression databases. The accuracy of the test sam-
ples is measured thanks to the supervised evaluation
scheme.

From this figure, we can see that, for almost all the
number of constraints, our scoreC4 provides higher
accuracy thanC1, C2 andC3. We can also notice that
the accuracy does not tend to increase with respect
to the number of constraints. This is due to the con-
straints choice. Since these constraints are randomly
generated, some of them could be less informative
than the others.

Table 2: The rank sum of the constraint scores for different
number 2l of constraints on the ’Colon Cancer’ database.

2l\T T1 T2 T3 T4

4 constraints 140 157 153 224
10 constraints 242 147 201 153
40 constraints 153 268 169 124
60 constraints 257 171 194 151

Furthermore, Tables 2 and 3 show the rank sum
T∗ for different number 2l of constraints (4, 10, 40
and 60) on the ’Colon Cancer’ and the ’Leukemia’
databases, respectively. The rank sum of each of the
semi-supervised criteria is calculated with the half of
the original features of each of the gene expression

Table 3: The rank sum of the constraint scores for different
number 2l of constraints on the ’Leukemia’ database.

2l\T T1 T2 T3 T4

4 constraints 194 215 210 190
10 constraints 234 176 159 150
40 constraints 148 198 196 123
60 constraints 167 170 184 115

databases.
We can see that, for the ’Colon Cancer’ database,

our score provides the lowest rank sum T (indicated
in bold) for 2 times over the 4 rows of Table 2 (when
the number of constraints is higher than 10). For the
’Leukemia database’, our score provides the lowest
rank sum T (indicated in bold) for the different num-
bers of constraints (4, 10, 40 and 60). These results
show that the features selected thanks to our scoreC4

provide accuracy rates which are higher than those
obtained by the features selected by constraint scores
C1, C2 andC3. The same conclusions were found
using the classical supervised evaluation (Kalakech
et al., 2011).

5 CONCLUSIONS

The accuracy rates of test samples reached by a clas-
sifier that analyses the features selected by the con-
straint scores, are generally compared in the super-
vised learning context. The nearest neighbor clas-
sifier uses the training sample labels as prototypes
of classes. However, the feature selection has been
performed in a semi-supervised context, since it uses
the available constraint sets and/or the unconstrained
samples.

So, we have proposed in this paper, to keep the
same learning context for the feature selection as for
the evaluation. The prior knowledge represented by
must-link and cannot-link constraints is used for the
selection and for the classification. The training sam-
ple labels are estimated by using the constrained K-
means algorithm that tries to respect the constraints
as much as possible. These estimated labels are then
used as prototypes by the nearest neighbor classifier
to classify the test samples. We called this approach
semi-supervised evaluation to distinguish it from the
classical supervised one.

The comparison between the different constraint
scores thanks to this semi-supervised evaluation
shows that the accuracy rates provided by our score
are higher than those of the classical scores.

We notice that the constrained K-means used dur-
ing the semi-supervised evaluation is a simple cluster-
ing algorithm. It does not guarantee the respect of all
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(a) ’Colon Cancer’.
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(b) ’Leukemia’.

Figure 3: Accuracy rates vs. number of constraints forC1, C2, C3 andC4 on the gene expression databases thanks to the
semi-supervised evaluation scheme. The desired number of selected features is half of the number of the original features.

the constraints specially when several constraints are
defined with the same sample. So, it will be interest-
ing to use another constrained classification algorithm
that is more efficient than this one, as these presented
by Kulis et al. (Kulis et al., 2009) and Davidson et al.
(Davidson et al., 2006).
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