A STATE-SPACE NEURAL NETWORK
FOR MODELING DYNAMICAL NONLINEAR SYSTEMS

Karima Amoura, Patrice Wird and Said Djennourie
1| aboratoire CCSP, Université Mouloud Mammeri, Tizi Ouzou, Algeria
2| aboratoire MIPS, Université de Haute Alsace, 4 Rue des Fréres Lumiere, 68093 Mulhouse, France

Keywords: Artificial neural networks, Recurrent network, State space, State estimation, System identification, System
dynamics.

Abstract: In this paper, a specific neural-based model for identification of dynamical nonlinear systems is proposed. This
artificial neural network, called State-Space Neural Network (SSNN), is different from other existing neural

networks. Indeed, it uses a state-space representation while being able to adapt and learn its parameters. These

parameters are the neural weights which are intelligible or understandable. After learning, the SSNN therefore

is able to provide a state-space model of the dynamical nonlinear system. Examples are presented which show

the capability of the SSNN for identification of multivariate dynamical nonlinear systems.

1 INTRODUCTION tions. RNNs are considered a cornerstone in the learn-
ing theory because of their abilities to reproduce dy-
The state-space representation is a very powerful toolnamical behaviors by mean of feedback connections
for modeling systems (Gauthier and Kupka, 2001). It and delays in the propagation of their signals (El-
allows the modeling of linear and nonlinear dynami- man, 1990). After learning, a RNN with a sufficient
cal systems while keeping a temporal representationnumber of neurons is able to estimate any relation-
of the events. It contains useful information directly ships and therefore to reproduce the behavior of any
related to physical systems and offers thus very good multivariate and nonlinear dynamical systems (Wer-
possibilities in terms of analyzing systems and plants. bos, 1974). Therefore, RNNs received a consider-
An Artificial Neural Network (ANN) is an assem- ~ able attention from the modern control community
bly of connected neurons where each neuron com-to such an extend that they have been formalized
putes its output as a nonlinear weighted sum of its in Model-Referencing Adaptive Control (MRAC)
inputs. If the parameters of this type of architec- schemes (Narendra and Parthasarathy, 1990), (Chen
tures, i.e., the weights of the neurons, are appropri- and Khalil, 1992). Their model stability remains one
ately tuned, then the whole architecture is able to esti- of the most critical aspects.
mate the relationship between input and output spaces The deterministic state-space representation and
or to mimic the behavior of a plant without consider- the learning RNN can both be employed for modeling
ing any model (Haykin, 1994), (Principe et al., 2000). dynamical systems. However, they are characterized
Learning is one of the most interesting properties of by very different ways of storing information. If the
the ANNSs in the sense that calculating and adjusting first approach directly relies on physical parameters
the weights is achieved without modeling the plant of the system, the second approach uses the weights
and without any knowledge about it, but only from of the neurons. These weights are inherent of a neu-
examples. Examples are sampled signals measuredal architecture and can generally not be interpreted.
from the plant and representative of its behavior. In Combining these two approaches would combine the
this way, ANN are considered as relevant modeling advantages of one and the other. This is the case of the
and approximating tools. State-Space Neural Network (SSNN), a very specific
A Multi-Layer Perceptron (MLP) is a neural ar- RNN based on a state-space representation (Zamar-
chitecture where neurons are organized in layers. Be-reno and Vega, 1998).
side, a Recurrent Neural Network (RNN) can be con- In this paper, the SSNN is proposed for the identi-
sidered as a MLPs enhanced by feedback connecication of multivariate nonlinear dynamical systems.

Amoura K., Wira P. and Djennoune S.. 369
A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS.

DOI: 10.5220/0003680503690376

In Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA-2011), pages 369-376

ISBN: 978-989-8425-84-3

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

NCTA 2011 - International Conference on Neural Computation Theory and Applications

The architecture of the SSNN differs from conven- @)

tional neural architectures by being compliant to a

state-space representation. Indeed, the SSNN is de- u(k) {
voted to approximate the nonlinear functions between

the input, state, and output spaces. It is therefore a

state-space formalism enhanced by learning capabil- x(k — 1){

ities for adjusting its parameters. Its state represen-
tation is accessible and can be used moreover for the
design of adaptive control schemes. Previous RNN- b)

based approaches (Kim et al., 1997), (Mirikitani and input hidden state hidden output
N|kolgev, 2010) can be good candidates for y.|eld|ng u(k) s x(K) o y(K)
adaptive observers. However, they are restricted to .

some classes of nonlinear systems. On the other hand, w! wh2 wo

the SSNN is able to describe virtually any nonlinear A

system dynamics with a state-space representation. ItFigure 1: Architecture of the SSNN, a) the two-stage neural
is therefore of a considerable interest for identification block representation, b) the SSNN signal flow graph.
and control purposes.

The paper is organized as follows. In Section Il, layerSas inputs. Each neuron in this layer represents
the SSNN equations are developed. Two simulation one state whose output value is an estimated value of
examples are provided in Section Il toillustrate and the state. The estimated states are used by the next
to compare the performance of the SSNN used for the hidden layerO which relates the states to the output
system identification of nonlinear plants. Some con- layer via a nonlinear function.. The output layer is
cluding remarks are provided at the end of the paper. composed of neurons taking the hidden layer signals

as inputs. The outputs of the neurons composing the
output layer finally represent the outputs of the SSNN.

_ The SSNN topology can be also considered as a two-
2 THE STATE-SPACE NEURAL stage architecture with two ANN blocks, ANN1 and
NETWORK (SSNN) ANNZ2, separated by an internal estimated state-space.
This architecture is equivalent to a deterministic non-
2.1 Architecture linear system in a state-space form whose mathemat-

ical representation is a particular case of (1):

The general formulation of a discrete-time process K(k+1) =W"Fy Wf>”<(k)+Wiu(k)+B“) +B
governed by a nonlinear difference equation can be 9(k) = WOF, (Wh %(K) + BhZ) +B”2

written by) nang . i 2)
§ € RMandX € R® represent the estimation
x(k+1) = F(x(k),u(K)) wherey € £ a _
’ . 1 of y andx respectively. The other parameters are:
{ y() = G(x(K)) +v(K) (1) ofy pectively P

e Whe RV R", Wh e RS x R, W' € R" x RS,

The evolution of the process is represented by its W2 ¢ R" x RS andW° € R™ x RM are weight-
internal statex € R®. The process takes the control ing matrices;
signalsu € R" as the inputs and_ outputs measure- | gn c RN B2 c RM2 B € RS andB'2 € RMare bias
mentsy € R™. F andG are nonlinear multivariate
functions representing the process nonlinearities. h h h ho)

The SSNN is a special RNN whose architecture ® F1. R" = R andFp, R™ — R are two static
exactly mirrors a nonlinear state-space representation ~and nonlinear functions.
of a dynamical system (Zamarreno and Vega, 1998; The architecture of the SSNN is represented by
Zamarreno and Vega, 1999; Zamarreno et al., 2000;the schematic diagram of Fig. 1 a). Its five layers
Gonzalez and Zamarreno, 2002). The SSNN is com- are represented by the signal flow graph of Fig. 1 b)
posed of five successive layers: an input layer, a hid- where black (or full) nodes are variables linearly de-
den layerS, a state layer, a hidden lay&, and an pending from the previous ones and where white
output layer. The input layer takes the input signals (or empty) nodes are variables nonlinearly depend-
and delivers them to every neurons of hidden l&ger ing from the previous ones. Compared to its initial
This layer describes the states behavior by introduc- formulation (Zamarreno and Vega, 1998; Zamarreno
ing a form of nonlinearity. The state layer is com- and Vega, 1999; Zamarreno et al., 2000), the form
posed of neurons receiving the signals from hidden of (2) has been enhanced with biag#sandB'? in

vectors;

370

A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS

order to allow more flexibility to the neural architec-
ture. These additional degrees of freedom will allow
better performances for learning and estimating a pro-
cess. The learning consists in finding the optimal val-

ues of the weights and biases. The parameters fixed

by the designer are the functioks andF,, and the
initial valuesX(0). It is important to notice that: 1)
the SSNN needs an initial state value, 2) the numbers
of inputs and outputs of the SSNN (therefarand

m respectively) are fixed by those of the plant to be
modeled, 3h andh2, the number of neurons in the
hidden layers, are let to the designer’s appreciation.

The SSNN is able to reproduce the same behavior

as the process with weights and biases correctly ad-
justed. This means that the SSNN is able to yield a
signaly(k) very close to the output(k) of the pro-
cess for the same control signa& R". Furthermore,
and contrary to other ANNSs, the SSNN is also able
to provide an estimatioR(k) of the statex(k) at any
instantk due to its specific architecture. Obviously,
the performance depends on the learning, i.e., if the
parameters have been well adjusted.

2.2 Parameters Estimation

Performance

107

! : ; : T
500 600 700 800 900
epochs

Figure 2: MSE values obtained during the training phase
for plant example 1.

I L I I
0 100 200 300 400 1000

2000). The backpropagation algorithm with the
Levenberg-Marquardt method is used to find a min-
imum for the MSE. The network is initialized with
weights randomly chosen between -1 and 1.

In the SSNN, we assume that ANN1 and ANN2
of are trained with this principle by using respec-

tively {...,([u(k) x(k—1) }T,s(k)),...} and

Learning or training addresses the parameters estima-{___ (s(k),y(k)), ...} for their training sets.

tion of the neural technique. The problem of interest
consists in using data sets from the system in order
to find the best possible weights so that the ANN re-
produces the system behavior. The learning of the
SSNN is based on the general learning theory for
a feed-forward network witm’ input andm’ output
units (Haykin, 1994). It can consist of any number of
hidden units and can exhibit any desired feed-forward
connection pattern.

It is therefore a nonlinear optimization problem
based on a cost function which must be defined to
evaluate the fithess or the error of a particular weight
vector. The Mean Squared Error (MSE) of the net-
work is generally used as the performance index and
must be minimized:

E- 230 letIP = 23, [50— o]

3
with a given training set
{(X'(1),d'(1)),...,(X(N),d'(N))} consisting of

N ordered pairs of off- andn'-dimensional vectors
which are called the input and output patterns.

The weights of the ANN are adjusted via gradi-
ent descend methods to minimize the MSE between
the desired responsi(k) and the actual outpi(k)
of the network. Several learning algorithms have
been proposed in the literature (Werbos, 1974), (El-
man, 1990), (Chen and Khalil, 1992), (Principe et al.,

3 SIMULATION TESTS
AND RESULTS

In this study, the SSNN is applied to system identi-
fication of two multivariate nonlinear dynamical sys-
tems in order to evaluate and to compare its perfor-
mance. Indeed, it is used to learn a state-space repre-
sentation of these systems.

3.1 Example 1

We consider the following process, governed by a de-
terministic second-order nonlinear state-space repre-
sentation:

xq (K+ 1) = 1.145¢ (K) + 0.54%(K) + 0.584u(K)

K 0.18
Xo(K+ 1) = Hox;;g;%w + 0181k

y(k) = 4tanh(0.250x; (K))

(4)
with the state vectox(k) = [xi(k) x2(k)]T and a
one dimensional control signa(k).

This process is estimated by a SSNN with acti-
vation functions~; andF; that are respectively sig-
moid type and tanh-type. The other parameters are
n=1,s= 2, andm= 1. The number of neurons in

371

NCTA 2011 - International Conference on Neural Computation Theory and Applications

the hidden layers of ANN1 and ANN2 are fixed by a

trial-and-error process and the best performance is ob-

tained withh = h2 = 2 neurons in each hidden layer.
The initial conditions of the SSNN are the following:

the weights are randomly chosen between -1 and 1,

andX(0) is chosen as null. In order to train the SSNN,

1800 training inputs are generated with a sinusoidal

control signal with different values of the amplitude

and frequency. The training error values vs. the num-

ber of epochs are shown in Fig. 2.

After learning with the Levenberg-Marquardt al-
gorithm, the plant described by (4) is estimated by
the SSNN according to

{ y(k) = Wtansig(W"& (k) + B"?) + b'?

5
with the following optimum weights: ©
wr— | —00340 00162
~0.2375 —0.2529 |’
wh— | —1348114 00261]
—-81.8352 —5.2239 |’
Wi=[-00173 00211]",
B" = [—0.0023 70.00011]T, ©)
B'=[67.3160 434829,
Wh2 = [—5.6543 23457,
wo_ | —0.500 oooool
0.500 Q0000 |’
BM"2=[0.1812 04369] .10°3,
b'2 = 1.6543

The SSNN with the previous parameters is evalu-

ated on a test sequence. This allows to compare the

behavior of the SSNN to those of the plant by using

a same control signal composed of steps with various

(p.u.)

(p.u.)

(pu)

L I
100 150
T T

errors (p.u.)
o

-0.02 -

I
150
time (iterations)

0.03 I L I I
0 50 100 200 250 300

Figure 3: Performances of the SSNN in identifying plant
example 1.

x1(k+1) x2(K)
Xo(k+1) | | psinxi(k)+ p+x3(K)
x3(k+1) | X4(K)
xa(k+1) pa(k)

0

+ 8 u(k)
1
y(K) = tanh(x(K))

(7)

amplitudes. The results are presented by Fig. 3 whichwhere parametep = 0.85. The plant is linear with
shows the control input, the two states, the output and p = 0, nonlinear withp > 0, and unstable witip > 1.

the estimated states and output. This figure shows atThe plant is controlled by one input signalthere-
the same time, the different between the output and itsfore n = 1) which is a sinusoidal signal with differ-
estimation and the difference between the states andent values of the period, mean (offset) and ampli-

their estimation. The maximum value of the MSE on
the output of the SSNN is 25 .18; this demonstrates
the ability of the SSNN for modeling this nonlinear
dynamical plant.

3.2 Example 2

In this example, the plant to be identified is a four-
order nonlinear systens & 4) with m= 4 outputs:

372

tude. The training set of the SSNN is composed of
1000 data samples af, y, andx). The plant non-
linearities are introduced in the SSNN with functions
F1(.) =logsig.) andF;(.) = tansid.). For simplic-
ity, the following initial conditions are considered:
X(0) = 0 andX(0) = 0. The parameters of the SSNN
are randomly initialized between -1 and 1 and are
adjusted with the training data set according to the
Levenberg-Marquardt algorithm.

After learning ex-nihilo, the plant of (7) is identi-
fied by

X(k+1) = Whlogsig(W'k(k) +W'u(k) + B") + B!

{ 9(k) = WOtansig(W"?% (k) + B"?) + B'2
®

A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS

o

2 T T T T
’ WMWW
L L L L
0 200 400 600 800

YN

==

L
1000

L
1200

L
1400 1600 1800

T T T T T T T T
10F B
0 b .
~10 . / :
L

L
1000

1200

1400 1600 1800

L L
600 800

L
1000

L
1200

L
1400 1600

L L
1200 1400 1600 1800

L L L L L
600 800 1000 1200 1400 1600 1800

Figure 4: Test sequence of the SSNN with an oscillating Figure 5: Estimating errors of the SSNN during the test se-
control signal.

The best results for the SSNN are obtained with

h =8 andh2 = 4 with the following values:

W=

wh =

B' =

Wh2 —

WO =

Bh2 —

00001 00211 00209 —0.0312
07841 —00345 —00740 01457
05381 00135 —0.0937 00806
—02618 00035 00632 —0.0544
—0.0001 -00198 00150 —0.0128 |’
—04081 -0.0045 00763 —0.0678
—0.0000 -00195 00075 00199
06801 00027 —00052 00534 |
913394 277993 342220 1274106 7'
0.0043 204352 00179 —0.0017
00563 —2309712 02334 01122
0.1380 3213377 —0.2097 —0.0990
—1513135 —493097 1312520 —37.2734
00636 —5016847 04946 02431
465102 1065639 1696512 1752242
—00046 236573 —0.0277 —0.0094 |
0.0247 1 [—0.0409 T

~0.1018 ~100577

~0.0217 —1.6909

00102 | | 07563

00176 |’ 00391 |’

0.0179 1.2601

0.0087 0.0029
| —0.0639 | | 45821 |

8.9622 143209 —350017 —1312700
313282 —169499 —390042 256931
~00323 00403 -10431 00221
—0.0284 00387 00360 09379
—05062 -04215 00543 —0.0515
00651 —00354 -0.1039 -1.0478
~00697 00862 01236 —0.9888
—0.0029 -09360 00519 —0.0130
00016 00042 10206 00171
9.3989 —0.0583

00074 | L, | 00601

0.0083 |’ 0.0036

0.0159 —0.0031

C)

guence.

on an oscillating control signal € [—3, 2] composed

of 1800 data points. Fig. 4 shows the control signal
u, but alsox, y, X, andy. The estimation errors — X
andy — Y are presented by Fig. 5. The performance in
estimating the plant with the SSNN can also be eval-
uated by the MSE and the maximum erronoandy
reported in the left part of Table 1 (test sequence). It
can be seen from this table that the maximum error is
less than 1.4% in estimating the states and less than
22.5% in estimating the output. The greatest errors
are recorded on the transcients and the static error is
negligible compared to the range of the output.

In order to go further into the SSNN estimation ca-
pabilities, we evaluate its response to a step and com-
pare it to the original plant. Fig. 6 shows the states
of the SSNN and of the plant. Fig. 7 shows the out-
puts of the SSNN and of the plant. It can be seen that
the behavior of the SSNN is very close to the one of
the plant. This is confirmed by the errors, i.e., MSE
and static errors reported in the right part of Table 1
(step response). In this test, the behavior of the SSNN
is nearly the same as that of the plant, all the more
so since the training sequence of the SSNN was not
composed of steps but only of sinusoidal waves. This
demonstrates that the SSNN is successful in identifi-
cation and its the good capabilities to generalize.

If system identification includes estimating the re-
lation between the input and the output of the system,
this can be achieved by a MLP and can be used as a
comparison to the SSNN. Fig. 8 shows the principle
of identifying a plant with a MLP using delayed in-
put and output signals. The input of the MLP are de-
layed values of the control signafk) and of the out-
put of the procesg(k) in order to capture the process
dynamics. We chose to update the MLP weights ac-
cording to the Levenberg-Marquardt algorithm from

First, we report results for a test sequence baseda random initialization between -1 and 1 and with the

373

NCTA 2011 - International Conference on Neural Computation Theory and Applications

Table 1: SSNN errors in identifying plant example 2.

test sequence step response
MSE max. error| MSE static error
x1 | 0.0007 163 | 0.0157 0.2177 103 | -0.1246
Xo | 0.522810° | 0.3474 0.375310° | -0.1155
X3 | 0.0014 103 | 0.0141 0.0297 103 | -0.2084
X4 | 0.0012 102 | 0.0088 0.0237 10° | -0.1995
y1 | 0.003110° | 0.4145 0.453510° | -0.1105
y» | 0.0034 103 | 0.4495 0.5477 10° | -0.1027
y3 | 0.0000 103 | 0.0259 0.007810° | -0.1998
ya | 0.0000 102 | 0.0386 0.011310° | -0.1998

10 10 ble 2. They can be compared to the ones obtained
with the SSNN in Table 1. The errors of the MLP and
of the SSNN in yielding the output are of the same
order of magnitude. However, the MLP is a nonlinear
regression structure that represents input-output map-
- pings by weighted sums of nonlinear functions. The
o 0 a0 e e 10 o 20 4 & 8 10 MLP is therefore not able to estimate the state signals
temps (itérations) temps (itérations) Of the plant

(sans unité)
(sans unité)

3.3 Discussion

(sans unité)
(sans unité)

Computational cost is generally considered as a ma-
— —— jor shortcoming of ANNs when identifying and con-
ey ey trolling dynamical systems in real-time. Their main

temps (itérations) temps (itérations)

Figure 6: Ideal states and states estimated by the SSNN forinterest is to used an on-line learning, i.e., to adjust

an input step (plant example 2). the weights while controlling of the system at the
same time. This means that both, learning and con-

12 1.2 trolling, are achieved within each iteration. This al-
1 T lows to instantaneously take into account the varia-
08 08 f ' tions and fluctuations of the system’s parameters and

=3
)
o
)

the eventual external disturbances affecting the sys-
tem. The computational costs for calculating the out-
i 02 % put and updating the weights have to be compatible

- =% =%

00 10 20 30 40 50 00 10 20 30 40 50 Wlth the Sampllng tlme

tomes (tératons) temps (tératons) The number of neurons is generally provided to
give an idea about the size of the ANN. The num-
ber of neurons i1+ s+ h2+m for a SSNN noted
down by SSNNA, h, s, h2, m) with n, h, s, h2 and

m, the dimensions of the SSNN five successive lay-
. ers. The number of neuronsms + m3 for a MLP
" with ml inputs,m2 neurons in one hidden layer, and
ot 2 S0 40 S0 00 2 0 a0 m3 outputs, i.e., MLAGQL, m2, m3). In example 2,

temps (itérations) temps (itérations)

Figure 7: Ideal outputs and outputs estimated by the SSNN the following dimensions were imposed on the SSNN,
for an input step (plant example 2). n=1s=m=4andml = 10 andm3 = 4 on the

MLP. Very close performances were obtained with
same training set as for the SSNN. After the training SSNN(1,8,4,4,4) and MLP(10,8,4), i.e., respectively
period, the MLP has been evaluated with the same testwith 20 and 12 neurons. However, this number is not
sequence as for the SSNN and with a step responsereally representative of the memory required for the
Results obtained with a MLP that uses 10 scalar in- implementation. The total number of scalar param-
puts (i.e.u(k), u(k—1), y(k) andy(k— 1)), 8 neurons eters is much more significant and can be calculated
in one hidden layer and 4 outputs are presented in Ta-for the MLP and for the SSNN respectively as general

(sans unité)

o
~

(sans unité)

o
~

0.2

(sans unité)
(sans unité)

e

374

A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS

Table 2: MLP errors in identifying plant example 2.

test sequence step response
MSE max. error| MSE static error
y1 | 0.004510° | 0.0199 0.399510° | -0.1087
y» | 0.0047 102 | 0.0175 0.502110° | -0.1012
ys | 0.0038 102 | 0.0166 0.0066 103 | -0.1988
y4 | 0.003910° | 0.0169 0.083010°% | -0.1907

not detailed here because it depends on the gradi-
ent method that is used. Adapting the weights for

the SSNN generally requires less efforts than for the

MLP.

Learning with MLPs remains to estimate the
input-output relationship of a system. This is a way
to describe the system dynamics when conventional
tools are not efficient in-modeling. However, MLPs
generally needs a substantial number of time-delayed
signals as additional inputs to efficiently capture the

Figure 8: Typical identification of a plant with a ANN. system dynamics. This means a large number of

i 4 weights and therefore introduces some difficulties in
functions of the number of hidden neurons by its learning convergence (Haykin, 1994). On the other
pvep = f(M2) = (1+ml+m3)m2+m3, sid_e, thg SSI_IN qutdoes the simple input-output re-
lationship estimation problem. Its captures the sys-

pssnv = f(h,h2) tem dynamics with an architecture that inherently
(1+n+2s)h+ (1+s+mh2+s+m. mirrors a state-space representation. The SSNN al-

More specifically, for plant example 2pssan— lows the reconstruction of a state space and gives
10h+9h2+8 an,d pvp = 15m2+4 Witﬁsh -8 access to the states values. The numerical values
andh2 — 4 for the SSNN and witin? — 8 for the the Presented here shows that, compared to a MLP, the
MLP, both approaches present the same error in iden—SSN'_\I prlesents the besét co:cnpromlse bﬁ_tr\]Negchﬁlm'
tification and with the same number of parameters to putational resources and periormances. The IS

be adjusted (124) but respectively with 20 and 12 neu- more compliant to real-time constraints than the MLP.

rons. This means that a SSNN which uses 20 neuronsAccordingly’ the SSNN is well suited to adaptive.con-
is equivalent in terms of performance and of memory trol schemes based on state-space representations.

size than a MLP with 12 neurons.

Finally, we evaluate the computational coast of
both neural approaches by specifying the number of 4 CONCLUSIONS
scalar operations involved for calculating the esti-
mated output. Calculating the output of a simple In this paper, a State-Space Neural Network (SSNN)
neuron withml inputs and 1 bias requiresl scalar is evaluated for modeling dynamical nonlinear sys-
multiplications,ml scalar additions and the process- tems. This neural approach is a particular type of a
ing through 1 scalar nonlinear function. This general recurrent neural network based on a state-space rep-
fact can be noted down bpl® +ml@ +1f. Cal- resentation. After learning from example data, the
culating the output of MLA(1, m2, m3), means to ~ SSNN allows the reconstruction of a state-space rep-
“propagate” the inputs signals through each neuronsresentation of any nonlinear system. Furthermore, the
of all the successive layers. The number of the con- SSNN is also able to follow the evolution of the states.
sidered scalar operations is therefar@(ml+m3) ® The effectiveness of the SSNN has been illustrated by
+m2(ml+m3) & +(m2+ m3)f. We determine the simulation examples and results demonstrate the ef-
number of scalar operations for calculating the out- fectiveness of this adaptive observer. These examples
put of the SSNN agnh+ 2sh+ sh2 + oh2) ® +(nh+ verify the accuracy of the SSNN in modeling multi-
2sh+sh2+oh2) © +(h+s+h2+0)f. variate dynamical and nonlinear plants. Finally, the

For the specific case of plant example 2, SSNN is compared to a rough implementation of a
MLP(10,8,4) needs 112 +112® +12f while Multi-Layer Perceptron and a thorough study of all
SSNN(1,8,4,4,4) requires only 184+104& +20f. the scalar operations and memory sizes of the two ap-
The number of scalar operations for the training are proaches shows that the SSNN uses reduced compu-

375

NCTA 2011 - International Conference on Neural Computation Theory and Applications

tational costs while allowing the same estimation per-
formance or better parameter tracking capability for
the same computational costs.

REFERENCES

Chen, F. and Khalil, H. (1992). Adaptive control of non-
linear systems using neural networkiternational
Journal of Contro) 55(6):1299-1317.

Elman, J. (1990). Finding structure in tim€ognitive Sci-
ence 14(2):179-211.

Gauthier, J.-P. and Kupka, I. (2001peterministic obser-
vation theory and applications€ambridge University
Press, Cambridge, UK.

Gonzalez, P. A. and Zamarreno, J. M. (2002). A short-term
temperature forecaster based on a state space neural
network. Engineering Applications of Artificial Intel-
ligence 15(5):459-464.

Haykin, S. (1994). Neural Networks : A comprehensive
Foundation Macmillan College Publishing Company,
Inc., New York.

Kim, Y. H., Lewis, F. L., and Abdallah, C. T. (1997). A
dynamic recurrent neural-network-based adaptive ob-
server for a class of nonlinear system&utomatica
33(8):1539-1543.

Mirikitani, D. and Nikolaev, N. (2010). Recursive bayesian
recurrent neural networks for time-series modeling.
IEEE Transactions on Neural Networka1(1):262 —
274.

Narendra, K. and Parthasarathy, K. (1990). Identifica-
tion and control of dynamical systems using neural
networks. |IEEE Transactions on Neural Networks
1(1):4-27.

Principe, J. C., Euliano, N. R., and Lefebvre, W. C. (2000).
Neural and Adaptive Systems: Fundamentals Through
Simulations John Wiley and Sons.

Werbos, P. (1974)Beyond Regression: New tools for pre-
diction and analysis in the behavioral scienc&h.d.
thesis, Harvard University.

Zamarreno, J. and Vega, P. (1998). State space neural net-
work. properties and applicationNeural Networks
11(6):1099-1112.

Zamarreno, J., Vega, P., Garca, L., and Francisco, M.
(2000). State-space neural network for modelling,
prediction and controlControl Engineering Practice
8(9):1063-1075.

Zamarreno, J. M. and Vega, P. (1999). Neural predic-
tive control. application to a highly non-linear sys-
tem. Engineering Applications of Artificial Intelli-
gence 12(2):149-158.

376

